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ARTICLE INFO ABSTRACT

Inherited erythromelalgia (IEM) is a chronic pain disorder caused by gain-of-function mutations of peripheral
sodium channel Nav1.7, in which warmth triggers severe pain. Little is known about the brain representation of
Pain pain in IEM. Here we study two subjects with the IEM Nav1.7-S241T mutation using functional brain imaging
MRI (fMRI). Subjects were scanned during each of five visits. During each scan, pain was first triggered using a
321?11?:“5“’7 warming boot and subjects rated their thermal-heat pain. Next, the thermal stimulus was terminated and sub-
Prefrontal jects rated stimulus-free pain. Last, subjects performed a control visual rating task. Thermal-heat induced pain

mapped to the frontal gyrus, ventro-medial prefrontal cortex, superior parietal lobule, supplementary motor
area, insula, primary and secondary somato-sensory motor cortices, dorsal and ventral striatum, amygdala, and
hippocampus. Stimulus-free pain, by contrast, mapped mainly to the frontal cortex, including dorsal, ventral and
medial prefrontal cortex, and supplementary motor area. Examination of time periods when stimulus-free pain
was changing showed further activations in the valuation network including the rostral anterior cingulate cortex,
striatum and amygdala, in addition to brainstem, thalamus, and insula. We conclude that, similar to other
chronic pain conditions, the brain representation of stimulus-free pain during an attack in subjects with IEM
engages brain areas involved in acute pain as well as valuation and learning.
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Introduction

Chronic pain is a burden to subjects and society. Subjects suffering
from chronic pain have a poor quality of life (Currie and Wang, 2004;
Knaster et al., 2012), but there is a paucity of tools to objectively assess
pain experience. Functional brain imaging (fMRI) is a valuable tool for
investigating brain activity associated with pain (Davis and Moayedi,
2013; Lee and Tracey, 2013; Schmidt-Wilcke, 2015). FMRI has been
used to study multiple types of chronic pain, including chronic back
pain (Baliki et al., 2006; Baliki et al., 2008b; Ceko et al., 2015; Hashmi
et al., 2013; Seminowicz et al., 2011), migraine (Burstein et al., 2015;
Schulte and May, 2016), neuropathic pain (Cauda et al., 2010; Cauda
et al., 2009; Erpelding et al., 2014; Geha et al., 2007; Geha et al., 2008a;
Khan et al., 2014; Maihofner et al., 2003; Malinen et al., 2010), knee
osteoarthritis (Parks et al., 2011; Rodriguez-Raecke et al., 2009;

Rodriguez-Raecke et al., 2013), fibromyalgia (Flodin et al., 2014;
Kuchinad et al., 2007; Loggia et al., 2014; Loggia et al., 2013; Lopez-
Sola et al., 2016; Napadow et al., 2010; Schmidt-Wilcke et al., 2014),
and chronic pelvic pain (Farmer et al., 2011). These studies have
identified structural and functional alterations associated with chronic
pain affecting both sensory and limbic brain systems. Importantly, re-
cent evidence suggested that some of these changes may be predictive
of the risk of transition from acute to chronic pain (Baliki et al., 2012;
Vachon-Presseau et al., 2016). Hence, brain-imaging findings point to
brain vulnerabilities to persistence of pain and to brain plasticity in
response to pain (Flor et al., 1997; Karl et al., 2001; Maihofner et al.,
2007; Maihofner et al., 2003). Nevertheless, the pathophysiology of
chronic non-cancer pain in humans remains incompletely understood.
One hurdle to reaching this mechanistic understanding is the difficulty
of examining how peripheral pathologies from possible tissue injuries
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interact with brain activity and structure to result in “chronification” of
pain.

Inherited eryhthromelalgia (IEM) offers an opportunity to overcome
this hurdle and shed some light on the peripheral-central interactions.
IEM is a genetic model of neuropathic pain in which severe pain arises
from hyperexcitability of peripheral dorsal root ganglion (DRG) neu-
rons (Dib-Hajj et al., 2013). It is characterized by severe burning pain in
the distal extremities triggered by mild warmth (Drenth and Waxman,
2007). Gain-of-function mutations in peripheral sodium channel
Nav1l.7 cause IEM, and thus IEM has a clear molecular basis. The ma-
jority of Nav1.7 mutations that cause IEM shift channel activation in a
hyperpolarizing direction, making it easier to open the channel; when
expressed within DRG neurons, these mutations produce hyper-excit-
ability (Dib-Hajj et al., 2005; Dib-Hajj et al., 2013).

