
University of Wollongong
Research Online

Faculty of Engineering and Information Sciences -
Papers: Part B Faculty of Engineering and Information Sciences

2017

Cost-effective Big Data Mining in the Cloud: A
Case Study with K-means
Qiang He
Swinburne University of Technology, qhe@swin.edu.au

Xiaodong Zhu
University of Shanghai for Science and Technology

Dongwei Li
University of Shanghai for Science and Technology

Shuliang Wang
University of Shanghai for Science and Technology

Jun Shen
University of Wollongong, jshen@uow.edu.au

See next page for additional authors

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
He, Q., Zhu, X., Li, D., Wang, S., Shen, J. & Yang, Y. (2017). Cost-effective Big Data Mining in the Cloud: A Case Study with K-means.
IEEE 10th International Conference on Cloud Computing 2017 (pp. 74-81). United States: IEEE.

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/eispapers1
http://ro.uow.edu.au/eispapers1
http://ro.uow.edu.au/eis


Cost-effective Big Data Mining in the Cloud: A Case Study with K-means

Abstract
Mining big data often requires tremendous computationalresources. This has become a major obstacle to
broad applicationsof big data analytics. Cloud computing allows data scientists to access
computationalresources on-demand for building their big data analytics solutions in the cloud.

Keywords
k-means, study, case, big, cloud:, cost-effective, mining, data

Disciplines
Engineering | Science and Technology Studies

Publication Details
He, Q., Zhu, X., Li, D., Wang, S., Shen, J. & Yang, Y. (2017). Cost-effective Big Data Mining in the Cloud: A
Case Study with K-means. IEEE 10th International Conference on Cloud Computing 2017 (pp. 74-81).
United States: IEEE.

Authors
Qiang He, Xiaodong Zhu, Dongwei Li, Shuliang Wang, Jun Shen, and Yun Yang

This conference paper is available at Research Online: http://ro.uow.edu.au/eispapers1/385

http://ro.uow.edu.au/eispapers1/385


Cost-effective Big Data Mining in the Cloud: 

A Case Study with K-means

Qiang He1, Xiaodong Zhu2, Dongwei Li3,1, Shuliang Wang3, Jun Shen4, Yun Yang1,5

1Swinburne University of Technology, Melbourne, Australia
2University of Shanghai for Science & Technology, Shanghai, China

3Beijing Institute of Technology, Beijing, China
4University of Wollongong, Wollongong, Australia

5Anhui University, Hefei, China

qhe@swin.edu.au, zhuxd@usst.edu.cn, {dli, slwang}@bit.edu.cn, jshen@uow.edu.au, yyang@swin.edu.au

Abstract—Mining big data often requires tremendous 

computational resources. This has become a major obstacle to 

broad applications of big data analytics. Cloud computing 

allows data scientists to access computational resources on-

demand for building their big data analytics solutions in the 

cloud. However, the monetary cost of mining big data in the 

cloud can still be unexpectedly high. For example, running 100 

m4-xlarge Amazon EC2 instances for a month costs 

approximately $17,495.00. On this ground, it is a critical issue 

to analyze the cost effectiveness of big data mining in the cloud, 

i.e., how to achieve a sufficiently satisfactory result at the 

lowest possible computation cost. In certain big data mining 

scenarios, 100% accuracy is unnecessary. Instead, it is often 

more preferable to achieve a sufficient accuracy, e.g., 99%, at a 

much lower cost, e.g., 10%, than the cost of achieving the

100% accuracy. In this paper, we explore and demonstrate the 

cost effectiveness of big data mining with a case study using 

well known k-means. With the case study, we find that 

achieving 99% accuracy only needs 0.32%-46.17%

computation cost of 100% accuracy. This finding lays the 

cornerstone for cost-effective big data mining in a variety of 

domains.

Keywords-Cloud Computing; Data Mining; Cost-Effective; Big 

Data; K-Means

I. INTRODUCTION

The era of big data has arrived [1]. Ninety percent of the 
data in the world today were produced within the past two 
years and 2.5 quintillion bytes of new data are created every 
day [2]. For instance, about 6 billion new photos are
reported every month by Facebook and 72 hours of video
are uploaded to YouTube every minute [2]. This explosive 
growth of data has fueled big data mining in a wide range of 
sections, e.g., business [3], government [4], healthcare [5], 
etc.

Most data mining algorithms are exponential in 
computational complexity. In big data scenarios, it is not rare 
for the data mining process to take hours, even days, to 
complete. Thus, big data mining often requires tremendous 
computational resources. Many businesses and organizations 
cannot afford the costs of in-house IT infrastructure for big 
data mining, especially, small and medium sized businesses. 
Cloud computing is the perfect solution for them [6]. The 

“pay-as-you-go” model promoted by cloud computing 
enables flexible and on-demand access to virtually unlimited 
computational resources. This allows big data mining to be 
performed using only the computational resources necessary 
for the needed period of time. In fact, many businesses and 
organizations have already had their data saved in the cloud. 
For such businesses and organizations, it is a natural choice 
to perform data mining in the cloud [6, 7]. However, the 
monetary cost of utilizing the computational resources in the
cloud (referred to as computation cost) for big data mining 
can be unexpectedly high if they are not managed properly. 
For example, running 100 m4-xlarge Amazon EC2 virtual 
machine (VM) instances costs $583.00 per day. Thus, the 
cost effectiveness in the cloud has become a major obstacle 
for broad applications of big data mining. On this ground, it 
is a critical issue to analyze the cost effectiveness of big data 
mining in the cloud, i.e., how to achieve a sufficiently
satisfactory result at the lowest possible computation cost.

