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Abstract 

Nowadays’ most of the software products are developed by using existing versions or features in order to reduce the 
delivery time of software product, to improve the productivity and quality and to reduce the development effort. 
Software reuse has been a solution factor to acquire the existing knowledge from software repository. To extract 
existing knowledge from software repository data mining can be used. Data mining is the process of extracting 
useful patterns and analyzing enormous data sets from large data. This paper gives the description of software reuse 
process, knowledge discovery process and software metrics for object oriented programming language are identified. 
Software metrics are used as quantitative measure to determine, assess, evaluating the software components. 
Mapping is done, for different data mining techniques which can be used for software reusability process using 
different software metrics. We have prepared 167 instances data sets from open source projects.  Data mining 
techniques is used for evaluating the software components. There is gap between the need of useful data from 
software repository to software project management practices. To bridge this gap we are applying data mining 
techniques efficiently and effectively to extract useful knowledge from software repository using different software 
metrics. Finally, this knowledge can be used by project managers for better management of the software projects. 
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1. Introduction 

Software reuse is becoming a key factor in reducing the development time and effort in the software 
development process and also to improve the software quality and productivity. New horizons are opened 
since the idea of using the existing knowledge for software reuse appeared in 1968 [1]. The main idea 
behind the software reuse is domain engineering (aka product line engineering). Reusability is the degree 
to which a thing can be reused [2]. Software  reusability  represents  the  ability  to  use  part  or  the 
whole system  in other systems [3,4] which are  related  to  the packaging  and  scope  of  the  functions  
that  programs  perform [5]. According to [6], the US department of defense alone could save 300 million 
$ annually by increasing its level of reuse as little as 1%. Moreover, software reusability aimed to 
improve productivity, maintainability, portability and therefore the overall quality of the end product [7]. 
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Figure 1: Software Reuse Process 

Ramamoorthy et. al.[8] mentions that the reusability is not limited to the source code, but it has to include 
the requirements, design, documents, and test cases besides the source code. New technologies and 
techniques are required to reuse the existing knowledge from software historical data such as code bases, 
execution traces, historical code changes, contains a wealth of information about a software project’s 
status, progress, and evolution. Basically software reuse process consists of four steps such as identifying 
the software components, understanding the context, applying software reuse techniques, integration and 
evaluating. The software reuse process and description of each step is shown in Figure 1. Nowadays 
different data mining techniques are used in project management to extract useful data from software 
historical data. Data mining is the process of extracting patterns from data. Data mining, or  knowledge  
discovery,  is  the computer-assisted  process  of  digging  through  and  analyzing  enormous  sets  of  
data  and  then extracting the meaning of the data. A Typical knowledge discovery process (KDP) is 
shown in Figure 2. KDP may consist of the following steps: data selection, data cleaning, data 
transformation, pattern searching (data mining), and finding presentation, finding interpretation and 
evaluation. Data collection phase is to extract the data relevant to data mining analysis. The data should 
be stored in a database where data analysis will be applied. 

Figure.2: Knowledge Discovery Process 

Data cleaning and preprocessing and data transformation phase of KDP involves data cleansing  and  
preparation  of  data,  converting  the  data  suitable  for  processing  and  obtaining  valid results  to  
achieve  the  desired  results. Activity monitoring module deals with real time information. The purpose 
of data mining (DM) phase is to analyze the data using appropriate algorithms to discover meaningful 
patterns and rules to produce predictive models. Data mining is the most important phase of KDP cycle. 
After building data warehouse data mining algorithms such as clustering, classification, artificial neural 
networks, rule association, decision tree and classification and regression trees (CART) or chi-square 
automatic induction (CHAID) are applied. Interpretation and evaluation of results is the final phase 
involves making useful decisions by interpreting and evaluating results obtained from applying 
knowledge discovery techniques. A key element in the success of software reuse is the ability to predict 
needed variabilities in future assets. Research is needed to identify and validate measures of reusability, 
including good ways to estimate the number of potential reuses. Data  mining  is  becoming  an  
increasingly important  tool  to  transform  this data  into  information.   
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This paper consist of five sections: Section 2 gives detailed survey of different knowledge discovery 
techniques applied to various aspects of the software reuse activities. In Section 3 deals with application 
of data mining techniques to software reuse. Section 4 gives the conclusion.