Despite the fact that IEM produces pain with a clear genetic etiology
and a well-established basis of peripheral hyperexcitability, little is
known about the pattern of brain of activity in subjects suffering from
IEM, with only one prior paper describing a single subject (Segerdahl
et al., 2012). We have recently completed a fMRI study on the efficacy
of the sodium channel blocking drug carbamazepine (Geha et al., 2016)
in two subjects with IEM carrying the Nay1.7 S241T mutation, which is
known to hyperpolarize activation of Navl.7 (Lampert et al., 2006),
and produces profound hyperexcitability in DRG neurons, reducing
their threshold and increasing the frequency of their firing (Yang et al.,
2012). These subjects had suffered from severe pain for more than a
decade due to IEM. Functional MRI data were collected as they reported
their pain intensity, during a period of warming which triggered an IEM
attack and after termination of the thermal stimulus, the latter allowing
the measurement of brain activity associated with pain during an attack
in the absence of ongoing external stimulation. Here, we present the
brain representation of pain in subjects with IEM, both during exposure
to warm stimuli and during the stimulus-free period of pain following
cessation of the warmth challenge. We hypothesized that hyper-
excitable nociceptors in IEM would activate brain areas usually seen in
acute pain such as thalamus, primary sensory/motor areas, insula, and
anterior cingulate cortex. In addition, we hypothesize that given the
chronic nature of the condition, increased engagement of the brain
limbic system would be observed while patients rate their stimulus-free
IEM pain.

Materials and methods
Participants

The subjects and their clinical pain characteristics were recently
reported (Geha et al., 2016). Briefly, the subjects were 2 adults, one
male (Subject 1, age = 28 at consent) and his mother (Subject 2,
age = 59 at consent) who suffer from IEM with onset of symptoms at
the age of 16 and 17, respectively. Subject 1 reported severe burning
pain in his feet, triggered by mild warmth, with symptoms progressing
to affect his hands, knees, elbows, shoulders and ears, while subject 2
reported progression to affect her knees and ears. Both subjects re-
ported severe pain episodes, which they rated at 8-9 on the numerical
rating pain scale (NRS), and subject 1 reported frequent sleep disrup-
tion due to this pain. For subject 1, venlafaxine and gabapentin did not
provide relief, while lidocaine patches provided minimal relief. Subject
2 took only aspirin for treatment, and reported no relief.

Study design

The Human Investigations Committees at Yale University and West
Haven Veterans Affairs Medical Center approved this study (NCT
02214615). Signed informed consent was obtained from both subjects
prior to start of the study. The results reported here were obtained
during a double-blind cross-over study where the efficacy of carbama-
zepine was assessed in each of the two subjects with IEM carrying the
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S241T mutation of Navl.7 during a total of seven hospital visits: one
pre-scanning/training visit, five scanning visits, and a non-scanning
visit for cross-over (visit 5) (Supplementary Table 1). Our observations
on the efficacy of carbamazepine in these subjects have been reported
separately (Geha et al., 2016). Here we report the brain map for pain in
subjects with IEM by collapsing pain rating runs and control visual
rating scans across visits (see below)

Pre-scan testing

IEM subjects are known to have heightened sensitivity to thermal
stimuli whereby they experience severe burning pain at mildly warm
temperatures that are not experienced as painful in healthy controls
(Dib-Hajj et al., 2007). Pain of reproducible intensity in these subjects
was evoked using a calibrated warming boot with circulating water
maintained at controlled temperatures via a thermal bath. The boot was
fitted during all testing to the right foot in both subjects, described by
participants as most sensitive to changes in ambient temperature. A
thermocouple was attached to the skin under the boot to measure skin
temperatures. The temperature threshold to trigger pain was de-
termined during the pre-study visit, with each subject exposed to in-
creasing temperature stimuli starting at 31-32°C for a duration of
5 min, a duration reported to elicit pain attacks (Segerdahl et al., 2012).
If the subject did not report the onset of burning pain similar to an I[EM
attack after 5min, the temperature was increased by 2°C and the sti-
mulus was maintained at the new temperature for 5min. A re-
producible thermal threshold that triggered pain in subject 1 was
T = 39.5-40.5°C, and was T = 37-38 °C for subject 2. These tempera-
tures were used during the initial run in all the subsequent testing
sessions to elicit pain attacks. Once a pain attack started we terminated
heat stimulation if pain intensity rating reached “very strong” on the
generalized labeled magnitude scale (gLMS) (Green et al., 1996) (See
below). The ratings are then converted to 0-100 values.