In many data mining scenarios, achieving the optimal result, 
e.g., 100% accuracy, is not necessary. Take marketing for 
example, where data mining is usually performed on a large 
number of consumers. A reasonable margin of inaccuracy is 
acceptable. For example, marketers do not need their consumers 
to be classified with a 100% accuracy. As long as they can 
obtain a general picture, they are able to make a decision. In 
fact, in some data mining scenarios, there will never be a 100% 
accuracy, e.g., weather forecasting and traffic jam prediction. It 
is possible to achieve high cost effectiveness by stopping the 
data mining process at a reasonable point in such scenarios 
because it is often more preferable to achieve a sufficient 
accuracy, e.g., 99% or 99.9%, at much lower costs, e.g., 10% or 
20%, than the cost of achieving a 100% accuracy.

Cost-effective data mining allows big data analytics to be 
applied in a broader range of fields by more businesses and 
organizations, especially small and medium sized ones. 
However, it has not been well investigated by the research 
community. In this paper, we study k-means, one of the top 10 
data mining algorithms [8], to explore and demonstrate the cost 
effectiveness of big data mining in the cloud.

The remainder of this paper is organized as follows.
Section II discusses the related work. Section III introduces 
the methodology adopted in this study. Section IV presents 
and analyzes the experimental results. Section V further 



discusses the findings of this study. Section VI analyzes the 
threats to the validity of our experiments. Finally, Section VII
concludes this paper and discusses the future work.

II. RELATED WORK

The pay-as-you-go model introduced and promoted by 
cloud computing has significantly changed the way that IT 
infrastructure and resources are provisioned and utilized. 
Since most major advantages offered by cloud computing are 
built around the flexibility of this cost model, cost 
effectiveness has attracted many researchers’ attention as a 
core research problem in cloud computing.

There have been many studies on cost-effective 
computation in the cloud. Ostermann et al. analyzed the 
performance and cost effectiveness of Amazon’s EC2 using 
micro-benchmarks and kernels [9]. Two similar studies, one 
conducted by Mehrotra et al. with NASA HPC workloads 
[10] and the other conducted by Iosup et al. with Many-Task 
Computing (MTC) workloads [11], both came to the same 
conclusion that the performance of public cloud services was 
not high enough for HPC applications. As cloud vendors 
continuously improved their cloud services over the recent 
years, more studies have been conducted on the performance 
as well as the cost effectiveness of public cloud services and 
achieved more satisfactory results. Berriman et al. studied 
the cost effectiveness of scientific computing applications in 
Amazon’s EC2 [12] through a comparison between 
Amazon’s EC2 and the Abe high-performance cluster at the 
National Center for Super Computing in the US. Their study 
showed that Amazon EC2 cloud offers better performance 
and value for processor- and memory-limited applications 
than for I/O-bound applications. Carlyle et al. conducted a 
similar study that compared the costs of high-performance 
computation in traditional HPC environments and in 
Amazon’s EC2 environments, using Purdue University’s 
HPC “community cluster” program [13]. Their study showed 
that an in-house cluster is more cost effective when the 
organization fulfils three criteria: 1) having sufficient 
demand that fully utilizes the cluster; 2) having an IT 
department capable of sustaining IT infrastructure; and 3) 
having cyber-enabled research as a priority. These 
constraints, in fact, confirm the flexibility and cost 
effectiveness of running computation-intensive applications 
in the commercial clouds. Deelman et al. analyzed the 
tradeoff between the cost of running computation-intensive 
and data-intensive applications and their performance in the 
cloud [14]. Their main finding was that running 
computation-intensive applications was more cost effective 
than running data-intensive applications in the cloud. Gupta 
et al. evaluated and analyzed the performance of HPC 
applications in cloud. Their experiments showed that current 
cloud services cannot substitute supercomputers but can 
effectively complement them [7]. Wang et al. proposed a 
stochastic multi-tenant framework for investigating the 
response time of cloud services as a stochastic metric with a 
general probability distribution [15]. Hwang et al. tested the 
performance of Amazon’s cloud services with five 
benchmark applications, with a focus on the comparison 
between the scaling out and the scaling up strategies [16].

Existing work indicates the fast-growing popularity of 
running computation-intensive applications in the cloud and 
offers a general picture about the cost effectiveness of big 
data mining in the cloud through a comparison between the 
cloud environment and a traditional cluster environment. In 
this study, we take a look at the issue of cost effectiveness 
from a different and important perspective – achieving a 
satisfactory accuracy at a relatively small proportion of the 
total cost of achieving a 100% accuracy by stopping the data 
mining process at some point before its completion

III. METHODOLOGY

In this section, we discuss the methodology adopted in 
our case study, including the data mining technique, the data 
sets, the accuracy calculation method, the cost model and the
study procedure.

