
1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

1

Emerging Security Mechanisms for Medical
Cyber Physical Systems

Ovunc Kocabas, Tolga Soyata, Member, IEEE , and Mehmet K. Aktas

Abstract—The following decade will witness a surge in remote health-monitoring systems that are based on body-worn monitoring
devices. These Medical Cyber Physical Systems (MCPS) will be capable of transmitting the acquired data to a private or public cloud
for storage and processing. Machine learning algorithms running in the cloud and processing this data can provide decision support to
healthcare professionals. There is no doubt that the security and privacy of the medical data is one of the most important concerns in
designing an MCPS.
In this paper, we depict the general architecture of an MCPS consisting of four layers: data acquisition, data aggregation, cloud
processing, and action. Due to the differences in hardware and communication capabilities of each layer, different encryption schemes
must be used to guarantee data privacy within that layer. We survey conventional and emerging encryption schemes based on their
ability to provide secure storage, data sharing, and secure computation. Our detailed experimental evaluation of each scheme shows
that while the emerging encryption schemes enable exciting new features such as secure sharing and secure computation, they
introduce several orders-of-magnitude computational and storage overhead. We conclude our paper by outlining future research
directions to improve the usability of the emerging encryption schemes in an MCPS.

Index Terms—Medical Cyber Physical Systems, Medical Data Privacy, Homomorphic Encryption, Attribute-Based Encryption

F

1 INTRODUCTION

THe coming decade will witness an explosive growth
in systems that monitor a patient through body-

worn inexpensive personal monitoring devices that
record multiple physiological signals, such as ECG and
heart rate [1], [2], or more sophisticated devices that mea-
sure physiological markers such as body temperature,
skin resistance, gait, posture, and EMG [3], [4]. The emer-
gence of these devices combined with user awareness
for their importance in personal health monitoring even
emerged trends to make such devices fashionable [5].

The unstoppable momentum in the development of
such devices enabled the construction of complete pa-
tient health monitoring systems that can be clinically
used [6]–[8]. The medical data that is acquired from pa-
tients by a distributed sensor network can be transmitted
to private [9], [10] or public [11]–[13] cloud services.
A set of statistical inference algorithms running in the
cloud can determine the correlation of the patient data
to known disease states. These correlations could be fed
back to healthcare professionals as a means to provide
decision support. Such systems, termed Medical Cyber-
Physical Systems (MCPS), signal the beginning of a new
Digital-Health (D-Health) era and a disruptive technol-
ogy in human history.

Establishing MCPSs will require overcoming techno-
logical hurdles in building the architectural components
of the MCPS such as sensors, cloud computing architec-

• O. Kocabas and T. Soyata are with the Department of Electrical and
Computer Engineering, University of Rochester, Rochester, NY, 14627.
E-mail: see http://www.tolgasoyata.com/contact.html

• M. Aktas is with the University of Rochester Medical Center.

tures, and fast Internet and cellular phone connections.
Additionally, assuring the privacy of the personal health
information during the transmission from the sensory
networks to the cloud and from the cloud to doctors’
mobile devices will necessitate the design of a sophisti-
cated cryptographic architecture for an MCPS. While this
design implies only secure storage using conventional en-
cryption schemes, emerging encryption schemes provide
options for secure data sharing and secure computation.

The contribution of this paper is two-fold: First, we
survey conventional and emerging encryption schemes
that can be used in designing an MCPS. Second, we
provide an extensive evaluation of these schemes and
compare them based on their ability to provide secure
storage, secure data sharing, and secure computation.

The remainder of this paper is organized as follows:
Section 2 provides a description of the architecture of
an MCPS. Section 3 introduces the adversary models
for designing a secure MCPS, followed by Section 4,
which details the privacy requirements of each MCPS
architectural component. Cryptographic methodologies,
used in MCPSs, are detailed in the following three
sections: Section 5 provides details for the conventional
AES and ECC encryption. Sections 6 and 7 detail the
emerging attribute-based and homomorphic encryption
mechanisms, respectively. Section 8 presents an imple-
mentation case study of a medical application using
homomorphic encryption. Section 9 details the setup
for experiments and a quantitative and qualitative eval-
uation of all of these cryptosystems are provided in
Section 10. Conclusions are drawn pertaining to the
suitability of each cryptosystem for different MCPS ar-
chitectural components in Section 11.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

2

WBAN

ANALYTICS VISUALIZATION

LAYER 1
ACQUISITION

LAYER 3
CLOUD

LAYER 4
ACTION

LAYER 2
PRE-PROCESSING

CLOUDLET
CONCENTRATOR DECISION

SUPPORT
STORAGE PROCESSING

ACTUATION

Fig. 1: Four layers of a typical Medical Cyber Physical System (MCPS). Each layer is characterized by different
constraints. The communication among the layers must be protected using different cryptographic standards.

2 MEDICAL CYBER PHYSICAL SYSTEMS

A typical MCPS architecture consists of four different
layers: i) data acquisition layer, ii) data pre-processing
layer, iii) cloud processing layer, and iv) action layer.
An architectural map of an MCPS is shown in Fig. 1.
In this section, the details of operation and security
requirements for each layer will be introduced.

2.1 Data Acquisition Layer
Data acquisition layer is typically a Body Area Network
(BAN) consisting of wireless wearable sensors [6], [14]
for specific medical applications such as blood pressure
and body temperature monitoring [15], or data storage
for on-demand access by doctors [16]. A BAN facili-
tates the collection of patient medical information and
forwards this information to a nearby computationally-
capable device such as a cloudlet [17]. Battery-operated
active sensors in the BAN use Bluetooth or ZigBee
protocols while battery-less passive sensors use RFID.

2.2 Data Concentration/Aggregation Layer
Due to the low computational power of the sensors that
make up a BAN, an intermediate device, either a cloudlet
or a concentrator is necessary. In [15], sensors transmit
the gathered information to a gateway server (acting
as a concentrator) through a Bluetooth connection. A
concentrator is the most important building block of an
IoT-based architecture [18], since it enables individually-
weak devices to have strong overall functionality by
concentrating the data from each device and sending
the aggregated information to the cloud. A cloudlet is
similar in purpose, but is designed to aggregate data
from more powerful devices too, e.g., a smartphone.
Typically a cloudlet is built from a dedicated computer
and has a dedicated Internet connection [19], [20].

2.3 Cloud Processing and Storage Layer
Since accurate diagnosis requires long-term patient
health monitoring information, secure storage is the most
important function of the cloud [21], [22]. Addition-
ally, government health regulations require the storage
of medical records for an extended amount of time.
Many cloud operators store medical data by signing a

Business Associate Agreement (BAA). Medical institu-
tions run their applications in their private cloud (i.e.,
datacenter), therefore using the cloud for the second
important purpose: processing. However, as we will detail
in Section 7, privacy-preserving processing in a public
cloud is only feasible using advanced homomorphic
encryption schemes. Third function of the cloud is data
analytics to facilitate decision support for healthcare
professionals [23], [24] by applying statistical inference
algorithms to the acquired data and predicting patient
health condition. These methods have recently received
attention in remote health monitoring systems [25].

2.4 Action Layer
The action layer can provide either “active” or “passive”
action. In active action, an actuator is used to turn the
results of the algorithms that run in the cloud into the
activation of an actuator such as a robotic arm. Examples
of this type of action are robot-assisted surgery [26].
In passive action, no physical action is actually taken.
The outcome of the analytics or medical application
results are given to the requesting authority to provide
decision support. An example of passive action is the
visualization of a patient’s long-term (≥ 24-hr) Holter
ECG monitoring, allowing the visualization of 20–30
patients’ monitoring results by a doctor within 10–20
seconds [27].

3 MCPS ADVERSARY MODELS

An essential part of designing a secure MCPS is de-
termining system security requirements based on the
capabilities of potential attackers. In this section, we
study adversary models and side channel attacks related
to the security vulnerabilities of an MCPS.

3.1 Adversary Models
An MCPS must be resilient to attacks on all four of
its layers. An adversary model captures the capabilities
of an attacker. We consider two adversary models [28]:
active (i.e., malicious) and passive (i.e., honest but curious).
An active adversary takes control of the host and can
arbitrarily deviate from a specified protocol in order to
steal secret information. Alternatively, a passive adversary

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

3

follows the protocols correctly (honest), but can look at
the encrypted data during the execution of protocols (but
curious) to obtain information.

Data Privacy is one of the features that an MCPS must
provide at every level. All of the encryption schemes
that are considered in this paper protect data privacy
against an active adversary. The only exceptions are the
case where there is an attack directly at the crypto-
level that “breaks” the encryption through a brute-forte
attack. This could happen if the security parameters of
an encryption scheme are chosen to be weak. Alterna-
tively, a side channel attack could attempt to steal the
secret/private key, as will be detailed in Section 3.2.

Correctness of the computed results (verification) is
another feature that must be provided for an MCPS that
aims to perform secure (encrypted) computations. As
will be detailed in Section 7, secure computation over
medical data in a public cloud can only be achieved
using homomorphic encryption schemes. However, ho-
momorphic encryption schemes are malleable by design;
an active adversary can modify the computation result
without knowing the private key. Therefore the correct-
ness of the computations cannot be guaranteed when an
active adversary model is considered.

To summarize; an MCPS provides only data privacy
against an active adversary, while it can guarantee both
data privacy and correctness against a passive adversary.
The passive adversary model has been widely used for
determining the security requirements of many cloud-
based secure computation systems [29]–[31]. We also
assume that an adversary cannot collude with the parties
that hold the secret/private key of the symmetric/public
key encryption schemes, since this type of an attack
cannot be protected against by using any encryption
scheme. We further note that the correctness of the
secure computation can be achieved by using techniques
from verifiable computing [32] or homomorphic signa-
tures [33]. However, these techniques introduce addi-
tional performance penalties to encryption schemes that
are already too slow to be practical.

3.2 Side Channel Attacks
Although encryption schemes go through rigorous math-
ematical and theoretical cryptanalysis to provide secu-
rity and privacy, the system can still leak information
due to the vulnerabilities in its software and hardware
implementations. Attacks based on such leaked informa-
tion are called side channel attacks. These attacks can be
prevented by using leakage resistant cryptography [34],
albeit at the expense of severe performance penalties that
make an MCPS impractical.

Side channel attacks concentrate on obtaining the
secret/private key by using every layer of the system,
rather than just the data that is being processed by the
system. While many types of side channel attacks exist
for nearly every encryption scheme [35], we restrict our
focus on attacks on AES and Elliptic Curve Cryptog-
raphy (ECC), which are the most common encryption

schemes for building an MCPS. We will detail AES and
ECC in Section 5.

Timing Attacks are based on observing the execution
time of the operations performed during encryption/de-
cryption to reveal the secret key. Depending on the im-
plementation, execution time of the operations can vary
based on the bits of the secret key [36]. Timing attacks
on AES usually observe cache memory access patterns
during the execution of AES operations. Timing attacks
on ECC target the scalar multiplication operation, and
they can be prevented by using Montgomery’s multipli-
cation method [37], which performs the multiplication
independent from the bits of the private key [38].

Power Analysis Attacks are based on observing
the power consumption during the execution of cryp-
tographic operations [39]. Power consumption can vary
based on the bit values of the secret/private key, al-
lowing an attack by either observing the power usage
of devices (simple power analysis) or using statistical
methods to capture information in the presence of mea-
surement errors and noise (differential power analysis).
Differential power analysis attacks are more powerful
due to their noise tolerance in power measurements.
Power analysis attacks on AES can be prevented by
using randomized masks for AES operations [40] that
scramble the relationship between the AES secret key
and the intermediate values generated during each AES
round. Power analysis based attacks on ECC-based en-
cryption schemes can be mitigated by methods proposed
in [41] that randomize intermediate computations to
avoid information leakage about the private key from
power consumption patterns.

Fault-Based Attacks are based on introducing faults
to bits during the execution of cryptographic opera-
tions [42], [43], by applying a power glitch, magnetic
field, light source, etc. This would cause errors in op-
erations that can reveal the secret/private key to the
attacker. In [44], the authors propose a method to thwart
fault based attacks against AES by verifying the cor-
rectness of the encryption. The message is first en-
crypted and compared against the decrypted ciphertext
to determine whether a fault was introduced during
the encryption. Correctness of the decryption can be
verified in a similar fashion by reversing the operations.
Their method introduces significant hardware overhead.
In [45], the authors propose a novel technique to detect
faults based on Error Detecting Codes (EDC), which re-
duce the hardware overhead and latency. For ECC-based
encryption schemes, fault-based attacks are focused on
introducing error during the decryption to produce a
point that is not on the elliptic curve [46]. These attacks
can be mitigated by checking if the calculated point is on
the elliptic curve and discarding incorrect computations.
Implementations of various cryptographic architectures
against fault-based attacks are proposed in [47], [48].

Cache Attacks are based on measuring the cache
access latency of the cryptographic instructions to re-
cover the cache lines that store the secret key [49],

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

4

[50]. The information about memory access patterns
can be measured by running a malicious program in
parallel with other processes. Cache attacks on AES
implementations generally target the lookup tables that
store S-Boxes [51]. Intel AES-NI instructions [52] can
thwart cache attacks by making the cache access latency
independent of the data and performing operations on
the hardware without using lookup tables. Cache attacks
on ECC exploit the precomputed values that are used
during point addition in OpenSSL implementations [53].
ECC-based cache attacks can be prevented by i) using
blinding scalar for point multiplication, ii) randomizing
addition and multiplication chains, and iii) balancing
number of additions and multiplications [53].