Continuous pain rating

We collected continuous ratings of pain intensity as described by
Foss et al. (2006), and as used previously by the authors (Baliki et al.,
2008b; Geha et al., 2007). This method allows the identification of a
population-specific brain pain map since it captures stimulus-free
fluctuations of chronic pain (Apkarian et al., 2009; Baliki et al., 2006;
Geha et al., 2007; Geha et al., 2008b). Subjects indicated continuously
their level of pain through a linear potentiometer device attached to the
thumb and index finger of the dominant hand, with voltage output
collected and calibrated by a computer running LabView software
(National instruments, Austin, TX). Subjects were seated in front of a
computer monitor, which displayed the extent of their finger span by a
colored bar (y axis has an intensity scale of no sensation-worst ima-
ginable sensation), providing visual feedback of their rating. Ratings
were sampled at 20 Hz. Subjects were initially trained to use the finger-
span device with a moving bar on the computer screen that varied in
time, and were instructed to track its length with the finger-span device
over a one-minute trial. Both subjects met the criteria of being able to
follow the bar at a consistency level that resulted in a correlation
coefficient r > 0.75 between rating and bar fluctuations within two
attempts. Subjects were then instructed to rate the fluctuations of their
own ongoing pain during testing sessions, using the maximum thumb-
finger-span to indicate “worst imaginable intensity of pain” and thumb
and finger touching to indicate “no pain sensation” on the gLMS. Before
testing, each subject was trained to use the general gLMS to rate overall
pain intensity (Green et al., 1996). The instruction given to patients
while rating their stimulus-free pain or the thermal heat pain was al-
ways “ Rate the intensity of your pain between no sensation and the
worst imaginable pain ever”. The instructions given while rating the
magnitude of a moving bar was always “Rate the magnitude of the bar.
If the bar is moving up you should increase your finger span; if the bar
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is moving down you should reduce your finger span. Keep in mind: if
the bar is at no sensation your fingers should be touching (i.e. finger
span closed). If the bar is at the worst imaginable sensation your fingers
should be open to your maximum finger span.”

Pain rating and visual magnitude rating tasks during fMRI

During each visit subjects were scanned in the following order: (I)
while rating their pain in response to thermal stimuli, (II) while rating
their ongoing IEM pain (no stimulation) after an attack was elicited and
(IT1) while rating the magnitude of a moving bar using the finger span
device (Apkarian et al., 2009). Data was collected between January and
May 2015. Details of scans collected at each visit are presented in
Supplementary Table 1.

The voltage of the finger-span device was digitized, time-stamped in
reference to the fMRI acquisition and connected to a computer pro-
viding visual feedback. Every scanning run was 20 min long. The first
run was always the thermal stimulation run, which invariably elicited
an [EM attack described at session debriefing by both participants to be
similar to attacks they experience during daily life. We titrated the
thermal stimulation until pain intensity rating reached a pre-de-
termined level of “very strong” on the gLMS during all scanning visits.
Thermal runs started with 4 min of no stimulation, followed by two
thermal stimuli at temperatures defined during the pre-scanning visit.
The thermal stimuli were terminated if subjects indicated pain intensity
above “very strong” on the gLMS scale (Green et al., 1996). Hence,
patient 1 received one stimulus for 4 min and another one for one
minute; patient 2 received 2 stimuli of 4 min duration each.

During each visit, subsequent pain runs were collected without
thermal stimulation immediately after the first (thermal stimulation)
run. During the latter runs, subjects rated spontaneous fluctuations of
their pain. A visual magnitude rating was performed last, as a control to
account for visuo-spatial and attention components inherent in our pain
rating tasks (Apkarian et al., 2009; Baliki et al., 2008a). The partici-
pants’ own pain-rating time series was used as input during the mag-
nitude rating control task. Given the relatively long duration of scan-
ning (~120 min) we repeatedly asked our patients if they needed a rest
period to maintain comfort and minimize head motion. When needed,
patients were taken out of the scanner for 10-15 min before the study
resumed.

fMRI data acquisition parameters

Imaging data were acquired with a Siemens 3T Trio magnetom
scanner at Yale University Magnetic Resonance Research Center. Blood
oxygen level dependent (BOLD) images were acquired with the fol-
lowing parameters: voxel resolution = 2 X 2 X 2mm; TR = 1000 ms;
TE = 30 ms; flip angle = 60°; number of volumes = 1200 (20 min);
FOV = 220 mm and 60 slices with a multiband acceleration factor = 4.
A high-resolution 1 X 1 X 1 mm T1-weighted three-dimensional ana-
tomical image was acquired for each subject with the following para-
meters: FOV = 250mm; TR =1900ms; TE =2.52ms and flip
angle = 9.