A. K-means

There is a wide range of data mining techniques that can be 
adopted for the exploration and demonstration of the cost 
effectiveness of big data mining in the cloud. Wu et al.
systematically discussed the top 10 data mining techniques 
according to their influence in the research community in [8]. K-
means is ranked second to C4.5. It is a simple data clustering 
algorithm that has been studied intensively and applied widely 
in both academia and industry. Furthermore, k-means converges 
– it approaches the final (and optimal) result iteratively. This 
allows us to calculate and demonstrate the accuracy of the 
intermediate clustering result, as well as the incurred cost, at 
each iteration of the clustering process.

The clustering problem is to partition a given data set D into 
a number of clusters so that the total Euclidean distance between 
each data point and its closest center is minimized. Solving this
problem exactly is NP-hard [17]. In our case study, we employ 
the local search solution proposed by Lloyd [18]. It is by far 
the most popular clustering algorithm used in scientific and 
industrial applications [19]. It follows a simple process:

1. Choose k arbitrary centers C={c1, c2, …, ck};

2. For each i{1, …, k}, set cluster Ci as the set of data 

points in D that are closer to ci than to cj for all j≠i;

3. For each i{1, …, k}, set ci as the center of Ci:

1

| | i
i

i
x C

c x
C


  ;

4. Repeat Steps 2 and 3 until C no longer changes, i.e., 

the process stabilizes.
During this process, the total Euclidean distance between 

each data point and its closest center is monotonically 
decreasing one iteration after another. This ensures that no 
cluster assignment is repeated during the process. Thus, this 
process will always terminate. Given n data points in D, 
there are only a total of kn possible cluster assignments. The 
time complexity of Lloyd’s k-means algorithm is O(nkdi), 
where n is the number of d-dimensional data points in D, k is 
the number of clusters and i is the number of iterations
needed for the algorithm to complete.

The efficiency of Lloyd’s k-means algorithm is sensitive 
to the k initial centers arbitrarily selected. Inappropriate



initial centers result in excessive iterations and computation
time, especially in big data scenarios. There have been many 
pieces of work on how to select k appropriate initial centers 
[20-22]. Unfortunately, there is no simple and universally 
good solution to this problem [23]. In this study, the impact 
of the randomness in initial center selection on the efficiency 
of the algorithm must be limited by ensuring the consistency 
in the selection of initial centers across the experiments. 
Thus, we employ a method similar to the initial center
selection used by Erisoglu et al. [24] that follows the 
principal of maximum Euclidean distance between initial 
centers. This method replaces Step 1 in Lloyd’s k-means 
algorithm with a simple process that spreads out the initial 
centers:

1. Choose k centers C = {c1, c2, …, ck};

a. Select the data point with the maximum Euclidean 

distance from the origin as the first center c1.

b. Calculate the Euclidean distance between each 

data point and all selected m centers:

d(ci) =
2

, ,1 1
( )

m p

r j i jr j
x x

 
  i = 1, 2, …, n (1)

where xi,j is di’s coordinate on the jth (of all p) axis.

c. Select the data point with the highest d(ci) as the 

next center.
Repeat Steps 1.b and 1.c until a total of k initial centers 

are selected.

B. Accuracy Evaluation

Accuracy is an important measurement for evaluating the 
effectiveness of k-means [25]. Lloyd’s k-means algorithm 
employed in this study is a heuristic algorithm and thus does 
not guarantee an optimal solution to the clustering problem. 
In order to demonstrate the gradual increase in the accuracy 
of the clustering result iteration by iteration, we use the final 
partition achieved by Lloyd’s k-means algorithm as the 
reference partition, noted by Pf. Through the comparison 
between the partition achieved at each iteration of Lloyd’s k-
means algorithm, we can demonstrate how the accuracy of 
the r - 1 intermediate partition, P1, …, Pr-1, increases. Here, 
the accuracy is measured by the similarity between P1, …, 
Pf-1 and Pf. In this study, we employ the Rand index 
proposed in [26] to measure the similarity between P1, …, Pr-

1 and Pf. The Rand index has been widely used to calculate 
the accuracy of partitions from a mathematical standpoint 
[25]. The Rand index measures the similarity between two 
partitions, P1 and P2 of the same data set D. Each partition is 
viewed as a collection of n ×(n - 1) / 2 pairwise decisions, 
where n is the size of D. For each pair of data points di and dj

in D, a partition either assigns them to the same cluster or to 
different clusters. Thus, the similarity between P1 and P2 is 
calculated as:

Rand(P1, P2) =
( 1) / 2

a b

n n



 
(2)

where a is the number of decisions where di is in the same 
cluster as dj in P1 and in P2, b is the number of decisions 
where di and dj are placed in different clusters in both P1 and 
P2. Take P1 and P2 in Figure 1 for example. There are two 
clusters each in P1: {d1, d2, d3} and {d4, d5, d6, d7, d8}, and in 