4 DATA PRIVACY IN AN MCPS
According to the Health Insurance Portability and Ac-
countability Act (HIPAA) [54], data privacy must be
protected within every layer of an MCPS. Individual en-
cryption schemes ensure that medical data is accessed by
only the authorized parties, thereby providing data pri-
vacy on isolated data blocks. However, ensuring system-
level security requires designing a crypto-architecture for
the MCPS as a whole. In this section, system-level view
of data privacy is studied the the details of individual
encryption schemes are provided in Sections 5, 6 and 7.

4.1 Key Management Techniques

Regardless of the type of encryption scheme, communi-
cating parties must agree on key(s) to encrypt/decrypt
messages. In the public-key cryptography, sender uses the
public key of the receiver to encrypt messages and the
receiver uses his/her private key to decrypt encrypted
messages. Every user in the system has a dedicated
public and private key pair generated by a Public-Key
Infrastructure (PKI). PKI is a trusted third party such as
a certificate authority that authenticates the key pairs by
binding them to the identity of users. For symmetric-
key cryptography, both sender and receiver must share
the same secret key to encrypt/decrypt messages. Both
parties perform a key-exchange protocol, such as Diffie-
Hellman key exchange, to generate the secret key. Once
both parties share the same key, they can use symmetric-
key cryptography to securely transfer the data.

4.2 Data Acquisition Privacy

The acquisition layer in Fig. 1 is composed of BAN
sensor devices with limited computational capability
and battery life [55]. Therefore, encryption schemes used
to protect the communication within BAN sensors and
BAN-to-cloudlet communications must not be compu-
tationally intensive. One possible option is to use the
Zigbee protocol that is based on the AES encryption
scheme and can easily be implemented using low cost
microcontroller-based devices. Communicating devices

have to agree on a secret-key before using AES encryp-
tion by using generic key exchange algorithm such as
Diffie-Hellman (DH) [56] or its elliptic curve counterpart
Elliptic Curve Diffie-Hellman (ECDH).

Communication of devices can be also secured by
using biomedical signals. In [57], authors propose a low-
power bio-identification mechanism using the interpulse
interval (IPI) to secure the communication between BAN
sensors. IPI is the distance between two R peaks and is
available to all sensors. In [58], authors use physiological
signals to agree on a secret key of the symmetric key
cryptosystem for pairwise BAN sensor communication.
Compared to ECDH, [58] features authentication capa-
bility, requires fewer clock cycles to execute, but has a
larger memory footprint. Therefore, [58] offers a viable
option for key agreement in BANs.

4.3 Data Sharing Privacy
In many real-world healthcare scenarios more than one
party may need to access the data such as i) the pa-
tient being monitored, ii) his/her doctor, and iii) in
an emergency, other health care personnel. In these
cases, conventional encryption schemes cannot handle
the sharing of the secret key among multiple parties.
Encrypting the data using each party’s public key is not
a solution either since it creates duplicates of the data,
which must be managed separately. Attribute based
encryption (ABE) [59]–[61] allows secure sharing of data
among multiple parties. ABE is a public-key crypto-
system that provides fine-grained access control similar
to Role Based Access Control [62]. Only the users whose
credentials/attributes satisfy the rules determined by
the access policy can retrieve the data. In [63], au-
thors propose methods to secure data storage in BANs
and distribute data access control. They use the ABE
scheme [60] to control who accesses the patient data.
ABE encryption is applied to data on a nearby local
server and the communication between the BAN and the
local server is secured using symmetric key encryption.

4.4 Data Computation Privacy
Conventional encryption schemes do not allow compu-
tations on encrypted data without first decrypting it.
Decryption necessitates a trusted storage such as health-
care organizations’ datacenter or a private cloud. This
eliminates the option to run analytics, monitoring algo-
rithms (e.g., ECG monitoring [64]) or other algorithms
in a public cloud to reduce health care costs. Fully
Homomorphic Encryption (FHE) [65] allows computa-
tion on encrypted data. By using FHE, the data can be
stored in untrusted storage environments, such as public
clouds [66], and computations on the encrypted data can
be performed without violating the privacy of the data.
In [67], a privacy-preserving medical cloud computing
system is proposed based on FHE. Authors show that
simple operations, such as the computation of average,
minimum and maximum heart rate can be implemented
at a reasonable cost despite the complexity of FHE.

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

5

5 DATA PRIVACY USING CONVENTIONAL EN-
CRYPTION SCHEMES

In this section, we study the conventional AES and
ECC encryption schemes, which can only guarantee data
privacy. However, they are widely used due to their
substantially lower resource requirements as compared
to emerging schemes.

5.1 Advanced Encryption Standard (AES)

AES [51] is one of the most widely used symmetric key
encryption algorithms and is accepted as an industry
and a government applications standard. AES is op-
timized for speed, low memory footprint and energy
efficiency. Its low resource intensity allows AES to run
on a wide range of hardware platforms ranging from
8-bit microcontrollers to high-end desktops and servers.

5.1.1 AES Encryption and Decryption
AES is a block-cipher and operates on 128-bit blocks of
data in multiple rounds (nr). AES is specified for three
different key sizes: AES-128 (128-bit key and nr =10),
AES-192 (192-bit key and nr = 12) and AES-256 (256-
bit key and nr=14). AES represents both the plaintext
(i.e., original data) and the ciphertext (encrypted data)
using 128-bit blocks that are arranged as 4×4 matrices,
defined as AES states. Each matrix entry is 1B = 8-bits
and represents an element in the finite field F28 using
the reduction polynomial G(x) = x8 + x4 + x3 + x+ 1.

AES Encryption (Fig. 2) involves XOR, data shuf-
fling, or replacement-by-lookup operations, making en-
cryption very fast and power-efficient. AES Decryption
uses the same operations in reverse order. AES encryp-
tion/decryption involves these four operations:

KeyExpansion generates a total of nr+1 round keys
from the AES secret key iteratively for nr rounds of AES
implementation. Each round key is 1 word = 32 b.

AddKey applies XOR operation to AES state with
the roundkeys that are computed during KeyExpansion
step. The secret key is used only during this step.

SubBytes applies a non-linear transform of AES states
and transform each byte of the state using S-boxes.

ShiftRows cyclic left shifts the state matrix rows.
MixColumns applies transformation on the columns

of the AES state based on operations in F28 and can be
represented as a matrix multiplication.

When a plaintext is longer than the AES block size,
AES encryption/decryption can be used by choosing one
of these modes of operation: Electronic Code Book (ECB),
Ciphertext Chain Blocking (CBC), and Counter (CTR).
A recent proposal is Galois Counter Mode (GCM) [68],
which provides authentication as well as confidentiality.
GCM combines the speed of CTR mode with hash-
ing to provide an authenticated encryption mechanism.
Confidentiality of the messages is protected using AES
and integrity of the communication is provided using a
universal hash function.

5

5 DATA PRIVACY USING CONVENTIONAL EN-
CRYPTION SCHEMES

In this section, we study the conventional AES and ECC
encryption schemes, which only guarantee data privacy.
These schemes cannot provide an environment for se-
cure data sharing or secure computation, however, they
are widely used due to their substantially lower resource
requirements as compared to emerging schemes.

5.1 Advanced Encryption Standard (AES)
AES [48] is one of the most widely used symmetric key
encryption algorithms and is accepted as an industry
and a government applications standard. AES is op-
timized for speed, low memory footprint and energy
efficiency. Its low resource intensity allows AES to run
on a wide range of hardware platforms ranging from
8-bit microcontrollers to high-end desktops and servers.

5.1.1 AES Encryption and Decryption
AES is a block-cipher and operates on 128-bit blocks of
data in multiple rounds (nr). AES is specified for three
different key sizes: AES-128 (128-bit key and nr = 10),
AES-192 (192-bit key and nr = 12) and AES-256 (256-
bit key and nr =14). AES represents both the plaintext
(i.e., original data) and the ciphertext (encrypted data)
using 128-bit blocks that are arranged as 4⇥4 matrices,
defined as AES states. Each matrix entry is 1B = 8-bits
and represents an element in the finite field F28 using
the reduction polynomial G(x) = x8 + x4 + x3 + x + 1.

AES Encryption (Algorithm 1) involves XOR, data
shuffling, or replacement-by-lookup operations, making
encryption very fast and power-efficient. AES Decryp-
tion uses the same operations in reverse order. AES
encryption/decryption involves these four operations:

KeyExpansion generates a total of nr +1 round keys
from the AES secret key iteratively for nr rounds of AES
implementation. Each round key is 1 word = 32 b.

AddKey applies XOR operation to AES state with
the roundkeys that are computed during KeyExpansion
step. The secret key is used only during this step.

SubBytes applies a non-linear transform of AES states
and transform each byte of the state using S-boxes.

ShiftRows cyclic left shifts the state matrix rows.
MixColumns applies transformation on the columns

of the AES state based on operations in F28 and can be
represented as a matrix multiplication.

When a plaintext is longer than the AES block size,
AES encryption/decryption can be used by choosing one
of these modes of operation: Electronic Code Book (ECB),
Ciphertext Chain Blocking (CBC), and Counter (CTR).
A recent proposal is Galois Counter Mode (GCM) [62],
which provides authentication as well as confidentiality.
GCM combines the speed of CTR mode with hash-
ing to provide an authenticated encryption mechanism.
Confidentiality of the messages is protected using AES
and integrity of the communication is provided using a
universal hash function.

Algorithm 1: AES Encryption
input : Plaintext Block ptxtb, Secret Key sk
output: AES state state
state = InitState(ptxtb, sk)
AddKey(state, sk0)
for i = 1 to nr � 1 do

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddKey(state, keyi)

SubBytes(state)
ShiftRows(state)
AddKey(state, keynr�1)

5.1.2 AES Implementations

CPU Instruction Set implementations of AES, such
as the Intel AES-NI instruction set [49], allow fast and
secure execution of AES encryption/decryption. These
instructions also provide countermeasures against side
channel attacks such as timing and cache-based attacks.
Embedded hardware implementations of AES encryp-
tion/decryption utilize restricted resources available in
hardware platforms such as ASIC and FPGA. Efficient
hardware implementations focus on the SubBytes step,
which is the only non-linear step in AES. This step
involves computing inverse of an element in F28 , which
is the most compute-intensive operation, followed by
an affine transformation. Usually SubBytes can be com-
puted by storing all possible combinations in an Substi-
tution Box (S-Box) and use the S-Box as a lookup table.
However, this requires additional hardware resources.

Several proposed optimizations [63]–[65] improve S-
Box computation functionality by representing the AES
finite field F28 as a composite field such as F(24)2 or
F((22)2)2 (i.e., tower field). While representing operations
in the composite field requires additional back-and-forth
conversions to F28 , overall computation time is reduced
due to the simplified intermediate operations.

Choosing a basis for the tower field is also crucial
for the implementation, and three different choices ex-
ist for selecting a basis: polynomial [63], normal [64],
and mixed [65]. While normal basis provides efficient
inversion operation, polynomial basis provides better
multiplication performance. In [65], the authors propose
using both polynomial and normals basis as a mixture,
and show that the critical path delay can be improved
compared to using polynomial-only or normal-only ba-
sis. Finite fields can have many irreducible polynomials;
432 possible options are considered in [64] up to 20%
reduction in terms of gates is reported by picking the op-
timum choice. Efficiency of AES implementation in the
tower field also depends on choosing the coefficients of
irreducible polynomials. In [66], 16 possible choices are
studied for choosing these coefficients and a reduction
in gate size and critical path delay has been reported.
Implementations of AES-GCM are provided using
dedicated hardware [67] or by using the instruction set

Fig. 2: AES encryption algorithm. Decryption is achieved
by reversing operations.

5.1.2 AES Implementations
CPU Instruction Set implementations of AES, such as
the Intel AES-NI [52] and ARM v8 Cryptography ex-
tensions [69], accelerate AES encryption/decryption and
generally provide countermeasures against side channel
attacks such as timing and cache-based attacks.
Embedded hardware implementations of AES encryp-
tion/decryption utilize restricted resources available in
hardware platforms such as ASIC and FPGA. Efficient
hardware implementations focus on the SubBytes step,
which is the only non-linear step in AES. This step
involves computing inverse of an element in F28 , which
is the most compute-intensive operation, followed by
an affine transformation. Usually SubBytes can be com-
puted by storing all possible combinations in an Substi-
tution Box (S-Box) and use the S-Box as a lookup table.
However, this requires additional hardware resources.

Several proposed optimizations [70]–[72] improve S-
Box computation functionality by representing the AES
finite field F28 as a composite field such as F(24)2 or
F((22)2)2 (i.e., tower field). While representing operations
in the composite field requires additional back-and-forth
conversions to F28 , overall computation time is reduced
due to the simplified intermediate operations.

Choosing a basis for the tower field is also crucial
for the implementation, and three different choices ex-
ist for selecting a basis: polynomial [70], normal [71],
and mixed [72]. While normal basis provides efficient
inversion operation, polynomial basis provides better
multiplication performance. In [72], the authors propose
using both polynomial and normals basis as a mixture,
and show that the critical path delay can be improved
compared to using polynomial-only or normal-only ba-
sis. Finite fields can have many irreducible polynomials;
432 possible options are considered in [71] up to 20%
reduction in terms of gates is reported by picking the op-
timum choice. Efficiency of AES implementation in the
tower field also depends on choosing the coefficients of
irreducible polynomials. In [73], 16 possible choices are
studied for choosing these coefficients and a reduction
in gate size and critical path delay has been reported.
Implementations of AES-GCM are provided using
dedicated hardware [74] or by using the instruction set
support within Intel CPUs [75].