fMRI data analysis

Image analysis was performed on each subject's data using the
Oxford Center for Functional MRI of the brain (FMRIB) Expert Analysis
Tool [FEAT (Smith et al., 2004) www.fmrib.ox.ac.uk/fsl]. The pre-
processing of each subject’s time-series of fMRI volumes encompassed:
skull extraction using Brain Extraction Tool (BET); slice time correction;
motion correction; spatial smoothing using a Gaussian kernel of full-
width-half-maximum 5mm; non-linear high-pass temporal filtering
(128 s) and subtraction of the mean of each voxel time-course from that
time-course. Anatomical and functional images were normalized to the
standard Montreal Neurological Institute template brain implemented
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in FSL. The fMRI signal was linearly modeled on a voxel-by-voxel basis
using the FMRIB Improved Linear Model (FILM) with local auto-
correlation correction. The six vectors of head motion, their first deri-
vatives, two averaged brain activity signals from the left and right white
matter and one from the ventricles were regressed out of the model to
correct for head motion and physiologic noise.

After pre-processing, a design matrix was created using the subjects’
continuous pain or visual rating. The general linear model was used to
estimate, at each voxel, condition-specific effects. A canonical hemo-
dynamic response function consisting of a double-gamma variate
function was used to model neural response to events. The significance
of the model fit to each voxel time-series was calculated, yielding sta-
tistical parametric maps for each subject. All group statistical maps
were generated by a second-level fixed effects group analysis, using
FMRIB (Flame).

We first subtracted the visual map from the pain maps to obtain the
effect (PAIN minus VISUAL) for each visit for each subject. In the next
step, we averaged all visits within subjects and in the final next step we
averaged across subjects. The scans included and averaged were col-
lected during pre-treatment baseline, placebo and carbamazepine
treatment sessions (i.e. visit). Briefly, first, the contrast of pain minus
visual was calculated within each session for thermal heat pain; second,
these maps (5 maps for subject 1 and 4 maps for subject 2) were
averaged across sessions within each subject; and third, the maps
(n = 2) were averaged across the 2 subjects which gives the results
depicted in Fig. 1. Hence, the final result is an average map across
baseline, placebo and carbamazepine. The same method was followed
for stimulus-free pain depicted in Fig. 2.

For each resulting cluster of spatially connected voxels surviving the
z threshold of 3.1, a cluster probability threshold of P < 0.05 (family-
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Fig. 1. Thermal heat pain. (a) Example of two thermal pain ratings obtained while the
warming boot was turned on and off. The colored horizontal lines indicate the timings of
the thermal stimuli. (b) Brain activity associated with thermal pain in subjects with IEM
due to the S241T Nav1.7 mutation. Brain activity associated with rating of thermal pain
in subjects with IEM. Areas shown in red to yellow exhibit significant increase (Z > 3.1,
p < 0.05, corrected) in activity during thermal pain rating; areas shown in blue to light
blue exhibit significant increase in activity during visual rating Abbreviations: R, right; L,
Left; ACC, anterior cingulate cortex; Hip, hippocampus; Ins, Insula; SMA, supplementary
motor area (SMA); SI, primary somatosensory cortex. Color bars, heat maps for unpaired
t-test statistics. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 2. Brain activity associated with stimulus-free pain in patients with IEM due to the S241T Nav1.7 mutation. Areas in red to yellow exhibit significant increase in brain activity during
pain rating while areas in blue to light blue exhibit significant increase in brain activity during visual rating (a) Brain activity during stimulus-free pain rating; an example rating is shown
on the right in black. (b) Brain activity during periods of change of stimulus-free pain (i.e. derivative of pain rating). An example rating is shown on the right in red. The timeserie in red is
the derivative of the pain timeserie depicted in black. Abbreviations: Amyg, amygdala; Put, putamen; rACC, rostral anterior cingulate cortex Thal, thalamus. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

wise error rate corrected) was applied to the computed significance of
that cluster to correct for multiple comparisons (Worsley, 2001). We
use a voxel z threshold of 3.1 (corresponding to a p-value < 0.001)
given recent recommendations for avoiding false positive activations
(Eklund et al., 2016).