P2: {d1, d2, d3, d4} and {d5, d6, d7, d8}. Data points d1 and d2

are assigned to a same cluster in both P1 and P2. Thus, pair 
(d1, d2) belongs to a. There are 9 such pairs in total, namely, 
(d1, d2), (d1, d3), (d2, d3), (d5, d6), (d5, d7), (d5, d8), (d6, d7), (d6, 
d8) and (d7, d8). Thus, a = 9. Data points d1 and d5 are 
assigned to two different clusters in both P1 and P2. Thus, 
pair (d1, d5) belongs to b. There are 12 such pairs, namely, 
(d1, d5), (d1, d6), (d1, d7), (d1, d8), (d2, d5), (d2, d6), (d2, d7), (d2,
d8), (d3, d5), (d3, d6), (d3, d7), (d3, d8). Thus, b = 12. Given a =
9, b = 12 and n = 8, we can measure the similarity between 
P1 and P2 by: Rand(P1, P2) = (9 + 12) / (8 × (8 - 1) / 2) =
0.75. Suppose P2 is the final partition achieved by Lloyd’s k-
means algorithm, P1 achieves a 75% accuracy. At the final
(rth) iteration of Lloyd’s k-means process, Pr = Pf. Thus, 
Rand(Pr, Pf) = 1.0, which indicates that the process 
completes with a 100% accuracy.

P1 P2

d1

d2

d3

d4

d5
d6

d8

d7

d1

d2

d3

d4

d5
d6

d8

d7

Figure 1. Partitions P1 and P2.

C. Cost Model

In our case study, we also measure the computation cost 
incurred during the clustering process until its completion. 
Different cloud vendors offer various cost models to 
accommodate users’ various needs. Take Amazon for 
example, it offers following three EC2 cost models:

• On-demand. This model allows users to pay by the 

hour without long-term commitments or upfront 

payments.

• Spot instances. This model allows users to bid on 

spare EC2 resources.

• Reserved instances. This model allows users to pay 

with a long-term commitment (1-3 years).
The on-demand cost model is a basic and flexible cost 

model that is available with various cloud vendors, including 
Microsoft, Google, etc. Thus, in this study, we employ the 
on-demand cost model for measuring the computation cost 
incurred during the k-means process:

ComputationCost = UnitPrice ×ComputationTime (3)

The computation time is how long the k-means process 
has taken, which can be easily measured. However, the unit 
price can vary significantly, depending on the computational
resource employed to run the algorithm. Take Amazon’s 
EC2 for example, there are six major categories of EC2 VM 
instances: Linux, RHEL (Red Hat Enterprise Linux), SLES 
(SUSE Linux Enterprise Server), Windows, Windows with 
SQL Standard and Windows with SQL Web. In each of 
those categories, there are various types of EC2 VM 
instances available at different unit prices. In the Linux 
category alone, there are 45 EC2 VM instances of five types, 
i.e., General Purpose, Compute Optimized, GPU Instances, 



Memory Optimized and Storage Optimized. The unit prices 
of those EC2 VM instances range from $0.0065 to $16.006 
per hour. Furthermore, those prices vary at Amazon’s data 
centers in Amazon’s 12 different regions around the globe. 
For example, an x1.32xlarge EC2 VM instance costs 
$19.341 per hour in Amazon’s Singapore region but only 
$13.338 per hour in its North Virginia region.

For the purposes of simplicity and generality, we use the 
computation time as an indicator of the computation cost. 
The reasons are twofold: 1) given a specific cloud resource 
instance, e.g., a specific Amazon EC2 VM instance, the 
computation cost and the computation time are positively 
correlated - longer computation time incurs higher 
computation cost; 2) given a specific data mining algorithm 
and the same input, a higher-performance cloud resource 
instance usually requires less computation time to complete 
because a more powerful computational resource instance is 
priced higher than a less powerful one.

Other costs may occur in order to run the k-means 
algorithm. For example, the data set to be partitioned needs 
to be stored in the cloud or transferred to the cloud in 
advance. However, the cost incurred by data storage and data 
transfer are independent of the k-means process. Thus, in this 
study, we focus only on the cost incurred by the computation 
of the k-means process and isolate it from the other costs.

D. Case Study Procedure

Our case study procedure consists of several steps:

1. Data set preparation. The data sets to be partitioned 

in the experiments are prepared.

2. Data set partitioning. The data sets are partitioned 

using Lloyd’s k-means algorithm introduced in 

Section III.A with different k in different experiments. 

During the process of partitioning a data set, the 

intermediate partition and the computation time taken 

at each iteration of the algorithm are recorded.

3. Accuracy calculation. For each set of experiments, 

the similarity between the intermediate partitions and 

the final partition are calculated by using Formula (2) 

in Section III.B to obtain the accuracy of the 

intermediate partitions.

4. Accuracy-time comparison. For each set of 

experiments, the accuracy of the intermediate 

partitions obtained by the algorithm at every iteration 

is illustrated against the computation time taken by 

the algorithm by the end of every iteration based on 

the on-demand model discussed in Section III.C.

5. Analysis and discussion. The comparison results are

analyzed and discussed.

IV. EXPERIMENTS

In this section, we present and discuss the experiment
platform, the data sets and the corresponding experiments 
conducted in our case study.

A. Platform

The k-means algorithm was implemented on MATLAB 
R2014b. All experiments were conducted on a machine with 

a 3.40 GHz Intel Core i5 processor and 8GB memory.
The operating system is 64-bit Windows 7 enterprise.

B. Data Sets

In our experiments, we used two data sets:

• Gaussian data set. This data set was synthetically

generated based on the Gaussian distribution, 

following a design for data generation similar to [27]

and [28] - two widely acknowledged pieces of work 

on k-means. First, 72 central points were randomly 

generated. Then, based on each central point, 13,889 

2-dimensional data points were generated according 

to a Gaussian distribution with standard deviation σ =

0.05 along each coordinate. In total, there were 

1,000,008 2-dimensional data points in this 32Mb 

data set. 