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

6

5.2 Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC) emerged as a public
key cryptosystem that achieves the same security level of
RSA using a shorter key size [76], [77]. Figure 3 depicts
an example elliptic curve. Security of ECC is based on
hardness of the elliptic curve discrete logarithm problem
(ECDLP). ECDLP is defined as finding an integer k
for given two points on the elliptic curve G and k ·G.
The fastest algorithm to solve the ECDLP [78] requires
approximately

√
p steps for an elliptic curve on prime

field Fp. Choosing a 160-bit prime p in ECC achieves the
same security level as a 1024-bit RSA.

Reduced storage and bandwidth requirements com-
bined with efficient arithmetic operations make ECC
suitable for resource-limited devices in an MCPS ac-
quisition layer (see Fig. 1). ECC allows more sophis-
ticated crypto-operations such as key sharing and en-
cryption with data integrity, however, does not provide
a mechanism for encrypted computation. Elliptic Curve
Arithmetic is based on generalized discrete logarithm
over elliptic curves. Elliptic curves over real numbers
are defined as the set of points (x, y) that satisfying

y2 = x3 + a · x+ b

where a and b are chosen such that 4 · a3 + 27 · b2 6= 0.
Points on the elliptic curve together with a special point
O (called point at infinity, which is not on the curve), form
a group. Arithmetic operations over the elliptic curves
(graphically described in Fig. 3) are:

Point addition adds two points P (xp, yp) and
Q(xq, yq) of the group on the elliptic curve to find point
R(xr, yr), which is also on the elliptic curve.

Point doubling computes the double of point
P (xp, yp) as 2P .

Point inversion calculates the inverse of point
P (xp, yp) as −P (xp,−yp) such that P + (−P) = O.

Scalar Multiplication of a point P by a scalar k is k·G=
G+G+G+ · · ·+G︸ ︷︷ ︸

k

, which is computed by repeated

point additions, similar to the repeated multiplications
to compute modular exponentiation in RSA.

P

-P

x

y

Q

R=P+Q

2P

Fig. 3: An Elliptic Curve and the point addition and point
doubling operations on this curve.

5.3 EC Diffie-Hellman Key Exchange
ECC is widely used for key exchange, similar to the
Diffie-Hellman (DH) key-exchange protocol [56]. Reg-
ular DH can be converted to its ECC counterpart by
replacing modular multiplications with point additions
and modular exponentiations with repeated point ad-
ditions. A shared session key between two parties (A
and B) is established using ECCDH as follows: First,
both parties agree on an elliptic curve on prime field
Fp and a point P on the curve. Then, A and B select an
integer kA and kB as their private key. Based on their
private keys, they compute a point QA, QB on the curve
by performing repeated additions. They exchange their
computations without being able to discover each others’
private key due to the hardness of the ECDLP problem.
Finally, each party performs another point multiplication
with his/her private key to find a common point QAB
on the elliptic curve, which can be used as the shared
secret key for a symmetric cipher.

5.4 EC Integrated Encryption Scheme (ECIES)
One of the standard ways to use ECC for public-key
cryptography is the ECIES method [79], as shown in
Fig. 4. ECIES provides data confidentiality by using a
symmetric-key encryption such as AES. Integrity of the
data is protected by message authentication code (MAC).
Elliptic curves are employed to generate an encryption
key (kENC) and a MAC key (kMAC).

6

support within Intel CPUs [68].

5.2 Elliptic Curve Cryptography (ECC)
Elliptic Curve Cryptography (ECC) emerged as a public
key cryptosystem that achieves the same security level of
RSA using a shorter key size [69], [70]. Security of ECC
is based on hardness of the elliptic curve discrete log-
arithm problem (ECDLP). ECDLP is defined as finding
an integer k for given two points on the elliptic curve G
and k · G. The fastest algorithm to solve the ECDLP [71]
requires approximately

p
p steps for an elliptic curve

on prime field Fp. Choosing a 160-bit prime p in ECC
achieves the same security level as a 1024-bit RSA.

ECC schemes are based on two different arithmetic
operations performed on the elliptic curves:

Point addition adds two points P (xp, yp) and
Q(xq, yq) on the elliptic curve to find point R(xr, yr),
which is also on the elliptic curve.

Point doubling computes the double of point
P (xp, yp) as 2P . Multiplication of a point P by a scalar
k is done by repeated additions k · G = G + G +· · ·+G,
similar to modular exponentiation in RSA.

Reduced storage and bandwidth requirements com-
bined with efficient arithmetic operations make ECC
suitable for resource-limited devices such as BANs. ECC
allows more sophisticated crypto-operations such as key
sharing and encryption with data integrity, however,
does not provide a mechanism for computations to be
performed on encrypted data.

5.3 EC Diffie-Hellman Key Exchange
ECC is widely used for key exchange, similar to the
Diffie-Hellman (DH) key-exchange protocol [52]. Reg-
ular DH can be converted to its ECC counterpart by
replacing modular multiplications with point additions
and modular exponentiations with repeated point ad-
ditions. A shared session key between two parties (A
and B) is established using ECCDH as follows: First,
both parties agree on an elliptic curve on prime field
Fp and a point P on the curve. Then, A and B select an
integer kA and kB as their private key. Based on their
private keys, they compute a point QA, QB on the curve
by performing repeated additions. They exchange their
computations without being able to discover each others’
private key due to the hardness of the ECDLP problem.
Finally, each party performs another point multiplication
with his/her private key to find a common point QAB

on the elliptic curve, which can be used as the shared
secret key for a symmetric cipher.

5.4 EC Integrated Encryption Scheme (ECIES)
One of the standard ways to use ECC for public-key
cryptography is the ECIES method [72], as shown in
Algorithm 2.. ECIES provides data confidentiality by
using a symmetric-key encryption such as AES. Integrity
of the data is protected by message authentication code

Algorithm 2: ECIES Encryption
input : Message m, receiver’s public key QB

output: U , C, tag
Set random u 2 Zp

Compute U = u · G
Compute S(xs, ys) = u · QB

Generate (kENC , kMAC) = KDF(xs)
Encrypt C = ENC(m, kENC)
Generate tag = HMAC(C, kMAC)

(MAC). Elliptic curves are employed to generate an
encryption key (kENC) and a MAC key (kMAC).

In ECIES, the sender generates a session key pair that
will be used only for the current encryption. Session key
is generated by choosing an element u 2 Z⇤

p and comput-
ing elliptic curve point U = u · G. Based on the session
key, a shared secret value is generated by using the
receiver’s public key as S = u ·QB = u ·kb ·G. A standard
Key Derivation Function (KDF) [73] inputs the shared se-
cret value to generate two keys: kENC and kMAC . Finally,
message m is encrypted as C = ENC(m, kENC) using
a symmetric key encryption and the key kENC . The tag
of the ciphertext C is tag = HMAC(C, kMAC), which
is calculated using a keyed-hash message authentication
code (HMAC). Finally the sender transfers C, tag and U
(session key) to the receiver.

For ECIES decryption (Algorithm 3), the receiver gen-
erates the shared secret S = U · kb = u · kb · G. Using S
and KDF, kENC and kMAC keys are regenerated. Authen-
ticity of C is verified by comparing the tag computed
by sender to tagB = HMAC(C, kMAC). If both tags
match, the message is retrieved as m = DEC(C, kENC),
otherwise C is discarded.

Algorithm 3: ECIES Decryption
input : Ctxt C, tag, U , receiver’s private key kb

output: m
Compute S(xs, ys) = U · kB

Generate (kENC , kMAC) = KDF(xs)
Compute tag

B
= HMAC(C, kMAC)

Check tagB == tag
Decrypt m = DEC(C, kENC)

6 SECURE DATA SHARING USING ATTRIBUTE
BASED ENCRYPTION (ABE)
In conventional public-key cryptography [69], [74], a
user has two keys: The public key is shared with anyone
that wants to send encrypted data to the user, while the
private key is used to decrypt the received messages and
is not shared with anyone. In many real-world healthcare
scenarios, more than one party may need to access the
data. This requires creating duplicates of the data by
encrypting it using each party’s public key.

Attribute-based encryption (ABE) [55], [56] is a public-
key encryption that enables secure data sharing by
multiple users. The data is encrypted using an access

Fig. 4: ECIES encryption pseudo-code.

In ECIES, the sender generates a session key pair that
will be used only for the current encryption. Session key
is generated by choosing an element u ∈ Z∗p and comput-
ing elliptic curve point U = u · G. Based on the session
key, a shared secret value is generated by using the
receiver’s public key as S = u ·QB = u ·kb ·G. A standard
Key Derivation Function (KDF) [80] inputs the shared se-
cret value to generate two keys: kENC and kMAC . Finally,
message m is encrypted as C = ENC(m, kENC) using
a symmetric key encryption and the key kENC . The tag
of the ciphertext C is tag = HMAC(C, kMAC), which
is calculated using a keyed-hash message authentication
code (HMAC). Finally the sender transfers C, tag and U
(session key) to the receiver.

In ECIES decryption (Fig. 5), the receiver generates a
shared secret S = U · kb = u · kb ·G and kENC and kMAC

keys from S using KDF. Authenticity of C is verified by
comparing the sender tag to tagB = HMAC(C, kMAC).
If both of the tags match, the message is retrieved as
m = DEC(C, kENC), otherwise C is discarded.

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

Zagros
Highlight

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

7

6

support within Intel CPUs [68].

5.2 Elliptic Curve Cryptography (ECC)
Elliptic Curve Cryptography (ECC) emerged as a public
key cryptosystem that achieves the same security level of
RSA using a shorter key size [69], [70]. Security of ECC
is based on hardness of the elliptic curve discrete log-
arithm problem (ECDLP). ECDLP is defined as finding
an integer k for given two points on the elliptic curve G
and k · G. The fastest algorithm to solve the ECDLP [71]
requires approximately

p
p steps for an elliptic curve

on prime field Fp. Choosing a 160-bit prime p in ECC
achieves the same security level as a 1024-bit RSA.

ECC schemes are based on two different arithmetic
operations performed on the elliptic curves:

Point addition adds two points P (xp, yp) and
Q(xq, yq) on the elliptic curve to find point R(xr, yr),
which is also on the elliptic curve.

Point doubling computes the double of point
P (xp, yp) as 2P . Multiplication of a point P by a scalar
k is done by repeated additions k · G = G + G +· · ·+G,
similar to modular exponentiation in RSA.

Reduced storage and bandwidth requirements com-
bined with efficient arithmetic operations make ECC
suitable for resource-limited devices such as BANs. ECC
allows more sophisticated crypto-operations such as key
sharing and encryption with data integrity, however,
does not provide a mechanism for computations to be
performed on encrypted data.

5.3 EC Diffie-Hellman Key Exchange
ECC is widely used for key exchange, similar to the
Diffie-Hellman (DH) key-exchange protocol [52]. Reg-
ular DH can be converted to its ECC counterpart by
replacing modular multiplications with point additions
and modular exponentiations with repeated point ad-
ditions. A shared session key between two parties (A
and B) is established using ECCDH as follows: First,
both parties agree on an elliptic curve on prime field
Fp and a point P on the curve. Then, A and B select an
integer kA and kB as their private key. Based on their
private keys, they compute a point QA, QB on the curve
by performing repeated additions. They exchange their
computations without being able to discover each others’
private key due to the hardness of the ECDLP problem.
Finally, each party performs another point multiplication
with his/her private key to find a common point QAB

on the elliptic curve, which can be used as the shared
secret key for a symmetric cipher.

5.4 EC Integrated Encryption Scheme (ECIES)
One of the standard ways to use ECC for public-key
cryptography is the ECIES method [72], as shown in
Algorithm 2.. ECIES provides data confidentiality by
using a symmetric-key encryption such as AES. Integrity
of the data is protected by message authentication code

Algorithm 2: ECIES Encryption
input : Message m, receiver’s public key QB

output: U , C, tag
Set random u 2 Zp

Compute U = u · G
Compute S(xs, ys) = u · QB

Generate (kENC , kMAC) = KDF(xs)
Encrypt C = ENC(m, kENC)
Generate tag = HMAC(C, kMAC)

(MAC). Elliptic curves are employed to generate an
encryption key (kENC) and a MAC key (kMAC).

In ECIES, the sender generates a session key pair that
will be used only for the current encryption. Session key
is generated by choosing an element u 2 Z⇤

p and comput-
ing elliptic curve point U = u · G. Based on the session
key, a shared secret value is generated by using the
receiver’s public key as S = u ·QB = u ·kb ·G. A standard
Key Derivation Function (KDF) [73] inputs the shared se-
cret value to generate two keys: kENC and kMAC . Finally,
message m is encrypted as C = ENC(m, kENC) using
a symmetric key encryption and the key kENC . The tag
of the ciphertext C is tag = HMAC(C, kMAC), which
is calculated using a keyed-hash message authentication
code (HMAC). Finally the sender transfers C, tag and U
(session key) to the receiver.

For ECIES decryption (Algorithm 3), the receiver gen-
erates the shared secret S = U · kb = u · kb · G. Using S
and KDF, kENC and kMAC keys are regenerated. Authen-
ticity of C is verified by comparing the tag computed
by sender to tagB = HMAC(C, kMAC). If both tags
match, the message is retrieved as m = DEC(C, kENC),
otherwise C is discarded.