Results
Thermal heat stimulation in IEM

The two patients reported on average a pain intensity of 32 out of
100 and a maximum pain reaching 52 during thermal heat stimulation
at temperatures that would not elicit pain in healthy participants
(< 40.5°C). Pain ratings collected during thermal heat stimulation
were used in a general linear model (GLM) analysis to identify the
corresponding brain activity (Fig. 1a). Activated brain areas (THERMAL
PAIN minus VISUAL; whole brain corrected, Z > 3.1, p < 0.05, cor-
rected) included the right ventral pallidum/amygdala, bilateral primary
sensory motor areas (SI/MI), right premotor area, right insula, right
putamen, right inferior, middle, and superior frontal gyri, right superior
parietal lobule, right temporal cortex, left hippocampus, left secondary
somatosensory cortex (SII), left premotor area, left anterior insula/in-
ferior frontal gyrus, left middle frontal gyrus, left inferior parietal lo-
bule, left temporal cortex, in addition to supplementary motor area
(SMA), anterior cingulate cortex (ACC) (Brodmann Area (BA) 32), and
ventro-medial prefrontal cortex (VMPFC) (Fig.1b red to yellow;
Table 1).

The opposite contrast (VISUAL minus THERMAL PAIN) showed
increased activity in the brainstem, cerebellum, left temporal cortex
and right ventral pallidum (Fig. 1, blue to light blue). We inspected the
response to thermal heat at a lower threshold (Z > 2.3, p < 0.05,
corrected) to see whether we could observe activations in the thalamus
or primary sensory/motor foot area. Surprisingly, thalamic activations
were absent but we identified mid-line sensory/motor activations in the
foot area (Supplementary Fig. 1).

Stimulus-free pain

Both patients reported low to nil pain scores varying between 0 and
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3 on the NRS with an average of ~1 upon presentation for the scanning
sessions. Pain was triggered after they received a thermal stimulus,
which was terminated after 1-5 min, and tended to fluctuate (Fig. 2,
black trace).

The average pain intensity was 35. The fluctuations in stimulus-free
pain were used in a GLM to identify the corresponding brain activity.
Pain (corrected for visual ratings) correlated to activity mainly in the
dorso-medial and ventro-medial prefrontal cortex, in addition to SMA
and left frontal operculum/SI (Fig. 2a red to yellow, Table 2). The op-
posite contrast yielded significant activations in the cerebellum and the
visual cortex (Fig. 2a blue to light blue, Table 2). Examination of brain
activity during episodes of change in stimulus-free pain (Fig. 2, red
trace) showed significant activations in the subjective valuation net-
work (Kable and Glimcher, 2007) limbic system (Mesulam, 2000) in-
cluding rostral ACC, dorsal and ventral striatum (caudate and pu-
tamen), bilateral amygdala, in addition to SMA and left thalamus
(Fig. 2b, Table 3). The qualitative differences observed between thermal
heat pain depicted in Fig. 1b and stimulus-free pain depicted in Fig. 2
could have been due to differences in the experienced pain intensity.
Therefore, we calculated the average pain rating intensities per condi-
tion at each visit (Supplementary Table 2) and compared them between
thermal heat pain and stimulus-free pain using paired t-test. The
average thermal heat pain rating ( + standard error of the mean) across
all visits was 31.1 = 3.1 and the average stimulus-free pain was
35.6 + 5.1. The difference was not significant (p = 0.41).

Discussion

Our results show that, similar to acute and chronic pain studies, IEM
pain activates both sensory/motor and limbic areas (Apkarian et al.,
2005; Schmidt-Wilcke, 2015). Acute thermal pain in IEM engaged areas
often collectively referred to as the “pain matrix” (Tracey and Mantyh,
2007) including primary and secondary somatosensory motor areas (SI/
SII, MI/MII and SMA), insula, and ACC, in addition to areas of the
limbic system (Mesulam, 2000) including hippocampus, amygdala and
VMPFC. Pain in IEM is caused by abnormal impulse activity in per-
ipheral sensory DRG neurons including nociceptors in which gain-of-
function mutations of the Nayl.7 sodium channel produce hyper-ex-
citability (Dib-Hajj et al., 2013; Drenth and Waxman, 2007; Namer
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Table 1
Activation during thermal heat stimulation.
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Table 2
Activations associated with stimulus-free IEM pain.