• Road Network data set. This is a public data set 1

provided by the Center for Machine Learning and 

Intelligent Systems at the University of California, 

Irvine [29]. This data set contains the longitude, 

latitude and altitude information about a road network 

covering a region of 185 ×135 km2 in North Jutland, 

Denmark. There are 434,874 3-dimensional data 

points in this 20Mb data set.

C. Experiments on Gaussian Data Set

In this set of experiments, for illustration, we ran Lloyd’s k-
means algorithm to partition the Gaussian data set with k = 2, 4, 
8, 16, 32 and 64. The same Gaussian data set was used across 
the experiments for a fair comparison. According to the method 
for initial center selection presented in Section III.A, a total of 
64 centers are selected, i.e., C = {c1, c2, …, c64}. In the first 
experiment with k = 2, k-means was run to partition the 
Gaussian date set into two clusters using c1 and c2 as the initial 
centers. {c1, c2, c3, c4} were selected as the initial centers in the 
second experiment with k = 4, {c1, c2, …, c8} in the third 
experiment, etc. In this way, we further limit the impact caused 
by the randomness in the initial center selection on the 
partitioning of the data sets across different experiments in this 
set.

Figure 2 demonstrates the increases in the accuracy of the 
intermediate partitions over time (in seconds) in this set of 
experiments. Each marker on the lines denotes the 
intermediate partition at an iteration. As discussed in Section 
III.A, the increase in k will increase the time complexity of the 
k-means algorithm. As a result, the algorithm needs to take 
more iterations and more time to complete. Figure 2 confirms 
this. More importantly, Figure 2 shows that the k-means 
algorithm first takes a relatively small number of iterations to 
reach a high accuracy, and then spends a large number of 
iterations to converge to the accuracy of 1.0, i.e., 100% 
accuracy. We refer to this phenomenon as long tail. In this
set of experiments, we have also run the k-means algorithm 
with other k and observed similar long tail phenomena. The 
long tail phenomenon indicates that the k-means algorithm
consumed most of the computation time in the middle and 

                                                          
1 https://archive.ics.uci.edu/ml/machine-learning-databases/00246/



late stages. Take the experiment with k = 64 for example. 
The k-means algorithm takes three iterations (2.27 seconds) 
to reach an accuracy of 0.99, i.e., 99%, then proceeds to take 
84 more iterations (33.20 seconds) to complete.

Table I summarizes the computation time taken by the k-
means algorithm to reach above the accuracy of 0.99, 0.999 and 
0.9999 in this set of experiments. It shows that, as k increases, 
the k-means algorithm tends to spend more time to converge 
from a 0.99 accuracy to a 1.0 accuracy. With k = 32, the 
algorithm spends 75.23% (100% - 24.77%) of its computation 
time for the accuracy to reach from 0.99 to 1.0, while it spends 
93.59% (100% - 6.41%) to do the same with k = 64. This 
finding indicates that, if the user running the k-means algorithm 
in the cloud does not need a 100% accuracy, they can stop at an 
early stage with a satisfactory accuracy and save a huge 

proportion of the monetary cost of getting a 1.0 accuracy. The 
saving can be considerably large in big data mining scenarios.

D. Experiments on Road Network Data Set

In this set of experiments, the k-means algorithm was run 
to partition the Road Network data set with k=2, 4, 8, 16, 32 
and 64. The initial centers for the k-means algorithm were 
selected in the same way as in the experiments on the 
Gaussian data set. Figure 3 demonstrates the results. It shows 
that the long tail phenomenon also exists during the 
partitioning of the Road Network data set. This confirms our 
findings in the experiments on the Gaussian data set.

Table II summarizes the computation time taken by the k-
means algorithm to reach the accuracy of 0.99, 0.999 and 
0.9999 in this set of experiments. On average, the computation 
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Figure 2. Accuracy and computation time of k-means on Gaussian data set.
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Figure 3. Accuracy and computation time of k-means on Road Network data set.



time needed for the k-means algorithm to reach those thresholds 
are similar to what Table I presents, 24.28% vs 26.43% for ≥
0.99, 54.62% vs 53.76% for ≥ 0.999 and 82.63% vs 72.76% 
for ≥ 0.9999. This again indicates that an early stop point with a 
satisfactory accuracy instead of a 100% accuracy offers a highly 
cost-effectively clustering solution.

V. DISCUSSION

The experimental results presented in Sections IV.C and 
IV.D show that, as k increases, the k-means takes more 
iterations (and thus more time) to complete in general. As a 
result, the long tail phenomenon becomes more significant. 
Take Figure 2 for example. The algorithm takes a total of 13, 
23, 21, 38, 38 and 87 iterations to complete with k = 2, 4, 8, 
16, 32 and 64 respectively. The long tail phenomenon is also 
relevant to the scale of the scenario. The data points to be 
partitioned in the first set of experiments are much more than 
those in the second set of experiments. Accordingly, the 
increase in the number of iterations and the computation time 
with the increase in k is more significant in the first set of 
experiments. Specifically, in the first set of experiments, as k
increases from 2 to 64, the number of iterations and the total 
computation time taken by the algorithm increase from 13 to 
87 and 0.81 to 35.47 seconds respectively. In the second set 
of experiments, these increases are from 8 to 88 and 0.21 to 
16.01 seconds respectively. This observation indicates that in 
a real-world big data mining scenario, the cost effectiveness 
is of extremely high significance. 