Algorithm 3: ECIES Decryption
input : Ctxt C, tag, U , receiver’s private key kb

output: m
Compute S(xs, ys) = U · kB

Generate (kENC , kMAC) = KDF(xs)
Compute tag

B
= HMAC(C, kMAC)

Check tagB == tag
Decrypt m = DEC(C, kENC)

6 SECURE DATA SHARING USING ATTRIBUTE
BASED ENCRYPTION (ABE)
In conventional public-key cryptography [69], [74], a
user has two keys: The public key is shared with anyone
that wants to send encrypted data to the user, while the
private key is used to decrypt the received messages and
is not shared with anyone. In many real-world healthcare
scenarios, more than one party may need to access the
data. This requires creating duplicates of the data by
encrypting it using each party’s public key.

Attribute-based encryption (ABE) [55], [56] is a public-
key encryption that enables secure data sharing by
multiple users. The data is encrypted using an access

Fig. 5: ECIES decryption pseudo-code.

6 SECURE DATA SHARING USING ATTRIBUTE
BASED ENCRYPTION (ABE)
In conventional public-key cryptography [76], [81], a
user has two keys: The public key is shared with anyone
that wants to send encrypted data to the user, while the
private key is used to decrypt the received messages and
is not shared with anyone. In many real-world healthcare
scenarios more than one party may need to access the
data, requiring duplicates of data by encrypting it us-
ing each party’s public key. Attribute-based encryption
(ABE) [59], [60] is a public-key encryption that enables
secure data sharing by multiple users. The data is en-
crypted using an access policy based on credentials (i.e.,
attributes). Only the users whose credentials satisfy the
access policy can access data. The attributes can be the
profession (e.g., Doctor, Nurse) or the department (e.g.,
Cardiology, Emergency) of a user. An access policy P
can be defined as conjunctions, disjunctions and (k, n)-
threshold gates of attributes such as

(Doctor ∧ Cardiology) ∨ (Nurse ∨ Emergency)

which grants access to a Doctor from Cardiology OR a
nurse OR an Emergency personnel. We provide details
for two existing types of ABE: Ciphertext-Policy ABE
(CP-ABE) and Key-Policy ABE (KP-ABE).

6.1 Ciphertext-Policy ABE (CP-ABE)

CP-ABE scheme provides a fine-grained access control
to encrypted data similar to Role-Based Access control
schemes [62]. Private key of a user is associated with user
credentials. Ciphertexts specify an access policy and only
users whose credentials satisfy the policy requirements
can decrypt them. The data can be encrypted without
the knowledge of users beforehand and the policy can be
specified afterwards, enabling the future re-assignment
of keys. CP-ABE scheme consists of four algorithms [61]:

Setup: generates a master key (kM) and public pa-
rameters (Params). A bilinear group G0 of order prime
p and a generator g is chosen. Two random exponents
α, β ∈ Zp are selected to compute the parameters:

h = gβ , f = g1/β , e(g, g)α

where e(g, g)α is the bilinear mapping G0 → GT .
Public parameters are then published as Params =

(G0, g, h, f, e(g, g)
α) and kM is selected as kM = (β, gα).

Key Generation: takes kM as input and a set of
attributes S specific to a user and generates a private key

(kPRIV) by choosing a random r ∈ Zp and computing
D = g(α+r)/β . For each attribute sj ∈ S, a random
rj ∈ Zp is selected to compute following:

Dj = gr ·H(sj)
rj , D̃j = grj

where H(sj) is the hash of sj that maps string sj to a
group element in G0. Private key kPRIV is published as

kPRIV = (D = g(α+r),∀sj ∈ S : Dj , D̃j)

Encryption: takes Params, an access policy repre-
sented as a tree T defined over all possible attributes
and message M to generate ciphertext C.

Decryption: inputs Params, kPRIV , and ciphertext C
to generate M . Decryption will be successful if user’s
kPRIV satisfies the access structure embedded in C.

6.2 Key-Policy ABE (KP-ABE)
In KP-ABE [59], [60] the access policy is encoded into
the users’ private key and a ciphertext is labeled with
a set of attributes. KP-ABE schemes place the access
policy on the private key of the users and the attributes
are associated with the ciphertexts. A recently proposed
ABE scheme [82], which is based on KP-ABE, is pro-
posed as a lightweight ABE solution to provide security
for resource constrained devices such as Internet-of-
Things (IoTs). This scheme is based on ECC instead of
bilinear pairings. Bilinear pairings are very expensive
for resource constrained devices and lightweight ABE
scheme improves both communication and computation
overhead by using ECC. Specifically, [82] uses ECIES [79]
to provide both data confidentiality and data integrity.
This scheme is composed of the following four steps:

Setup: In this step, a central attribute authority who is
responsible for key generation, generates public parame-
ters (Params) and master key (kM). The setup is based on
the the universal set of attributes U . For each attribute i
in U , a point on elliptic curve Pi is generated by choosing
a random ri ∈ Z∗q and then computing Pi = ri ·G. Then
a random r ∈ Z∗q is chosen as kM and master public key
is set to PK = r ·G. Finally Params is published as the
set Params= {PK,P1, P2, · · · , P|U |}.

Key Generation: takes kM and access policy P and
generates decryption key (kDEC).

Encryption: takes input attribute set S, message M
and public key parameters Params to generate the corre-
sponding ciphertext. For each attribute i in S, Ci = ri ·Pi
is computed by choosing random ri ∈ Z∗q . Encryption of
the M is done by using secret key for the symmetric-key
cryptography generated by ECIES to compute C. Finally
the MAC of the message is computed as MACM =
HMAC(M,kMAC), where kMAC is the y-coordinate of
the elliptic curve Q = r ·PK. Ciphertext is published as
the set {S,C,MACM , C1, C2, · · ·C|S|}

Decryption: takes ciphertext set
{S,C,MACM , C1, C2, · · ·C|S|} encrypted using the
attribute set S and uses decryption key kDEC for the
policy P to decrypt message M .

Zagros
Highlight

Zagros
Highlight

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

8

4440

Paillier Encryption Fully Homomorphic Encryption (FHE)
= 40Plaintext

Result

Encryption

Decryption

Ciphertext

Evaluation 311649 +h 450921 +h 741293 = 1503863 850813 xh 407731 +h 579124 = 346903414427

3

311649

= 4421

450921

16

741293

+ ++ x3

850813

12

407731

8

579124

Fig. 6: Paillier and FHE homomorphic encryption schemes enable encrypted (secure) computation.

7 SECURE COMPUTATION USING HOMOMOR-
PHIC ENCRYPTION

Conventional encryption schemes are extremely
lightweight, but do not allow computations on
encrypted data. Homomorphic encryption (HE)
schemes enable computation of meaningful operations
on encrypted data without observing the actual
data. By using HE, both storage and computation
can be outsourced to public cloud operators,
eliminating data privacy concerns in case of medical
cloud computing. An HE scheme transforms into
a Fully Homomorphic Encryption (FHE) scheme
if it can evaluate arbitrary functions. To evaluate
arbitrary functions over ciphertexts, FHE schemes
need to perform both homomorphic addition and
homomorphic multiplication, which translates to
addition and multiplication of the plaintext messages,
respectively [83].

First plausible FHE scheme was proposed by Gentry
in 2009. Schemes proposed before [84]–[87] were partially
homomorphic and they could perform only homomor-
phic addition or homomorphic multiplication. Figure 6
shows the difference between the partially homomorphic
Paillier scheme [86] and an FHE scheme. The Paillier
scheme (left) is only additively-homomorphic, thereby
allowing only addition operations on ciphertexts. FHE
(right) allows both homomorphic additions and multi-
plications, thus permitting arbitrarily complex computa-
tions. Currently, FHE schemes are not practical since they
require heavy computational and storage resources [88].
Improving the performance of FHE remains an active
research area. In this section, we will provide the details
of Paillier and a recent FHE implementation called the
Brakerski-Gentry-Vaikuntanathan (BGV) scheme [89].

7.1 Paillier Encryption Scheme

Paillier Encryption scheme [86] is a public-key cryp-
tosytem that is additively-homomorphic. Operations on
ciphertexts encrypted with Paillier scheme result in ad-
ditions of messages without observing them. Due to
its additive homomorphism, Paillier scheme is widely
used in many practical applications [90]. Security of the
Paillier scheme is based on difficulty of finding the nth

residue of composite numbers: Given z and n2, where
n = p · q is a composite number, it is hard to find y that

observes the following relationship

z = yn mod n2

Paillier encryption scheme consists of five algorithms:
Setup: selects two large primes p and q randomly and

independently to generate composite number n = p · q.
Key Generation: calculates λ = lcm(p−1, q−1) which

is least common multiplier of p − 1 and q − 1. Random
g ∈ Z∗n2 , which is a generator for the Z∗n2 , is selected and
its multiplicative inverse mod n is calculated as

µ = (L(gλ mod n2))−1 mod n

where L is the function that computes L(k) = (k− 1)/n.
Finally, public key is selected as kPUB = (n, g) and
private is selected as kPRIV = (λ, µ).

Encryption: encrypts the message m with random r ∈
Z∗n2 to ciphertext c using kPUB as follows:

c = gm · rn mod n2

Decryption: decrypts the ciphertext c to the message
m using kPRIV as follows

m = L(cλ mod n2) · µ mod n

Homomorphic Addition: Addition of the plaintexts
m1 and m2 (m1+m2 mod n) corresponds to the multipli-
cation of their ciphertexts (c1 and c2) as detailed below:

c1 = gm1 · rn1 mod n2

c2 = gm2 · rn2 mod n2

c3 = c1 · c2 = g(m1+m2 mod n) · (r1 · r2)n mod n2

7.2 BGV Scheme

Several FHE implementations have been proposed to
date [89], [91]–[94] to improve performance of Gentry’s
initial FHE scheme [65]. Currently, the BGV scheme [89]
is one of the most promising candidates for a practical
FHE scheme, incorporating many optimizations. The
expensive bootstrapping operation [65] is avoided by a
variant of FHE called leveled FHE that employs a better
noise management technique called modulus-switching.
Ciphertexts encrypt multiple messages to reduce stor-
age overhead and execute homomorphic operations in
parallel similar to SIMD-fashion.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

9

7.2.1 Leveled FHE

Leveled FHE scheme allows performing cascaded homo-
morphic multiplications (×h) without causing decryp-
tion errors. Right after encryption, each ciphertext is set
to a level L and L is reduced by one after each ×h until
it reaches L = 1, at which point further ×h operations
can cause decryption errors. While leveled FHE provides
better performance, it requires the computation of L
beforehand [95].

7.2.2 Message Space

In the BGV scheme, plaintexts are represented as an
element in polynomial ring GF (pd), where p is a prime
number that defines the range of polynomial coefficients
and d is the degree of the polynomials. Homomorphic
addition and multiplication of ciphertexts correspond to
addition and multiplication of plaintexts in the GF (pd),
respectively. When GF (2) is selected as the polynomial
ring (i.e., p=2, d=1), the messages are represented as
bits; in GF (2), homomorphic addition and multiplica-
tion of ciphertexts translate to XOR, AND operations
on the plaintexts, respectively, enabling the computation
of arbitrary functions by representing them as a binary
circuit using a combination of XOR,AND gates.

7.2.3 Message Packing

Representing plaintexts as polynomial rings in GF (pd)
allows using Chinese Remainder Theorem to partition
plaintexts into ` independent “slots” [96]. Multiple mes-
sages can be packed into the plaintext by assigning a
message to each plaintext slot. For GF (2), each slot
represents single bit and messages can be packed by
concatenating their bitwise representation.

7.2.4 SIMD Operations

Packing enables the SIMD execution of the same opera-
tion in parallel for `-slots. BGV offers SIMD execution of
homomorphic operations for performance improvement.
We use four orthogonal operations available in BGV:

Homomorphic Addition (+h): corresponds to a slot-
wise XOR of plaintexts in GF (2). +h does not affect the
level L of the BGV scheme.

Homomorphic Multiplication (×h): corresponds to
a slot-wise AND operation of plaintexts in GF (2). ×h
operation reduces the level L of the ciphertext by one.
Therefore, the depth of multiplications will determine
the required level of the BGV scheme.

Rotate (>>>h, <<<h): provides rotation of slots sim-
ilar to a barrel shifter and slots will wrap around based
on the rotation direction, thereby potentially garbling
the data contained in the neighboring slots. This will be
corrected using Select operations.

Select (selmask): chooses between the slots of two
plaintexts based on an unencrypted selection mask vec-
tor. Select operation can be used to mask out the bits
that are diffused from other messages after a Rotate.

8 SECURE COMPUTATION CASE STUDY
In this section, we provide a secure computation imple-
mentation case study for a simple medical application.
Computations in this application are performed on en-
crypted medical data in a public cloud using the Paillier
and BGV homomorphic encryption schemes.

8.1 Medical Application
Our target MCPS is a remote patient health monitoring
system [67] that transmits patient ECG signals from the
patient’s house (Layer 1 in Fig. 1) into the cloud (Layer
3). Patient medical data is assumed to be encrypted using
one of the homomorphic encryption (HE) schemes to
provide data privacy during transmission. Since both
of these HE schemes are very resource-intensive, as
discussed in Section 7, the intermediate pre-processing
layer (Layer 2) is assumed to aid the HE computationally.
From the encrypted ECG recordings, we will provide
certain statistics and detection results to the doctor
(Layer 4) as our case study application.