Regions Coordinates (mm) Z-value Cluster Regions Coordinates (mm) Z-value Cluster
X Y VA X Y VA
Contrast 1: Stimulus-Free Pain > Visual Contrast 1: Stimulus-Free Pain > Visual
R Pre-Motor area (6) 32 -8 68 5.06 1 SMA (6) 4 -2 54 5 1
R SPL 28 -56 64 4.71 2 OFC (11) -12 42 -20 4.93 2
L Insula/Putamen -34 —-10 -8 4.14. 3 L MFG -20 18 42 4.88 3
L Pre-Motor area (6) —-36 -8 62 4.75 4 R SFG 32 34 50 4.29 4
L Hippocampus -16 —-14 —-26 4.75 5 VMPFC 0 60 -4 4.1 5
R VP/Amygdala 20 -8 -6 4.89 6 L SFG (10) -34 60 8 5.53 6
L Temporal Pole —42 6 -32 4.41 7 R MFG (10) 28 54 14 5.11 6
L Ant Insula/IFG -26 12 -28 4.75 8 R SFG (9) 12 62 28 4.8 6
ACC (32) 4 24 28 4.3 9 L Fontal Operc./SI -58 8 16 4.6 6
];{?J[IF G 3_464 4_424 ig :;5 1(1) Contrast 2: Visual > Stimulus-Free Pain
RLG (18) 18 —46 -2 4.75 1
R SFG 26 %8 10 4.39 12 L Cerebellum -18 -80 —40 4.31 2
R SI 40 -38 62 5.24 13
L IPL —58 —-38 46 4.75 14 )
R SFG 29 64 8 5.95 15 Contrast 1 contained 7 clusters: cluster 1, 80 voxels, p < 0.05; cluster 2, 93 voxels,
R IFG 59 39 12 3.76 16 p < 0.05; cluster 3, 120 voxels, p < 0.01; cluster4, 161 voxels, p < 10-3; cluster 5, 195
SMA (6) 2 _2 52 566 17 voxels, p < 10-4; cluster 6, 205 voxels, p < 10-4; cluster 7, 3506 voxels, p < 10-37.
L MFG _54 38 12 5.58 18 Contrast 2 contained 2 clusters: cluster 1, 91 voxels, p < 0.05; cluster 2, 143 voxels,
R Temporal Pole 44 22 —32 5.34 19 p < 10-3. Abbreviation: LG, lingual gyrus; Operc, Operculum; OFC, orbitofrontal cortex.
R Insula 46 14 -6 4.97 20
VMPFC 0 54 -12 5.38 21 Table 3
R MTG 56 —54 -8 5.21 22 Activations associated with changing stimulus-free IEM pain.
Contrast 2: Visual > Stimulus-Free Pain
R VP 14 6 _8 5.29 1 Regions Coordinates (mm) Z-value Cluster
L ITG —46 -2 -40 3.82 2
Pons/Cerebellum -12 -34 -28 4.59 3 X Y z
R Fusiform G 30 —42 2 5.34 4 ] . ] . ]
Pons 4 _34 _36 5.03 5 Stimulus-Free Derivative of Pain > Derivative of Visual
R Caudate 12 0 18 4.4 1
Contrast 1 contained 22 clusters: cluster 1, 75 voxels, p < 0.05; cluster 2, 75 voxels, R Cerebelll.;m ! 8 —60 —32 4.21 2
p < 0.05; cluster 3, 81 voxels, p < 0.05; cluster 4, 87 voxels, p < 0.05; cluster 5, 95 fl;l';r;pora Pole 3_610 6_30 :22 ggz i
voxels, p < 0.05; cluster 6, 108 voxels, p < 0.01; cluster 7, 120 voxel, p < 0.01; cluster R SFG (8) 14 54 38 4.37 5
8, 130 voxels, p < 0.01; cluster 9, 1327;/0xels, p < 0.01; cluster 10, 1?163 voxels, L Putamen _98 _6 6 5.37 6
p < 0.01; cluster 11, 143 voxels, p < 10~ 7; cluster 12, 146 voxels, p < 10~ °; cluster I Thalamus _12 10 6 3.46 6
13, 159 voxels, p < 10~ 3; cluster 14, 163 voxels, p < 10~ 3; cluster 15, 166 voxels, rACC (32) _9 44 6 4.07 7
p < 1073 cluster 16, 167 voxels, p < 10~ 3; cluster 17, 200 voxels, p < 10~ *; cluster R Putamen/Amygdala 24 0 —4 5.65 8
18, 208 voxels, p < 10~ % cluster 19, 242 voxels, p < 10~ % cluster 20, 274 voxels, R SMA (6) 12 _12 68 4.69 9
p < 1073 cluster 21, 352 voxels, p < 10~ cluster 22, 367 voxels, p < 10~ %; Contrast L Caudate —16 22 6 5.06 10
2 contained 6 clusters: cluster 1, 71 voxels, p < 0.05; cluster 2, 77 voxels, p < 0.05; L Insula —-32 10 -10 3.54 10
cluster 3, 145 voxels, p < 10~3; cluster 4, 195 voxels, p < 10~ % cluster 5, 206 voxels, ACC (24) 16 8 40 5.92 11

p < 10~* Abbreviations: Ant, anterior; ACC, anterior cingulate cortex; IFG, inferior
frontal gyrus; MFG, middle frontal gyrus; MTG, middle temporal gyrus; SII, secondary
somatosensory cortex; SFG, superior frontal gyrus; SI, primary somatosensory cortex;
SMA, supplementary motor area; SPL, superior parietal lobule, VMPFC, ventro-medial
prefrontal cortex; VP, ventral putamen.