In the experiments, we limited the impact of the 
randomness in the initial centers selection on the 
experimental results by using the method presented in 

Section III.A. However, through our other experiments, we 
found that poorly selected initial centers led to significant 
long tail phenomena. Here, the significance of a long tail is
measured by the ratio between the period of time when the 
accuracy increases rapidly and the period of time when the 
accuracy increases slowly. As an example, one of the 
experiments was performed on the same Gaussian data set 
with k = 20 but with random initial centers. Figure 4 shows 
the corresponding results - a long tail much more significant 
than those presented in Figure 2 and Figure 3. The inner 
diagram enlarges the part of the outer diagram where the 
accuracy exceeds 0.99. The algorithm took only 2.23% of the 
total computation time to reach the 0.99 (0.9927 to be exact) 
accuracy. To reach the 0.999 accuracy and the 0.9999
accuracy, it took only 3.79% and 6.50% of the total 
computation time respectively. In Figure 4, it can also be 
seen that the computation time taken by the algorithm for 
each iteration on the long tail is highly uneven, some much 
longer than the others. This was because the algorithm had to 
change the centers during the process, which did not happen 
often in the experiments with better selected centers, as 
presented in Sections IV.C and IV.D.

The same phenomenon was observed also in our other 
experiments on the Road Network data set where the initial 
centers were selected randomly. Figure 5 presents the results 
of one such experiment with k = 10. Specifically, the 
algorithm took 0.32% of the total computation time to reach 
the 0.99 accuracy, 2.26% to reach 0.999 and 33.43% to reach 
0.9999.

The long tails presented and discussed in Sections IV and 
V are significant. A major reason is due to the fast 
convergence of the employed k-means algorithm. The long 

TABLE I. PERCENTAGE OF COMPUTATION TIME FOR K-

MEANS ON GAUSSIAN DATA SET

k
Accuracy

≥ 0.99 ≥ 0.999 ≥ 0.9999

2 39.60% 54.74% 69.76%

4 41.18% 58.79% 71.79%

8 21.21% 49.26% 72.71%

16 25.39% 51.95% 69.86%

32 24.77% 48.75% 70.06%

64 6.41% 59.04% 82.38%

Average 26.43% 59.04% 72.76%

TABLE II. PERCENTAGE OF COMPUTATION TIME FOR K-

MEANS ON ROAD NETWORK DATA SET

k
Accuracy

≥ 0.99 ≥ 0.999 ≥ 0.9999

2 14.14% 40.35% 76.25%
4 36.52% 57.94% 82.97%
8 16.08% 40.69% 80.55%
16 46.17% 63.96% 80.61%
32 16.26% 61.86% 84.26%
64 16.50% 62.94% 91.14%

Average 24.28% 54.62% 82.63%
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Figure 4. Accuracy and computation time of k-means on Gaussian data set with k = 20 and random initial centers.



tail phenomenon might not be as significant in datamining 
scenarios with other data mining techniques running in the 
cloud. However, how to achieve sufficiently satisfactory 
result at the lowest possible computation cost in those 
scenarios is still critical as long as the data mining algorithm 
gradually reaches the optimal solution over time.

VI. THREATS TO VALIDITY

In this section, we discuss the key threats to the validity 
of our case study.

Threats to construct validity. The main threat to the 
construct validity of our case study is the adopted metric for 
evaluating the accuracy of an intermediate partition during 
the k-means process, i.e., the Rand index. As presented in 
Section III.B, the calculation of the Rand index relies on the 
final partition. Thus, it is an external index. In most real-
world data mining scenarios, especially unsupervised data 
mining scenarios, internal indexes that do not rely on prior 
knowledge of the dataset, e.g., the final partition, are adopted 
[30]. Popular internal metrics include the CH (Calinski-
Harabasz) index, DB (Davies-Bouldin) index, Silhouette 
index, Dunn index, etc [31]. These internal indexes might 
have different ranges from the Rand index’s [0, 1]. For 
example, the DB index and Dunn index are limited to the 
interval [0, ∞]. As the k-means algorithm proceeds, the 
increase or decrease in their values might not be consistently 
correlated with the Rand index. Thus, the Rand index is not a 
usual choice for real-world mining scenarios, especially 
unsupervised data mining scenarios. However, this threat to 
validity is minimal in our case study because at this stage our 
objective is to explore and demonstrate the possibility of 
stopping a data mining process at some point during its 
process to achieve high cost effectiveness. Internal indexes 
are not suitable because they do not necessarily indicate the 
true goodness of a partition. On the contrary, the Rand index 
fulfils this objective by accurately evaluating how close an 
intermediate partition is to the final partition.