The statistics we will provide are the average heart
rate of a patient. The detection results we will pro-
vide are for the “detection of the long-QT syndrome,”
which is a cardiac condition that can cause fatalities [7],
[67]. Quantitatively, the goal of this application is to
continuously monitor the “QTc” metric of a patient’s
heartbeats and alert the doctor when QTc exceeds a
clinical threshold. Typically, QTc is between 300–600 ms
and QTc>500 ms is considered to be too long (i.e., long
QT syndrome). The QTc metric is defined as the corrected
QT, which is calculated from the QT and RR intervals
in an ECG recording. One of the most common methods
in computing QTc from QT and RR is to use Bazett’s
formula [97] : QTc = QT√

RR
.

8.2 Computations Using Paillier
Paillier scheme is an additive homomorphic encryp-
tion, therefore we will use Paillier for only the average
heart rate computation. Calculating the average heart
rate using Paillier involves accumulating the encrypted
messages by using its additive homomorphic property.
We note that to compute the average, the accumulated
value needs to be divided by number of ECG samples.
However, this division will be difficult to implement
using Paillier. Therefore, we will return two ciphertexts:
1) accumulated sum and 2) number of ECG samples; the
receiver can decrypt both ciphertexts and compute the
actual average. Accumulating N ciphertexts (ci) using
Paillier is performed as follows:

csum =
i=N∏

i=0

ci =
i=N∏

i=0

gmi · rni

csum = (g
∑i=N

i=0 mi mod n) · (
i=N∏

i=0

ri)
n mod n2

where decryption of csum will yield the sum of N

messages (i.e.,
∑i=N
i=0 mi mod n).

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

10

8.3 Computations Using BGV

We use the leveled BGV scheme to implement LQTS
detection and average heart rate calculation. We de-
termine the required BGV level L by determining the
multiplication-depth of each computation. As we will
show later, the multiplication depth (the chain of cas-
caded multiplications) depends on two variables: bit-
length of messages (k) and number of ciphertexts (N).
BGV ciphertexts pack multiple k-bit messages based on
number of plaintext slots, which varies based on level L.

8.3.1 Long QT Syndrome (LQTS) Detection

LQTS detection requires the following comparison that
we discussed in Section 8.1: QT√

RR
> th, where th is

the 500 ms clinical threshold. We rewrite the formula
as QTh > RRh, which avoids the square-root, therefore
making it more suitable for a BGV implementation. In
this re-arrangement, QTh = QT 2 and RRh = RR · th2,
which reduces the original computation to a single com-
parison operation. In other words, the acquisition layer
of the MCPS (Layer 1 in Fig 1) transmits RRh = RR · th2
and QTh = QT 2 rather than RR and QT .

To implement homomorphic comparison, we start out
by designing a 4-bit comparator that computes:

X>Y = (x3y3 ⊕ x2y2e3 ⊕ x1y1e3e2 ⊕ x0y0e3e2e1)
where X and Y are the two 4-bit plaintext values that
are being compared, xi is the value of bit i of X , yi
is the inverse of bit i of Y , and ei denotes the bit-
wise equality (xi == yi). To perform this comparison
homomorphically, we will use the notation X and Y to
denote the ciphertexts that correspond to the plaintexts
X and Y , respectively. Homomorphic comparison can
be performed by evaluating

X > Y = (X ×h Y′ ×h M)

where Y′, M encrypt yi, (1 e3 e3e2 e3e2e1), respectively.
Figure 7 presents the generalized k-bit BGV implemen-

tation of this homomorphic comparison. Ciphertexts X
and Y encrypt QT 2 and RR · th2, respectively. Compari-
son requires log2 k+1 depth for ciphertexts packing k-bit
messages. Specifically, log2 k depth is needed to compute
mask M from E, followed by single multiplication at the
end. Once the comparison is finished, results of the com-
parisons needs to be aggregated to extend the detection
results over multiple ECG samples. Aggregation can be
performed using the OR operation as

X ∨h Y = X +h Y +h (X ×h Y)

which has a multiplication depth of 1. To aggregate N
comparison results, the OR operation can be applied in a
binary tree fashion, requiring dlog2Ne depth. Therefore,
the minimum required level for LQTS detection is L >
(log2 k + 1 + dlog2Ne). We note that after each rotation
operation (>>>h), a selection operation is applied to
mask bits that are diffused from neighboring messages.

10

cloud with homomorphic encryption. We implement the
medical application with Paillier and BGV schemes.

8.1 Medical Application

We will use Long QT Syndrome (LQTS) as our target
medical application that monitors the patients remotely
based on ECG signals. Prolongation of QT interval of
the heart beat, also known as LQTS, is one of the cardiac
conditions that could cause fatality. The syndrome could
be genetic (i.e., inherited) or acquired later. The acquired
LQTS is a result of accumulated small QT effects caused
by prescribed drugs, which requires continuous monitor-
ing of patients and assessing electrical activity of their
heart using ECG signals.

One of the most commonly used methods for detecting
LQTS is Bazett’s formula [108]. Bazett’s formula uses cor-
rected QT interval (QTc) that represents the time interval
of the ventricular recovery phase of the heart. QTc is
calculated from QT and RR intervals of the heart beat as
QTc = QTp

RR
. QTc value higher than a clinical threshold

(e.g., 500ms) could increase risk for life-threating events
and the cardiologist should be notified.

We also compute general statistics such as Average
Heart Rate (HR) to provide information about patients’
heart activity to health care professionals.

8.2 Computations with Paillier

Paillier scheme is an additive homomorphic encryption,
therefore we will use Paillier for only average HR com-
putation. Calculating average HR with Paillier involves
accumulating the encrypted messages by using its addi-
tive homomorphic property. We note that to compute the
average, the accumulated value needs to be divided by
number of ECG samples but since division will be diffi-
cult to implement with Paillier. Therefore we will return
two ciphertexts: accumulated sum and number of ECG
samples and receiver can decrypt both ciphertexts and
compute actual average. Accumulating the N ciphertexts
(ci) with Paillier is performed as follows:

csum =

i=NY

i=0

ci =

i=NY

i=0

gmi · rn
i

csum = (g
Pi=N

i=0 mi mod n) · (
i=NY

i=0

ri)
n mod n2

where decryption will result in accumulating N mes-
sages (i.e.,

Pi=N
i=0 mi mod n).

8.3 Computations with BGV

We use leveled variant of BGV scheme to implement
secure computation of both LQTS detection and average
HR. We calculate the required BGV level L by determin-
ing the multiplication-depth of each computation. As we
will show later, the depth of multiplication depends on
two variables: bit-length of messages (k) and number

of ciphertexts (N). BGV ciphertexts pack multiple k-
bit messages based on number of plaintext slots, which
varies with level L.

8.3.1 Long QT Syndrome (LQTS)
LQTS detection requires comparison of corrected QT
interval (QTc) with a clinical threshold. We use Bazett’s
Formula which detects a LQTS event as QTp

RR
> th.

We rearrange the formula for BGV to avoid square-root
computation as QTh > RRh. This reduces computation
of the formula to a comparison operation.

Comparison of two 4-bit X and Y variables can be
performed efficiently with digital comparator that oper-
ates on the bits of the variables as X > Y = (x3y3 �
x2y2e3 �x1y1e3e2 �x0y0e3e2e1), where xi is the value of
bit i of X , yi is the inverse of bit i of Y , and ei is their
bitwise equality (xi ==yi).

Algorithm 4 presents the BGV implementation of com-
parison operation. Ciphertexts X and Y encrypts QT 2

and RR · th2 respectively. Comparison can be performed
homomorphically by evaluating X ⇥h Y0⇥h M, where Y0

and M encrypts yi and 1 e3 e3e2 e3e2e1 respectively.
Comparison requires log2 k + 1 depth for ciphertexts

packing k-bit messages. Specifically, log2 k depth is
needed to compute mask M from E, followed by single
multiplication at the end.

Once the comparison is finished, results of the compar-
isons needs to be aggregated. Aggregation can be per-
formed with OR operation as X_hY = X+hY+h(X⇥hY),
which has single multiplication depth. To aggregate N
comparison result, OR operation can be applied in a
binary tree fashion that requires dlog2 Ne-depth. There-
fore, the minimum required level for LQTS detection is
equal to L > log2 k + 1 + dlog2 Ne. We note that, after
each rotation operation (>>>h), a selection operation is
applied to mask bits that are diffused from neighboring
messages.

Algorithm 4: FHE Implementation of Comparison
input : Ciphertexts X and Y
output: Ciphertext R = X >h Y
E = X +h Y +h 1
M = E
for i = 1 to k do

T = (M >>>h i) selmask 1
M = M ⇥h T
i = i · 2

Q = (Y +h 1) ⇥h X
R = M ⇥h Q

8.3.2 Average Heart Rate
Average HR is computed by accumulating N ciphertexts
that encrypt multiple k-bit RR distance information. We
use combination of Carry Save Adder (CSA) and Kogge-
Stone Adder (KGA) to achieve low multiplication-depth.
Specifically, we use CSA adders to compress N cipher-
texts down to two ciphertexts and then add remaining

Fig. 7: BGV implementation of comparison.

8.3.2 Average Heart Rate (HR)
Average HR is computed by accumulating N cipher-
texts that encrypt multiple k-bit RR interval values. We
use a combination of Carry Save Adder (CSA) and
Kogge-Stone Adder (KSA) to achieve low multiplication-
depth. Specifically, we use CSA adders to compress N
ciphertexts down to two ciphertexts and add remaining
ciphertexts using a KSA adder to compute final sum.

CSA adders operate on three variables X,Y, Z to
generate carry C = (XY ∨ XZ ∨ Y Z) << 1 and sum
S = (X⊕Y ⊕Z). The multiplication depth is determined
by the carry computation and is equal to 3 due to the
multiplications and the OR operation. This depth can
be reduced to one by replacing OR with XOR within a
CSA adder [67]. CSA adders can be combined in a tree
fashion, to compress N ciphertexts to two. The depth d
of the CSA compression tree is equal to [98]:⌈

log2(N/2)

log2(3/2)

⌉
+ 1 ≤ d

After compressing N ciphertexts down to two, we use
KSA to add the final two ciphertexts. KSA is a parallel-
prefix adder that performs operations in logarithmic-
depth. Figure 8 shows the implementation of KSA [99]
using BGV. KSA starts by computing Generate (G) and
Propagate (P) values from inputs X and Y , which has
a depth of 1. G and P are updated in log2 k stages,
where each stage has a depth of 2 for computing G
(1 for ×h, 1 for ∨h). Therefore, KSA requires depth of
2 log2 k + 1. Therefore, minimum required level L for
accumulating N ciphertext that packs k-bit messages is
L >

(⌈ log2(N/2)
log2(3/2)

⌉
+ 1
)
+ (2 log2 k + 1).

9 EXPERIMENTAL SETUP

We run our experiments on an Intel Xeon W3565 work-
station (4 cores, 8 threads) with 24GB RAM, running
64-bit Ubuntu 15.04. Our results are based on single-
threaded execution times, since most of the existing
libraries do not have an efficient multi-threaded imple-
mentations. We use two open-source libraries:

Charm library [100] provides a high-level framework
for designing cryptosystems. Charm is based on Python,
but compute intensive operations are implemented in
C and has comparable performance to native C imple-
mentations. We use Charm for benchmarking the perfor-
mance of conventional and ABE encryption schemes.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

11

11

ciphertexts with Kogge-Stone adder to compute final
sum.

CSA adders operates on three variables X,Y, Z to
generate carry C = (XY _ XZ _ Y Z) << 1 and sum
S = (X�Y �Z). The multiplication depth is determined
by carry computation and is equal to three due to the
multiplications and OR operation. The depth can be
reduced to one, by replacing OR with XOR (this is only
specific to CSA carry computation). CSA adders can be
combined in a tree fashion, to compress N ciphertexts to
two. The depth d of the CSA compression tree is equal
to [109]: ⇠

log2(N/2)

log2(3/2)

⇡
+ 1 d

After compressing N ciphertexts down to two, we
use Kogge-Stone Adder to add remaining ciphertexts.
Kogge-Stone adder is a parallel-prefix adder that per-
forms operations in logarithmic-depth. Algorithm 5
shows the implementation of Kogge-Stone Adder [110]
with BGV. Kogge-Stone adder starts with computing
Generate (G) and Propagate (P) values from inputs X
and Y , which has a depth of one. G and P are updated
in log2 k stages, where each stage has a depth of two for
computing G (one ⇥h and one _h). Therefore, Kogge-
Stone requires depth of 2 log2 k + 1.

Algorithm 5: FHE Implementation of Kogge-Stone
input : Ciphertexts X and Y
output: Ciphertext S
G = X ⇥h Y
P = X +h Y
for i = 1 to num stages + 1 do

G00 = G
P00 = P
G0 = (G <<<h i) selmask 0
P0 = (P <<<h i) selmask 1
P = P0 ⇥h P00

G0 = G0 ⇥h P00

G = G0 _h G00

i = i · 2

S = P +h ((G <<<h 1) selmask 0)

The minimum required level L for accumulating N
ciphertext that packs k-bit messages is equal to L >�⌃ log2(N/2)

log2(3/2)

⌥
+ 1

�
+ (2 log2 k + 1).

9 EXPERIMENTAL SETUP

In our experiments, we use two libraries for imple-
mentation: Charm [111] and HElib [106]. Charm library
provides a high-level framework for designing cryp-
tosystems. Charm is based on Python, but compute
intensive operations are implemented in C and has
comparable performance to native C implementations.
HElib is a state-of-the-art FHE library that implements
BGV scheme [94].