et al., 2015). Activation of these primary sensory neurons with noxious
stimuli in healthy participants during acute-pain very commonly leads
to activation of the thalamus, primary and secondary somatosensory
areas, insula and ACC (Apkarian et al., 2005; Jensen et al., 2016; Tracey
and Mantyh, 2007; Wager et al., 2013). In contrast, stimulus-free [EM
pain engaged mainly fronto-striatal limbic circuits involved in sub-
jective valuation (rostral ACC, striatum) (Hart et al., 2014; Kable and
Glimcher, 2007; Levy and Glimcher, 2012), emotional processing
(LeDoux, 2000; Phelps and LeDoux, 2005), and decision-making
(striatum, hippocampus, amygdala, dorsal and medial PFC)
(Grabenhorst and Rolls, 2011).

It is notable that although the same peripheral fibers are engaged in
stimulus-free and acute thermal IEM pain, and despite comparable le-
vels of pain intensity, stimulus-free IEM pain engaged mainly the
fronto-striatal limbic system. Our results are consistent with the ob-
servation that repetitive acute pain stimulation over several days in
healthy participants leads to decreased activation in the areas of the
“pain matrix” and increased activity in the sub-genual ACC (Bingel
et al., 2007). Persistent firing of peripheral pain fibers could have oc-
curred after we terminated the thermal stimulus in our experiments,
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Contrast 1 contained 7 clusters: cluster 1, 72 voxels, p < 0.05; cluster 2, 79 voxels,
p < 0.05; cluster 3, 86 voxels, p < 0.02; cluster 4, 110 voxels, p < 10-2; cluster 5, 127
cluster 6, 168 voxels, p < 10~ 3; cluster 7, 170 voxels, p < 1073;
cluster 8, 300 voxels, p < 10~ cluster 9, 327 voxels; cluster 10, 369 voxels, 10~ 7;
cluster 11, 563 voxels, 10 1.

voxels, p < 107%

hence driving pain perception via long-term potentiation (Sandkuhler,
2007). Persistent afferent firing after termination of a thermal stimulus
triggering an [EM attack mimics situations that our patients encounter
in everyday life where transient exposure to higher temperature trig-
gers pain attacks that outlast the exposure to warmth. Together, these
observations indicate that, despite similar peripheral nociceptive input,
the brain representation of acute pain during thermal stimulation might
be distinct from the pattern associated with pain that outlasts warmth
in IEM. This may possibly be due to the neuroplastic changes including
learning that accompany chronic pain (Dellarole et al., 2014; Dimitrov
et al., 2014; Duric and McCarson, 2006; Mutso et al., 2012). Hence, a
sustained barrage of peripheral nociceptive input would lead to cortical
and sub-cortical neuroplastic changes (Johansen et al., 2011), which
could in turn integrate noxious input into a negative motivational state
(Borsook et al., 2016). This hypothesis is consistent with the observed
increased activations of areas of the limbic system like amygdala, hip-
pocampus and VMPFC and striatal areas, which are all well known to
mediate learning (Balleine and O'Doherty, 2010; Hart et al., 2014).
Segerdahl et al. (2012) reported brain activity using arterial spin
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labeling in one patient with IEM by comparing periods of painful at-
tacks to periods of pain relief; pain relief lead to a significant decrease
in activity of inferior frontal gyrus, VMPFC, insula, ACC, SI, thalamus,
and dorsal striatum. The differences between the two experimental set-
ups preclude direct comparison between the two studies. Nevertheless,
we observed overlaps with the findings of Segherdahl et al. in the
striatum, insula, ACC and VMPFC. The absence of significant thalamic
activation during thermal heat stimulation in our data is intriguing
although we did observe significant activations in both SI and SII and
thalamic activation when stimulus-free pain was changing. One ex-
planation is that our visual control task activates the thalamus as well
(Baliki et al., 2009; Baliki et al., 2008a); therefore, contrasting pain
ratings with visual rating and averaging across a small number of
subjects might not have enough power to detect such activations.