Threats to external validity. The main threat to the 
external validity of our case study is the representativeness of 
the data sets used in the experiments. In the experiments, we 
used the Road Network data set, a data set widely used in a 
variety of research [32, 33]. This data set has its own 
characteristics and thus does not exactly represent all data 

sets. Experiments on a different data set will probably 
generate results different from what is presented in Figure 3,
Figure 5 and Table II. However, the major features of the 
corresponding figures, e.g., the monotonically increasing 
accuracy over time, the long tail phenomenon, etc., will be 
similar. This threat to external validity is further minimized 
by using a data set randomly generated according to 
Gaussian distribution in the same way as in [27] and [28].
The results obtained from the experiments on this data set are 
more representative in general. In the meantime, the 
similarity in the results obtained from experiments on the 
Road Network data set and the Gaussian data set indicate 
that the threat to the external validity of our case study is 
minimized.

Threats to internal validity. The main threat to the 
internal validity of our case study is the comprehensiveness 
of the experiments. The intermediate and final partitions of a 
data set achieved by the k-means algorithm relies on the 
prespecified value of k, as well as the accuracies of the 
intermediate partitions calculated with formula (2). Figure 2 
and Figure 3 demonstrate the results obtained from 
experiments with 6 different k values respectively, i.e., 2, 4, 8, 
16, 32 and 64. More experiments with other k values were 
conducted. Due to space limit, it is not presented in this 
paper. However, the correlation between computation time 
and accuracy observed in those experiments are similar to 
those presented in Figure 2 and Figure 3. Thus, the threat to 
the internal validity of our experiments is not significant.

Threats to conclusion validity. The main threat to the 
conclusion validity of the experiment is the reliability of the 
final partition of a data set as its optimal partition.  Finding 
the answer to a clustering problem is NP-hard [17]. The k-
means used in the experiments, as presented in Section III.A, 
attempts to approximate the optimal partition. Thus, the final 
partition is not necessarily the optimal partition. As a result, 
Figure 2 and Figure 3 do not necessarily demonstrate how 
the accuracy of the intermediate partition of a data set 
approaches its real optimal partition. However, we believe 
that the final partition, which is achieved with the k-means 
algorithm presented in Section III.A, is adequately reliable 
for demonstrating the long tail phenomenon in the clustering 
process. The real optimal k-means algorithm is most likely to 
take more time and result in a more significant long tail 
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Figure 5. Accuracy and computation time of k-means on Road Network data set with k = 10 and random initial centers.



phenomenon. Thus, the threat to the conclusion validity of 
our experiments exists, however is not significant.

VII. CONCLUSIONS AND FUTURE WORK

To mine big data in the cloud using computational
resources offered by cloud vendors, cost effectiveness is a 
critical issue that has been commonly ignored by the research 
community. In this research, we investigated this issue by 
using the k-means algorithm as a case study. The 
experimental results confirm the significance of the cost
effectiveness of big data mining in the cloud. In the
experiments, the k-means algorithm took only 0.32%-
46.17% of the total computation time to achieve a 99% 
accuracy. That is up to 99.68% monetary cost saving with an
accuracy concession of only 1%. In the future, we will 
further investigate the cost-effectiveness of data mining in 
the cloud with internal accuracy indexes and other widely 
used data mining algorithms.

ACKNOWLEDGMENT

This work is partly supported by Australian Research 
Council Discovery Project DP150101775.

REFERENCES

[1] A. Labrinidis and H. V. Jagadish, "Challenges and Opportunities with 

Big Data," the VLDB Endowment, vol. 5, no. 12, pp. 2032-2033, 

2012.

[2] (2012). Bringing Big Data to the Enterprise: What is Big Data. 

Available: http://www-01.ibm.com/software/data/bigdata/what-is-big-

data.html

[3] H. Chen, R. H. Chiang, and V. C. Storey, "Business Intelligence and 

Analytics: From Big Data to Big Impact," MIS Quarterly, vol. 36, no. 

4, pp. 1165-1188, 2012.

[4] G.-H. Kim, S. Trimi, and J.-H. Chung, "Big-Data Applications in the 

Government Sector " Communications of the ACM, vol. 57, no. 3, pp. 

78-85, 2014.

[5] W. Raghupathi and V. Raghupathi, "Big Data Analytics in 

Healthcare: Promise and Potential," Health Information Science and 

Systems, vol. 2, no. 3, pp. 1-10, 2014.

[6] C. Shen, W. Tong, J.-N. Hwang, and Q. Gao, "Performance Modeling 

of Big Data Applications in the Cloud Centers," The Journal of 

Supercomputing, pp. 1-26, 2017.

[7] A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B.-S. 

Lee, et al., "Evaluating and Improving the Performance and 

Scheduling of HPC Applications in Cloud," IEEE Transactions on 

Cloud Computing, vol. 4, no. 3, pp. 307-321, 2016.

[8] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, et 

al., "Top 10 Algorithms in Data Mining," Knowledge and 

Information Systems, vol. 14, no. 1, pp. 1-37, 2008.

[9] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. 

Epema, "A Performance Analysis of EC2 Cloud Computing Services 

for Scientific Computing," Proc. International Conference on Cloud 

Computing, 2009, pp. 115-131.

[10] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff, 

et al., "Performance Evaluation of Amazon EC2 for NASA HPC 

Applications," Proc. 3rd Workshop on Scientific Cloud Computing 

Date, 2012, pp. 41-50.

[11] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and 

D. Epema, "Performance Analysis of Cloud Computing Services for 

Many-tasks Scientific Computing," IEEE Transactions on Parallel and 

Distributed systems, vol. 22, no. 6, pp. 931-945, 2011.