We use Charm for benchmarking the performance of
standard and ABE encryption schemes. Medical appli-

cations presented in Section 8.3 are implemented by
extending HElib.

All experiments are run on a workstation computer
with Intel Xeon W3565 Processor with 4 cores and 8
threads with 24GB RAM and Ubuntu 15.04 64-bit as the
operating system. All the results are based on single-
threaded performance.

9.1 Data Set
We use a sample patient medical data from THEW
ECG database [112] to simulate medical data collected
with BAN sensors. The dataset contains raw ECG data
captured from a patient during 24-hours via a 12-lead
Holter monitor with 1000Hz sampling rate. The ECG
data represents summary of the each heart beat and
provides information of QT and RR intervals in terms
of number of samples acquired (toc). 24-hour ECG data
contains 87,896 samples and each toc value is repre-
sented as 16-bit unsigned integer.

9.2 Security Level of Encryption Schemes
We use 128-bit security for encrypting medical data,
which is the recommended security level for federal
government data by NIST [113]. Table 1 presents the
parameter selection of encryption schemes based on 128-
bit security. For the BGV, we use the analysis provided
in [114] for setting the security parameters.

TABLE 1: Parameter selections of encryptions for 128-bit security.

ECIES
Elliptic curve: Fp with p = 256-bit prime
Symmetric-key encryption: AES-128
MAC: HMAC-SHA1 (160-bit)

CPABE [65]
Bilinear Pairing: Supersingular curve over Fp,
p = 1536-bit prime
Access Policy: 10 attributes

KPABE [87]

Elliptic curve: Fp with p = 256-bit number p

Symmetric-Key encryption: AES-128
MAC: HMAC-SHA1 (160-bit)
Access Policy: 10 attributes

Paillier p, q = 3072-bit prime

9.3 BGV Setup
Runtime and storage requirements of BGV are tightly
coupled with the level L. The level L depends on bit-
length of the messages (k) packed in plaintexts and
number of ciphertexts required for computation (N) as
shown in Section 8.3. We set the level L to the lowest
value that allows execution of application without caus-
ing decryption error.

We use different k for LQTS detection and Average
HR. Since LQTS detection performs comparison opera-
tion k is set to 16, which is the bit-length of toc values
in the dataset. For the Average HR, k is set to 32 by
padding toc values with 0’s to prevent overflow during
accumulation.

The number of ciphertexts N required to encrypt the
dataset depends on the number of plaintext slots. Table 2

Fig. 8: BGV implementation of KSA.

HElib library [101] is a state-of-the-art FHE library
that implements the BGV scheme [89]. Medical applica-
tions presented in Section 8.3 are implemented by using
the primitives in HElib that were listed in Section 7.2.4.

9.1 Data Set
To simulate the acquired patient data in the acquisition
layer of the MCPS (Layer 1 in Fig. 1), we use the
THEW database [102], [103]. THEW is a large corpus
of 24-hour anonymized Holter ECG recordings of real
patients, sampled at the rate of 1000 Hz. The ECG data
represents summary of the each heart beat and provides
information of QT and RR intervals in terms of number
of samples acquired (toc). 24-hour ECG data contains
87,896 samples and each toc value is represented as 16-
bit unsigned integer.

9.2 Security Level of Encryption Schemes
We use 128-bit security for encrypting medical data,
which is the recommended security level for federal
government data by NIST [104]. Table 1 presents the
parameter selection of encryption schemes based on a
128-bit security level. For BGV, we use the analysis
provided in [105] for setting the security parameters.

TABLE 1: Parameter selection for 128-bit security.

ECIES [80]
Elliptic curve: Fp with p = 256-bit prime
Symmetric-key encryption: AES-128
MAC: HMAC-SHA1 (160-bit)

CP-ABE [61]
Bilinear Pairing: Supersingular curve over Fp,
p = 1536-bit prime
Access Policy: 10 attributes

KP-ABE [82]

Elliptic curve: Fp with p = 256-bit number p

Symmetric-Key encryption: AES-128
MAC: HMAC-SHA1 (160-bit)
Access Policy: 10 attributes

Paillier [86] p, q = 3072-bit prime

9.3 BGV Setup
Runtime and storage requirements of BGV are tightly
related to the BGV level L, which depends on the bit-
length of the messages (k) packed in plaintexts and the

number of ciphertexts required for computation (N) as
described in Section 8.3. We set the level L to the lowest
value that allows the execution of application without
causing decryption errors. We use different k values for
LQTS detection and Average HR. Since LQTS detection
performs comparison operation, we choose k=16, which
is the bit-length of the toc values in the dataset. For the
Average HR, we choose k = 32 by padding toc values
with 0’s to prevent overflow during accumulation. The
number of ciphertexts, required to encrypt the dataset
(N) depends on the number of plaintext slots (`). Table 2
presents the ` options for different BGV levels. Each
ciphertext can pack b`/kc messages that enables SIMD-
like parallel homomorphic operations.

TABLE 2: # of Plaintext slots at different BGV Levels.
BGV Level L # of slots (`)

1 ≤ L < 12 630

12 ≤ L < 22 682

22 ≤ L < 68 1285

10 EVALUATION

In this section, we compare the performance of different
encryption schemes based on their encryption/decryp-
tion times, evaluation times (only for homomorphic
schemes) and ciphertext sizes.

10.1 Comparison of the Encryption Schemes
Table 3 summarizes the secure storage, secure com-
putation and secure data sharing capabilities of the
encryption schemes presented in Sections 5, 6 and 7.
Conventional encryption schemes cannot provide secure
computation, unless medical data is stored in a trusted
private cloud (e.g., the data center of the hospital), where
decryption is possible without violating the privacy.

Secure data sharing is limited to the users who have
the secret key of AES and the private key of ECIES.
ABE cannot perform computations on encrypted data,
but provides fine-grained secure data sharing capability
in a public cloud setting.

Homomorphic encryption schemes provide secure
computation in a public cloud: Paillier only performs
homomorphic addition, thereby allowing a limited set of
operations, while BGV enables arbitrary computations,
but requires more resources than Paillier. Both schemes
limit data sharing to the users who have the private key.

TABLE 3: Comparison of different encryption schemes.

Scheme Encryption Computation Data Sharing

Conventional
AES NA Limited
ECIES NA Limited

Attribute-based
KP-ABE NA Fine-Grained
CP-ABE NA Fine-Grained

Homomorphic
Paillier Partial Limited
BGV Full Limited

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

12

10.2 Data Privacy in Acquisition, Preprocessing

Acquisition devices, such as the sensors in BANs, have
strict resource requirements. Therefore the communica-
tion between BAN sensors (Layer 1 in Fig. 1) and BAN-
to-Cloudlets (Layer 1 to Layer 2) must be secured using
lightweight encryption schemes. We will use AES-128
for encrypting medical data captured by the sensors in
a BAN. Symmetric-key of AES-128 is shared using the
Elliptic Curve Diffie-Hellman (ECDH) key-exchange.

ECDH is used once to generate the same secret key be-
tween communicating parties. During the key exchange,
two parties exchange a single ciphertext that represents
a point in the elliptic curve. This ciphertext contains the
(x, y) coordinates, each represented as a p-bit integer
in Fp. A 256-bit Fp is selected for the elliptic curve to
achieve 128-bit security. Therefore, the exchanged cipher-
text has a size of 2 · (256/8) = 64B. Both parties need to
perform elliptic curve point multiplications to a generate
secret key for AES. Our Charm library simulation for this
shows a total run-time of 0.23ms.

Once the secret key is generated, medical data can be
securely transferred by using AES-128. Our Charm li-
brary simulation for AES-128 encryption and decryption
times are 0.2µs and 0.23µs, respectively. These are the
performance results for the AES-CBC mode of operation
that is used in the OpenSSL library implementation.

The AES-GCM mode can be used to provide both
confidentiality and integrity. AES-GCM mode can be im-
plemented efficiently by using the techniques introduced
in Section 5.1.2. By using the Intel AES-NI instruction
set extensions, the optimized code that is published on
Intel’s website [75] resulted in AES-GCM encryption and
decryption run times of 0.06 µs per 128-bit block.

The performance of AES-GCM mode can be further
improved by using ASIC/FPGA implementations. A
fully pipelined ASIC implementation of AES-GCM is
presented in [74], which can run at 429.2 MHz and
perform encryption/decryption in ≈ 2.3ns per block.

10.3 Secure Storage

Once the medical data is captured, it is transferred
to a more computationally capable device such as a
smartphone or a cloudlet. This data can be encrypted
using different encryption schemes based on the de-
sired capability (i.e., sharing, computation). For example,
before transferring the data to a public cloud, AES-
128 can be used at the acquisition layer, which can
be converted to FHE in the cloud using AES-to-FHE
conversion schemes [105]. Table 4 lists execution times
and storage requirements for ciphertexts for different
encryption schemes. Encryption (Enc.) and Decryption
(Dec.) columns list the required time to encrypt/de-
crypt 24-hr ECG data, consisting of 87,896 samples as
described in Section 9.1. Ctxt column shows the space
required for storing encrypted data.

TABLE 4: Requirements of encrypting 24-hr ECG data
using different encryption schemes.

Encryption Enc. (sec) Dec. (sec) Ctxt (MB)

ECIES 40.3 38.7 8.4

KP-ABE 439.5 615.3 56.7

CP-ABE 58K 32.5K 708.1

Paillier 49.2K 48.3K 128.8

BGV 3956 1868 44.4K

10.3.1 ECIES
For ECIES, we select AES-128 for symmetric-key cryp-
tography and HMAC-SHA1 for HMAC. The ciphertext
generated by the ECIES encryption has three compo-
nents: a point on the elliptic curve, an AES-128 encrypted
message and a tag generated by HMAC-SHA1. A point
on the elliptic curve has two 256-bit coordinates, the
AES-128 encrypted message is 128-bits and the tag from
HMAC-SHA1 is 160-bits. Therefore total ciphertext size
is equal to (2 ·256+128+160)/8 = 100B. Encryption and
decryption operations using ECIES require 0.46ms and
0.44ms, respectively based on Charm results.

10.3.2 Attribute-Based Encryption (ABE)
For ABE, we consider two candidates: CP-ABE scheme
from [61] and the recent KP-ABE scheme from [82]. We
evaluate both schemes based on an access policy P ,
consisting of 10 attributes.

A ciphertext in the CP-ABE scheme consists of the set
C ′, C, Cy, C ′y , where Cy and C ′y are generated for each
attribute in the policy P . Each element in the ciphertext
is a point on the elliptic curve, which is represented as
two coordinates in the 1536-bit prime field Fp. Therefore,
the total size of a ciphertext in the CP-ABE scheme is
(2 · (1 + 1 + 10 + 10) · 1536)/8 = 8448B. Encryption
and decryption operations are performed in 660 ms and
700 ms, respectively based on Charm results.

In the KP-ABE scheme, a ciphertext consists of the
set C, tag, and Ci, where a different Ci is generated for
each attribute in the policy P . C is the 128-bit ciphertext,
encrypted using AES-128. The tag is generated using
HMAC-SHA1 and 160-bits. Each Ci is a point on the
elliptic curve, which is represented as two coordinates in
the 256-bit prime field Fp. The total size of a ciphertext in
the KP-ABE scheme is (128+160+(2·10·256))/8 = 676B.
Encryption and decryption operations are performed in
5 ms and 7 ms, respectively based on Charm results.

The KP-ABE scheme is more efficient and requires less
storage, compared to CP-ABE. This is a result of using
elliptic curves to generate keys for efficient AES and
HMAC operations instead of bilinear pairings found in
CP-ABE. CP-ABE can provide an easy implementation if
the hospital is already using a Role-Based Access System.

10.3.3 Paillier
Ciphertexts in Paillier are represented as 12288-bits in-
tegers in the prime field Fp. This is due to the fact that

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

13

ciphertexts are integers in mod n2 where n = p · q. We
choose the security parameter as 128-bits, which requires
3072-bit primes for p and q to be selected. Encryption
and decryption operations are performed in 560 ms and
550 ms, respectively according to Charm results.

10.3.4 BGV
In the BGV scheme, ciphertext sizes depend on the
BGV level L. The resource requirements reported in
Table 4 are based on L=31 for computing the 24-hour
average heart rate. A 20.2MB ciphertext can encrypt
1285 plaintext slots or 40 32-bit messages (b128532 c = 40).
Encryption and decryption operations are performed in
1.8 sec and 0.85 sec, respectively based on HElib results.

10.4 Secure Computation
We evaluate the secure computation options for an
MCPS using the Paillier and BGV schemes.

10.4.1 Computation using the Paillier scheme
Average heart rate computation using the Paillier scheme
requires performing homomorphic addition of multi-
ple ciphertexts. Single homomorphic addition requires
0.11 ms based on Charm results. Therefore, computing
the average heart rate for the 24-hour ECG data takes
9.7 seconds, which involves the homomorphic addition
of 87,896 ciphertexts.

10.4.2 Computations using the BGV scheme
Table 5 presents the HElib results of LQTS detection and
Average heart rate for the 24-hour ECG data, containing
87,896 toc values. Rows of the table represent the parti-
tioning of the data used in computations. For example,
LQTS detection using 1-min ECG interval checks for the
LQTS event every minute, while 24-hour ECG interval
operates on all 24-hour data and returns a single result.
ECG intervals can be adjusted to reflect the condition
of a patient; a patient in critical condition might require
monitoring results every minute, while a healthy patient
just needs one result per day.