Our approach captures stimulus-free pain in IEM; it is novel in that
it allows the recording of the subjective experience of a tonic IEM attack
without the sensory input from an outside salient stimulus. Activations
observed during acute pain in healthy subjects engaging the “acute pain
matrix” are sufficient to predict pain (Wager et al., 2013). In addition,
some fMRI studies of chronic pain have reported decreased activations
in the thalamus (Di Piero et al., 1991; Duncan et al., 1998; Fukumoto
et al.,, 1999; Hsieh et al., 1996; Iadarola et al., 1995; Mountz et al.,
1995), and abnormal activations and functional connectivity in the
insula (Ceko et al., 2015; Hong et al., 2014; Lopez-Sola et al., 2017;
Malinen et al., 2010; Napadow et al., 2012; Napadow et al., 2010) and
ACC (Loggia et al., 2014; Lopez-Sola et al., 2017; Malinen et al., 2010).
Nevertheless, the specificity of the activations in areas of the “pain
matrix” has been questioned since they can be elicited by other salient
sensory stimuli (Legrain et al., 2011; Mouraux et al., 2011) and are
observed in patients with congenital insensitivity to pain (Salomons
et al., 2016). Furthermore, activity in the visual cortex, which does not
receive direct nociceptive input, can be sufficient to predict acute pain
(Liang et al., 2013). The non-specificity of activations elicited by acute
pain is consistent with stimulation studies in humans showing that a
very small fraction of neuronal stimulations in the posterior insula/SII
only are capable of eliciting pain (Mazzola et al., 2012). By contrast,
stimulus-free pain rating has been helpful in identifying population
specific brain components of chronic pain in other conditions (Apkarian
et al., 2009). For example, stimulus-free pain ratings have been con-
sistently shown to correlate with brain activity in the nucleus ac-
cumbens, amygdala and rostral anterior cingulate/medial prefrontal
cortex (Baliki et al., 2006; Geha et al., 2007; Hashmi et al., 2013).
Taken together, these results suggest that stimulus-free pain may help
uncover subjective aspects of chronic pain which are repeatedly ob-
served to relate more to activity in areas of the limbic brain (Mesulam,
2000) and to relate less to areas involved in salience detection and
sensory processing (Legrain et al., 2011).

In our previous study (Geha et al., 2016) we used fMRI to assess the
effect on pain of carbamazepine compared to placebo in the subjects
described here. Genomic analysis, structural modeling, and in vitro
functional assessment pointing to a specific effect of carbamazepine on
the mutated Nav 1.7 channel carried by both subjects guided treatment
with carbamazepine. Clinical pain improvement was observed with
carbamazepine but not placebo, and was accompanied by a decrease in
activity of valuation areas, mainly VS, ACC and posterior cingulate
cortex (Kable and Glimcher, 2007; Levy and Glimcher, 2012). These
same areas were observed when we examined time periods when sti-
mulus-free IEM pain was changing. This suggests that these valuation
areas are good targets for therapy. Recent data from rodent models
support an important role for the ventral striatum-VMPFC circuitry in
chronic pain. This circuitry has been reported to access peripheral no-
ciceptive input via direct projections from the spinal cord (Braz et al.,
2005; Gauriau and Bernard, 2002; Han et al., 2015; Ma and Peschanski,
1988; Newman et al., 1996), and indirect projections from the brain-
stem, thalamus, limbic brain, and insula (Haber and Knutson, 2010).
Lee et al. demonstrated that optogenetic activation of prelimbic
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projections from PFC, the equivalent of VMPFC in rodents, to the VS,
i.e. nucleus accumbens, results in a decrease in sensory and affective
pain behavior (Lee et al., 2015). Ren et al. showed that altering the
excitability of accumbens spiny projection neurons modulates noci-
ceptive behavior in rats, providing further evidence that VS can gate
ascending nociceptive activity (Ren et al., 2016). Taken together, re-
sults of these animal studies and the prior (Geha et al., 2016) and
present human studies support the important role for the cortico-striatal
circuitry in representation of pain in subjects with IEM, and suggest it as
a potential anatomic target for intervention to modulate and treat IEM
as has been suggested for other idiopathic chronic pain conditions
(Baliki and Apkarian, 2015).

Conclusion

In summary, our observations in two subjects with the S241T
Navl.7 mutation and IEM demonstrate an overlap between IEM and
other chronic clinical pain conditions. We suggest that the sustained
barrage of peripheral sensory input in different chronic pain conditions
leads to a reorganization in the brain’s representation of pain and in-
creased involvement of the brain limbic system.
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