[12] G. B. Berriman, G. Juve, E. Deelman, M. Regelson, and P. Plavchan, 

"The Application of Cloud Computing to Astronomy: A Study of 

Cost and Performance," Proc. 6th IEEE International Conference on 

e-Science Workshops, Brisbane, Australia, 2010, pp. 1-7.

[13] A. G. Carlyle, S. L. Harrell, and P. M. Smith, "Cost-Effective HPC: 

The Community or the Cloud?," Proc. 2nd IEEE International 

Conference on Cloud Computing Technology and Science, 2010, pp. 

169-176.

[14] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, "The 

Cost of Doing Science on the Cloud: the Montage Example," Proc. 

ACM/IEEE Conference on Supercomputing, 2008, p. 50.

[15] Z. Wang, M. Hayat, N. Ghani, and K. Shaaban, "Optimizing Cloud-

Service Performance: Efficient Resource Provisioning Via Optimal 

Workload Allocation," IEEE Transactions on Parallel and Distributed 

Systems, 2016.

[16] K. Hwang, X. Bai, Y. Shi, M. Li, W.-G. Chen, and Y. Wu, "Cloud 

Performance Modeling with Benchmark Evaluation of Elastic Scaling 

Strategies," IEEE Transactions on Parallel and Distributed Systems, 

vol. 27, no. 1, pp. 130-143, 2016.

[17] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, "NP-Hardness of 

Euclidean Sum-of-Squares Clustering," Machine Learning, vol. 75, 

no. 2, pp. 245-248, 2009.

[18] S. Lloyd, "Least Squares Quantization in PCM," IEEE Transactions 

on Information Theory, vol. 28, no. 2, pp. 129-137, 1982.

[19] A. K. Jain, "Data Clustering: 50 Years beyond K-Means," Pattern 

Recognition Letters, vol. 31, no. 8, pp. 651-666, 2010.

[20] P. S. Bradley and U. M. Fayyad, "Refining Initial Points for K-Means 

Clustering," Proc. International Conference on Machine Learning, 

1998, pp. 91-99.

[21] S. S. Khan and A. Ahmad, "Cluster Center Initialization Algorithm 

for K-means Clustering," Pattern Recognition Letters, vol. 25, no. 11, 

pp. 1293-1302, 2004.

[22] A. Likas, N. Vlassis, and J. J. Verbeek, "The Global K-means 

Clustering Algorithm," Pattern Recognition, vol. 36, no. 2, pp. 451-

461, 2003.

[23] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis

vol. 3: Wiley New York, 1973.

[24] M. Erisoglu, N. Calis, and S. Sakallioglu, "A New Algorithm for 

Initial Cluster Centers in K-means Algorithm," Pattern Recognition 

Letters, vol. 32, no. 14, pp. 1701-1705, 2011.

[25] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, "Constrained K-

means Clustering with Background Knowledge," Proc. 18th 

International Conference on Machine Learning, Williamstown, MA, 

USA, 2001, pp. 577-584.

[26] W. M. Rand, "Objective Criteria for the Evaluation of Clustering 

Methods," Journal of the American Statistical Association, vol. 66, 

no. 336, pp. 846-850, 1971.

[27] D. Pelleg and A. Moore, "Accelerating Exact K-means Algorithms 

with Geometric Reasoning," Proc. 5th ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, 1999, pp. 

277-281.

[28] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. 

Silverman, and A. Y. Wu, "An Efficient K-means Clustering 

Algorithm: Analysis and Implementation," IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 881-

892, 2002.

[29] M. Kaul, B. Yang, and C. S. Jensen, "Building Accurate 3D Spatial 

Networks to Enable Next Generation Intelligent Transportation 

Systems," Proc. 14th IEEE International Conference on Mobile Data 

Management, Milan, Italy, 2013, pp. 137-146.

[30] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, "Cluster Validity 

Methods: Part I," ACM Sigmod Record, vol. 31, no. 2, pp. 40-45, 

2002.

[31] E. Rendón, I. Abundez, A. Arizmendi, and E. Quiroz, "Internal 

Versus External Cluster Calidation Indexes," International Journal of 

computers and communications, vol. 5, no. 1, pp. 27-34, 2011.

[32] N. Tradisauskas, J. Juhl, H. Lahrmann, and C. S. Jensen, "Map 

Matching for Intelligent Speed Adaptation," IET Intelligent Transport 

Systems, vol. 3, no. 1, pp. 57-66, 2009.

[33] B. Yang, M. Kaul, and C. S. Jensen, "Using Incomplete Information 

for Complete Weight Annotation of Road Networks," IEEE 

Transactions on Knowledge and Data Engineering, vol. 26, no. 5, pp. 

1267-1279, 2014.

http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

	University of Wollongong
	Research Online
	2017

	Cost-effective Big Data Mining in the Cloud: A Case Study with K-means
	Qiang He
	Xiaodong Zhu
	Dongwei Li
	Shuliang Wang
	Jun Shen
	See next page for additional authors
	Publication Details

	Cost-effective Big Data Mining in the Cloud: A Case Study with K-means
	Abstract
	Keywords
	Disciplines
	Publication Details
	Authors


	Paper Title (use style: paper title)