For each application, we determined L using the
guidelines in Section 8.3. Both the LQTS detection and
average heart rate computation require higher L for
longer ECG intervals, since longer intervals require an
increased number of ciphertexts (N), thereby increasing
both the execution time and the required storage space.
However, longer ECG intervals require less network
traffic by producing aggregated results over many ci-
phertexts.

10.5 Summary of Results
Table 6 summarizes our results. Encryption/Decryption
times and ciphertext sizes are normalized to AES for
every scheme. Evaluation times are normalized to Pail-
lier for the homomorphic schemes. Using the Charm
library [100], we show that multiple orders-of-magnitude

TABLE 5: BGV results for computing the average heart
rate and LQTS detection. L is the BGV level and N is
the number of ciphertexts required to store the encrypted
ECG samples for a given monitoring interval.

Monitor.
N L

Enc. Dec. Ctxt Exec.
Interval (sec) (sec) (MB) (min)

1 min 3 14 0.20 0.19 3.4 0.4
Avg 15 min 44 21 0.29 0.29 4.8 2.8
HR 1 hr 92 23 1.36 0.63 15.0 16.5

(k=32) 3 hr 275 26 1.59 0.73 17.6 56.1
24 hr 2198 31 1.80 0.85 20.2 502

1 min 2 7 0.05 0.01 0.9 0.1
15 min 24 11 0.08 0.03 1.3 2.5

LQTS 1 hr 88 13 0.18 0.15 2.9 32.7
(k=16) 3 hr 262 15 0.21 0.19 3.4 117

24 hr 2093 18 0.26 0.25 4.3 1165

computational time and storage space penalty must
be incurred to enable secure data sharing and secure
computation. Using the Charm [100] and the HElib [101]
libraries, we demonstrate the performance of the ho-
momorphic schemes in the last two lines of Table 6;
Paillier requires 4 orders-of-magnitude lower storage
for ciphertexts, but only allows restricted set of secure
computations and performs evaluations 3100× faster
than BGV. ASIC [74] and Intel AES-NI optimized [75]
versions of the AES run 1–2 orders-of-magnitude faster
than the generic C software implementation [100].

TABLE 6: Execution time and ciphertext size comparison
of different encryption schemes, normalized to AES.
The evaluation time of the homomorphic schemes are
normalized to Paillier.

Scheme Implement. Enc. Dec. Ctxt Eval.
Source time time size time

AES ASIC [74] 0.01 0.01 1
AES Intel [75] 0.3 0.3 1
AES Charm [100] 1 1 1
ECIES Charm 2.3K 1.9K 6.3

KP-ABE Charm 25K 30.4K 42

CP-ABE Charm 3.3M 1.6M 528

Paillier Charm 2.8M 2.4M 96 1
BGV HElib [101] 9M 3.6M 1.3M 3.1K

11 CONCLUSIONS

In this paper, we define a Medical Cyber Physical System
(MCPS) as a four-layer system consisting of data acqui-
sition, data aggregation, cloud, and action layers. We
survey conventional and emerging encryption schemes
based on their ability to provide secure storage, secure
data sharing, and secure computation. Conventional en-
cryptions such as AES and ECIES do not allow any
operation other than secure storage, while the emerging
Attribute-Based Encryption (ABE) allows secure data

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

14

sharing based on the credentials of the sharing parties.
Alternatively, secure computation on encrypted data is
only feasible using the emerging Fully Homomorphic
Encryption (FHE) schemes.

Through our experimental analysis, we show that due
to the substantial differences among these algorithms in
terms of storage and computational requirements, it is
not possible to provide a single encryption/decryption
scheme that is superior to all of the others. Therefore,
we analyze six different encryption schemes based on
four metrics: i) encryption time, ii) decryption time,
iii) ciphertext size, and iv) evaluation time. While the
first two metrics provide information about the com-
putational intensity of the encryption scheme, the third
metric shows the expansion of the amount of data in
its encrypted form, determining its storage and trans-
mission characteristics. Clearly, the fourth metric is only
relevant to the techniques that provide computation in
encrypted format, such as FHE and Paillier.

Our first experimental analysis shows that the en-
cryption and decryption times under a given encryp-
tion scheme are comparable (e.g., within ±20% for
ECIECS encryption vs. decryption), although the varia-
tion among different schemes is significant. For example,
normalizing to AES, attribute-based encryption schemes
(KP-ABE and CP-ABE) are 25000× and 3.3M× slower,
respectively, while homomorphic encryption schemes
(Paillier and FHE) are 2.8M× and 9M× slower. These re-
sults underline the vast computational penalty that must
be paid to enable secure sharing and secure computation.

Our second analysis focuses on determining the
amount of storage required for the encrypted version
(i.e., ciphertext) of a given plaintext. Normalizing to AES,
ECIES requires 6.3× more space, while attribute-based
encryption schemes (KP-ABE and CP-ABE) still show a
significant disadvantage, requiring 42× and 528× more
storage for the encrypted data. On the other hand, homo-
morphic encryption schemes (Paillier and FHE) exhibit a
96× and 1.3M× storage expansion. Consequently, these
storage disadvantages translate to vast communication
overheads when transmitting encrypted data.

Our final analysis compares the two homomorphic en-
cryption schemes that can perform secure computation
on ciphertexts. We conclude that while the encryption
and decryption of the Paillier scheme are almost as
slow as BGV, evaluation of a ciphertext using Paillier is
3100× faster, however the evaluation operations that are
permitted by Paillier are substantially more restrictive
(only additions can be performed on ciphertext).

Based on these analyses, we conclude that a one-
size-fits-all encryption scheme simply does not exist for
designing an MCPS. Among the six different schemes
studied in this paper, AES is the clear winner in terms
of computation and storage requirements, while the
other five suffer substantial storage and computation
overheads. Therefore, to construct exciting new MCPSs
that can take advantage of these emerging encryption
schemes, their significant speed-up is necessary either

through theoretical advancements or by utilizing GPUs,
ASICs, or FPGA-based hardware accelerators.

ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation grant CNS-1239423. Authors thank Prof.
Muthuramakrishnan Venkitasubramaniam and anony-
nous reviewers for their insightful discussions.

REFERENCES
[1] FitBit Inc., “flex: Wireless activity + sleep wristband,” accessed

April 2015. [Online]. Available: https://www.fitbit.com/flex
[2] Apple Inc., “Apple watch,” accessed April 2015. [Online].

Available: https://www.apple.com/watch/
[3] S. X. et al., “Soft microfluidic assemblies of sensors, circuits, and

radios for the skin,” Science, vol. 344, pp. 70–74, 2014.
[4] D. Kim, R. Ghaffari, N. Lu, and J. A. Rogers, “Flexible and

stretchable electronics for biointegrated devices,” Annual Review
of Biomedical Engineering, pp. 113–128, 2012.

[5] A. Schneider, “Tech makeover: The days of tech being a mere
practical application of science are over. fashionistas, take note :
Sartorial has turned cyber,” In New York, pp. 26–31, June 2015.

[6] A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable
sensor-based systems for health monitoring and prognosis,”
IEEE Trans. Sys., Man, and Cybernetics, Part C: Applic. and Reviews,
vol. 40, no. 1, pp. 1–12, Jan 2010.

[7] A. Page, O. Kocabas, T. Soyata, M. K. Aktas, and J. Couderc,
“Cloud-Based Privacy-Preserving Remote ECG Monitoring and
Surveillance,” Annals of Noninvasive Electrocardiology (ANEC),
vol. 20, no. 4, pp. 328–337, 2014.

[8] M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. K. Aktas,
G. Mateos, B. Kantarci, and S. Andreescu, “Health Monitoring
and Management Using Internet-of-Things (IoT) Sensing with
Cloud-based Processing: Opportunities and Challenges,” in IEEE
Int. Conference on Services Computing, Jun 2015, pp. 285–292.

[9] Care Cloud, http://www.carecloud.com/, 2013.
[10] Dr Chrono, https://drchrono.com/, 2013.
[11] “Amazon Web Services,” http://aws.amazon.com.
[12] “Google Cloud Platform,” https://cloud.google.com/.
[13] “Microsoft Windows Azure,” http://www.microsoft.com/

windowazure.
[14] A. Benharref and M. A. Serhani, “Novel cloud and SOA-based

framework for E-Health monitoring using wireless biosensors,”
IEEE Journal of Biomed. and Health Inf., vol. 18, no. 1, pp. 46–55,
Jan 2014.

[15] S. Babu, M. Chandini, P. Lavanya, K. Ganapathy, and V. Vaidehi,
“Cloud-enabled remote health monitoring system,” in Int. Conf.
on Recent Trends in Inform. Tech. (ICRTIT), July 2013, pp. 702–707.

[16] C. O. Rolim, F. L. Koch, C. B. Westphall, J. Werner, A. Fracalossi,
and G. S. Salvador, “A cloud computing solution for patient’s
data collection in health care institutions,” in Int. Conf. on eHealth,
Telemedicine, and Social Medicine, Feb 2010, pp. 95–99.

[17] T. Soyata, R. Muraleedharan, S. Ames, J. H. Langdon, C. Funai,
M. Kwon, and W. B. Heinzelman, “COMBAT: mobile Cloud-
based cOmpute/coMmunications infrastructure for BATtlefield
applications,” in Proceedings of SPIE, May 2012, pp. 84 030K–
84 030K.

[18] W. Zhao, C. Wang, and Y. Nakahira, “Medical application on
internet of things,” in IET Int. Conf. on Com. Tech. and Application
(ICCTA 2011), Oct 2011, pp. 660–665.

[19] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and
W. Heinzelman, “Cloud-Vision: Real-Time Face Recognition Us-
ing a Mobile-Cloudlet-Cloud Acceleration Architecture,” in IEEE
Symposium on Computers and Communications, Jul 2012, pp. 59–66.

[20] N. Powers, A. Alling, K. Osolinsky, T. Soyata, M. Zhu, H. Wang,
H. Ba, W. Heinzelman, J. Shi, and M. Kwon, “The cloudlet
accelerator: Bringing mobile-cloud face recognition into real-
time,” in Globecom Workshops (GC Wkshps), Dec 2015.

[21] G. Nalinipriya and K. R. Aswin, “Extensive medical data storage
with prominent symmetric algorithms on cloud - a protected
framework,” in IEEE Int. Conf. on Smart Structures and Systems
(ICSSS), March 2013, pp. 171–177.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

15

[22] A. F. Hani, I. V. Paputungan, M. F. Hassan, V. S. Asirvadam, and
M. Daharus, “Development of private cloud storage for medical
image research data,” in Int. Conf. on Computer and Inf. Sciences
(ICCOINS), June 2014, pp. 1–6.

[23] Y. Mao, Y. Chen, G. Hackmann, M. Chen, C. Lu, M. Kollef,
and T. C. Bailey, “Medical data mining for early deterioration
warning in general hospital wards,” in IEEE 11th Int. Conf. on
Data Mining Workshops (ICDMW), Dec 2011, pp. 1042–1049.

[24] O. Kocabas and T. Soyata, “Medical data analytics in the cloud
using homomorphic encryption,” in Handbook of Research on
Cloud Infrastructures for Big Data Analytics, P. R. Chelliah and
G. Deka, Eds. IGI Global, Mar 2014, ch. 19, pp. 471–488.

[25] B. Rao, “The role of medical data analytics in reducing health
fraud and improving clinical and financial outcomes,” in
Computer-Based Medical Systems (CBMS), 2013 IEEE 26th Inter-
national Symposium on, June 2013, pp. 3–3.

[26] G. Barbash and S. Glied, “New technology and health care
coststhe case of robot-assisted surgery,” New England Journal of
Medicine, vol. 363, no. 8, pp. 701–704, 2010.

[27] A. Page, M. K. Aktas, T. Soyata, W. Zareba, and J. Couderc,
“QT Clock to Improve Detection of QT Prolongation in Long
QT Syndrome Patients,” Heart Rhythm, vol. 13, no. 1, pp. 190–
198, Jan 2016.

[28] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2004.

[29] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” Par-
allel and Distributed Systems, IEEE Transactions on, vol. 25, no. 1,
pp. 222–233, 2014.

[30] D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. J. Wu, “Private
database queries using somewhat homomorphic encryption,” in
Applied Cryptography and Network Security, 2013, pp. 102–118.

[31] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh,
and N. Taft, “Privacy-preserving ridge regression on hundreds
of millions of records,” in Security and Privacy (SP), 2013 IEEE
Symposium on, 2013, pp. 334–348.

[32] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in
CRYPTO, 2010, pp. 465–482.

[33] D. Boneh and D. M. Freeman, “Homomorphic signatures for
polynomial functions,” in EUROCRYPT, 2011, pp. 149–168.

[34] S. Dziembowski and K. Pietrzak, “Leakage-resilient cryptogra-
phy,” in Foundations of Computer Science, 2008. FOCS’08. IEEE
49th Annual IEEE Symposium on, 2008, pp. 293–302.

[35] Y. Zhou and D. Feng, “Side-channel attacks: Ten years after its
publication and the impacts on cryptographic module security
testing.” IACR Cryptology ePrint Archive, vol. 2005, p. 388, 2005.

[36] P. C. Kocher, “Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems,” in Advances in Cryptol-
ogyCRYPTO96, 1996, pp. 104–113.

[37] P. L. Montgomery, “Speeding the pollard and elliptic curve
methods of factorization,” Mathematics of computation, vol. 48,
no. 177, pp. 243–264, 1987.

[38] J. López and R. Dahab, “Fast multiplication on elliptic curves
over GF(2m) without precomputation,” in Cryptographic Hard-
ware and Embedded Systems, 1999, pp. 316–327.

[39] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in CryptologyCRYPTO99, 1999, pp. 388–397.

[40] T. S. Messerges, “Securing the aes finalists against power analysis
attacks,” in Fast Software Encryption, 2001, pp. 150–164.

[41] J.-S. Coron, “Resistance against differential power analysis for
elliptic curve cryptosystems,” in Cryptographic Hardware and
Embedded Systems, 1999, pp. 292–302.

[42] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults,” in EUROCRYPT,
1997, pp. 37–51.

[43] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security
analysis of concurrent error detection against differential fault
analysis,” Journal of Cryptographic Engineering, pp. 1–17, 2014.

[44] R. Karri, K. Wu, P. Mishra, and Y. Kim, “Fault-based side-
channel cryptanalysis tolerant rijndael symmetric block cipher
architecture,” in IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems., 2001, pp. 427–435.

[45] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “Error
analysis and detection procedures for a hardware implementa-
tion of the advanced encryption standard,” IEEE Transactions on
Computers, vol. 52, no. 4, pp. 492–505, 2003.

[46] I. Biehl, B. Meyer, and V. Müller, “Differential fault attacks on
elliptic curve cryptosystems,” in CRYPTO, 2000, pp. 131–146.

[47] M. Mozaffari-Kermani, R. Azarderakhsh, and A. Aghaie, “Re-
liable and error detection architectures of pomaranch for false-
alarm-sensitive cryptographic applications,” IEEE Transactions on
VLSI Systems, vol. 23, no. 12, pp. 2804–2812, Dec 2015.

[48] S. Bayat-Sarmadi, M. Mozaffari-Kermani, and A. Reyhani-
Masoleh, “Efficient and concurrent reliable realization of the se-
cure cryptographic sha-3 algorithm,” IEEE Transactions on CAD,
vol. 33, no. 7, pp. 1105–1109, 2014.

[49] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.
[50] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and

countermeasures: the case of aes,” in Topics in Cryptology–CT-
RSA 2006, 2006, pp. 1–20.

[51] National Institute of Standards and Technology, “Advanced
encryption standard (AES),” November 2001, fIPS-197.

[52] S. Gueron, “Intels new aes instructions for enhanced perfor-
mance and security,” in Fast Software Encryption, 2009, pp. 51–66.

[53] B. B. Brumley and R. M. Hakala, “Cache-timing template at-
tacks,” in ASIACRYPT, 2009, pp. 667–684.

[54] US Department of Health and Human Services, “Health Insur-
ance Portability and Accountability Act,” http://www.hhs.gov/
ocr/privacy/.

[55] T. Soyata, L. Copeland, and W. Heinzelman, “RF Energy Har-
vesting for Embedded Systems: A Survey of Tradeoffs and
Methodology,” IEEE Circuits and Systems Magazine, p. to appear,
2016.

[56] W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE Trans. Inf. Theor., vol. 22, no. 6, pp. 644–654, 2006.

[57] C. Poon, Y. Zhang, and S. Bao, “A novel biometrics method to
secure wireless body area sensor networks for telemedicine and
m-health,” IEEE Communications Magazine, vol. 44, no. 4, pp. 73–
81, 2006.

[58] K. K. Venkatasubramanian, A. Banerjee, and S. Gupta, “Pska: us-
able and secure key agreement scheme for body area networks,”
IEEE Transactions on Information Technology in Biomedicine, vol. 14,
no. 1, pp. 60–68, 2010.

[59] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
EUROCRYPT, 2005, pp. 457–473.

[60] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
Proceedings of the 13th ACM conference on Computer and communi-
cations security, 2006, pp. 89–98.

[61] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in IEEE Symposium on Security and
Privacy, 2007. SP’07, 2007, pp. 321–334.

[62] D. F. Ferraiolo and D. R. Kuhn, “Role-based access controls,”
arXiv preprint arXiv:0903.2171, 2009.

[63] M. Li, W. Lou, and K. Ren, “Data security and privacy in wireless
body area networks,” IEEE Wireless Communications, vol. 17,
no. 1, pp. 51–58, 2010.

[64] A. Page, T. Soyata, J. Couderc, M. Aktas, B. Kantarci, and
S. Andreescu, “Visualization of health monitoring data acquired
from distributed sensors for multiple patients,” in IEEE Global
Telecommunications Conference (GLOBECOM), Dec 2015.

[65] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
ser. STOC, 2009, pp. 169–178.

[66] O. Kocabas, T. Soyata, J. Couderc, M. K. Aktas, J. Xia, and
M. Huang, “Assessment of cloud-based health monitoring us-
ing homomorphic encryption,” in Proceedings of the 31st IEEE
International Conference on Computer Design (ICCD), Ashville, VA,
USA, Oct 2013, pp. 443–446.

[67] O. Kocabas and T. Soyata, “Utilizing homomorphic encryption
to implement secure and private medical cloud computing,” in
IEEE 8th International Conference on Cloud Computing, June 2015,
pp. 540–547.

[68] D. McGrew and J. Viega, “The galois/counter mode of
operation (GCM),” Submission to NIST. http://csrc. nist.
gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec. pdf, 2004.

[69] A. A. Group, “Armv8 instruction set overview,” 2011.
[70] S. Morioka and A. Satoh, “An optimized S-Box circuit architec-

ture for low power AES design,” in Cryptographic Hardware and
Embedded Systems-CHES 2002. Springer, 2003, pp. 172–186.

[71] D. Canright, A very compact S-box for AES. Springer, 2005.
[72] Y. Nogami, K. Nekado, T. Toyota, N. Hongo, and Y. Morikawa,

“Mixed bases for efficient inversion in F ((22)2)2 and conversion

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520933, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

16

matrices of subbytes of AES,” in Cryptographic Hardware and
Embedded Systems. Springer, 2010, pp. 234–247.

[73] X. Zhang and K. K. Parhi, “On the optimum constructions of
composite field for the aes algorithm,” IEEE Transactions on
Circuits and Systems II, vol. 53, no. 10, pp. 1153–1157, 2006.

[74] A. Satoh, T. Sugawara, and T. Aoki, “High-performance hard-
ware architectures for galois counter mode,” IEEE Transactions
on Computers, vol. 58, no. 7, pp. 917–930, 2009.

[75] S. Gueron and M. E. Kounavis, “Intel R© carry-less multiplication
instruction and its usage for computing the gcm mode,” White
Paper, 2010.

[76] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of com-
putation, vol. 48, no. 177, pp. 203–209, 1987.

[77] V. Miller, “Use of elliptic curves in cryptography,” in Advances
in CryptologyCRYPTO85 Proceedings, 1986, pp. 417–426.

[78] J. M. Pollard, “Monte carlo methods for index computation,”
Mathematics of computation, vol. 32, no. 143, pp. 918–924, 1978.

[79] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic
curve cryptography. Springer Science & Business Media, 2006.

[80] V. G. Martı́nez, E. L. Hernández, A. C. Sánchez et al., “A survey
of the elliptic curve integrated encryption scheme,” 2010.

[81] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtain-
ing digital signatures and public-key cryptosystems,” Commun.
ACM, vol. 21, no. 2, pp. 120–126, 1978.

[82] X. Yao, Z. Chen, and Y. Tian, “A lightweight attribute-based
encryption scheme for the internet of things,” Future Generation
Computer Systems, vol. 49, pp. 104–112, 2015.

[83] O. Kocabas and T. Soyata, “Towards privacy-preserving medical
cloud computing using homomorphic encryption,” in Enabling
Real-Time Mobile Cloud Computing through Emerging Technologies,
T. Soyata, Ed. IGI Global, 2015, ch. 7, pp. 213–246.

[84] S. Goldwasser and S. Micali, “Probabilistic encryption & how
to play mental poker keeping secret all partial formation,” ser.
STOC, 1982, pp. 365–377.

[85] T. El Gamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” in Advances in cryptology, 1985, pp.
10–18.

[86] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” ser. EUROCRYPT, 1999, pp. 223–238.

[87] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-dnf formulas
on ciphertexts,” in Conference on Theory of Cryptography, 2005,
pp. 325–341.

[88] O. Kocabas, R. Gyampoh-Vidogah, and T. Soyata, “Operational
cost of running real-time mobile cloud applications,” in Enabling
Real-Time Mobile Cloud Computing through Emerging Technologies,
T. Soyata, Ed. IGI Global, 2015, ch. 10, pp. 294–321.

[89] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping,” in ITCS, 2012,
pp. 309–325.

[90] R. L. Lagendijk, Z. Erkin, and M. Barni, “Encrypted signal
processing for privacy protection: Conveying the utility of homo-
morphic encryption and multiparty computation,” IEEE Signal
Processing Magazine, vol. 30, no. 1, pp. 82–105, 2013.

[91] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in EUROCRYPT,
2010, pp. 24–43.

[92] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic en-
cryption from Ring-LWE and security for key dependent mes-
sages,” in CRYPTO, vol. 6841, 2011, p. 501.

[93] ——, “Efficient fully homomorphic encryption from (standard)
LWE,” in FOCS, 2011, pp. 97–106.

[94] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption
with relatively small key and ciphertext sizes,” in PKC, 2010, pp.
420–443.

[95] A. Page, O. Kocabas, S. Ames, M. Venkitasubramaniam, and
T. Soyata, “Cloud-based secure health monitoring: Optimizing
fully-homomorphic encryption for streaming algorithms,” in
Globecom Workshops (GC Wkshps), Dec 2014, pp. 48–52.

[96] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD op-
erations,” Manuscript at http://eprint.iacr.org/2011/133, 2011.

[97] H. C. Bazett, “An analysis of the time-relations of electrocardio-
grams.” Annals of Noninvasive Electrocardiology, vol. 2, no. 2, pp.
177–194, 1997.

[98] J. E. Savage, Models of Computation: Exploring the Power of Com-
puting, 1st ed., 1997.

[99] P. M. Kogge and H. S. Stone, “A parallel algorithm for the
efficient solution of a general class of recurrence equations,” IEEE
Trans. Comput., vol. 22, no. 8, pp. 786–793, 1973.

[100] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan,
M. Green, and A. D. Rubin, “Charm: a framework for rapidly
prototyping cryptosystems,” Journal of Cryptographic Engineering,
vol. 3, no. 2, pp. 111–128, 2013.

[101] S. Halevi and V. Shoup, https://github.com/shaih/HElib.
[102] J. Couderc, “The telemetric and holter ECG warehouse initiative

(THEW): A data repository for the design, implementation and
validation of ECG-related technologies,” in EMBC. IEEE, 2010,
pp. 6252–6255.

[103] A. Page, T. Soyata, J. Couderc, and M. K. Aktas, “An Open
Source ECG Clock Generator for Visualization of Long-Term
Cardiac Monitoring Data,” IEEE Access, vol. 3, pp. 2704–2714,
Dec 2015.

[104] E. Barker and A. Roginsky, “Transitions: Recommendation for
transitioning the use of cryptographic algorithms and key
lengths,” NIST Special Publication, vol. 800, p. 131A, 2011.

[105] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation
of the AES circuit,” in CRYPTO, 2012, pp. 850–867.

Ovunc Kocabas received his B.S. degree in Microelectronics Engi-
neering from Sabanci University, Istanbul, Turkey in 2006, and his M.S.
degree in Electrical and Computer Engineering from Rice University,
Houston, TX in 2011. He defended his Ph.D. at University of Rochester,
ECE on Dec 15, 2015. His research interests include secure cloud
computing, computer security, system design, and high performance
computer architecture design. He published six conference papers and
one book chapter to date in his research areas.

Tolga Soyata received his B.S. degree in Elec-
trical and Communications Engineering from Is-
tanbul Technical University in 1988, M.S. degree
in Electrical and Computer Engineering from
Johns Hopkins University in 1992, and Ph.D. in
Electrical and Computer Engineering from Uni-
versity of Rochester in 1999. He joined the Uni-
versity of Rochester ECE Department in 2008,
where he is currently an Assistant Professor -
Research. He manages the CUDA Research
Center and CUDA Teaching Center programs for

the University of Rochester, and Xilinx University Program and MOSIS
Educational Program for the ECE Department. He teaches courses
in VLSI ASIC Design, GPU Parallel Programming, and FPGA-based
Advanced Digital Design. His current research interests include Cyber
Physical Systems and many aspects of Digital Health (D-Health).

Mehmet K. Aktas grew up in Rochester, New
York. He received his BA degree in Biology from
the University of Rochester in 2002 and com-
pleted his medical school education at SUNY
Upstate Medical University. He completed Inter-
nal Medicine residency training at the Cleveland
Clinic and then proceeded to the University of
Rochester Medical Center (URMC) where he
completed advanced fellowships in Cardiovas-
cular Diseases and Cardiac Pacing and Elec-
trophysiology. He holds an MBA degree from

the University of Rochester’s Simon School. He is on the faculty at
URMC as an Associate Professor of Medicine. He is board certified
in Internal Medicine, Cardiovascular Diseases and Cardiac Pacing and
Electrophysiology. His clinical work involves the treatment of patients
with a variety of complex heart rhythm disorders. His research is focused
on improved risk stratification of patients with heart rhythm disorders and
development of systems to enable early detection of arrhythmias.