2. Related Works 

Several research works has been carried out on software reuse by many authors. Morisio et. al [9]  has 
identified some of the key factors such as adapting or running a companywide software reuse. Prediction 
of reusability of object oriented software systems using clustering approach have been made by [10]. G. 
Boetticher et.al proposed a neural network approach that could serve as an economical, automatic tool to 
generate reusability ranking of software [11]. Morisio et. al [9] TSE article success and failure factors in 
software reuse sought key factors that predicted for successful software reuse. Tim Menzies et. al [21] has 
identified numerous discrepancies which exist between expert opinion and empirical data reported by 
Morisio et.al.’s in TSE article. Michail [12] have applied association rules, frequent sequence mining and 
clustering techniques to reveal usage patterns of program components from a corpus of existing code 
examples. Numerous work  has  being  done  in  developing  platforms  for machine learning  and  on  
software engineering based on reusable components. Among that well known open-source machine 
learning platforms are WEKA [13], R-project [14] and Rapid Miner [15]. In  [16]  authors  propose  a  
DMTL  (data mining  template  library)  which  consists  of  generic containers  and  algorithms  for  
frequent  pattern  mining.  They show that “the use of generic algorithms is competitive with special 
purpose algorithms”. Murthy, Safavian et. al [17] have done comparison of decision tree design. Large 
number of object-oriented (OO) measures has been proposed in the literature (see for example [18], [19]).  
Basili et. al. show in [20] that most of the metrics proposed by Chidamber and Kemerer in [19] are useful 
for predicting the fault-proneness of classes during the design phase of OO systems. Li and Henry showed 
that the maintenance effort could be predicted with combinations of metrics collected from the source 
code of OO components [20]. Sonia et. al [22] have proposed a framework for evaluating reusability of 
procedure oriented system using metrics based approach.  

3. Methodology 

We have prepared the data sets using Chidamber and Kemerer tool for object oriented programming by 
downloading open source projects from (www.sourceforge.net).   

3.1 Selection of Software Metrics 

There is need for software metrics and models to determine quality, predict, and to measure the 
reusability aspects. [19,24] Software metrics such as Cyclomatic Complexity(CC), Cyclomatic Density 
(CD), LOC Total (LOCT), LOC Executable (LOCE), LOC Comments (LOCC), LOC Code and 
Comments, LOC Blank (LOCB), Number of Lines (NOC), Node Count (NC),  Edge Count (EC), 
Weighted Methods per Class (WMC), Depth of Inheritance Tree (DIT), NOC Number of Children 
(NOC), Coupling between Object Classes (CBO), Response for a Class (RFC), Lack of Cohesion of 
Methods (LCOM1), Method Hiding Factor (MHF), Method Inheritance Factor (MIF), Polymorphism 
Factor (PF), Coupling Factor (CF), Number of interfaces, Class size, Number of classes, etc. are available 
for different programming paradigm such as procedure oriented and object oriented. We have classified 
the software metrics based on procedure and object oriented programming paradigm as shown in Table 1. 
Using this, it would be easy to apply different data mining techniques for software reuse process in 
various aspects.  
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Classification, 
Decision Trees and  
Clustering 

Classification and 
Retrieval 

    

Artificial Neural 
Network 

Predicting
Maintainability

            

Clustering Predicting Reusability          

Hierarchal
Clustering 

Modeling      

K-NN, Neural 
Networks 

Evaluating        

Table 1: Shows the mapping of different data mining techniques used for software reusability activities using different 
software metrics. 

3.2 Data Cleaning and Data Transformation  

We have identified software metrics for procedure and object oriented programming language, which is 
used to measure quality of software components or system. Using this software metrics, we can apply 
data mining techniques to evaluate, predict quality of software components. The following metrics are 
used as input attributes of the software components of the open source projects: 

Weight Method per Class (WMC) 
Depth of Inheritance Tree (DIT) 
Number of Childers (NOC) 
Coupling Between Classes (CBO) 

Response for Class (RFC) 
Lack of Cohesion Method (LOC) 
Coupling Afferent (CE) 
Number of public method (NPM)

We have prepared 167 instances from open source projects from (www.sourceforge.net), for all this 
instances software components are measured using software metrics. Standard deviation and mean are 
calculated as shown in the Table 2. 

 WMC DIT NOC CBO RFC LOC CE NPM 
Min 7 0 0 0 8 3 0 7 
Max 162 65 9 39 768 1213 78 109 
Mean 57.539 14.078 1.198 16.707 254.353 198.647 18.323 58.952 
Std Dev 38.35 9.824 2.582 12.86 164.452 343.393 15.017 28.409 

Table2: Statistics of the Input Attribute of the Data Sets  

For evaluating precision, recall, mean absolute error (MAE), root mean-squared error (RMSE) is 
calculated. Precision for a class is the number of true positives (TP) (i.e. the number of items correctly 
labeled as belonging to the positive class) divided by the total number of elements labeled as belonging to 
the positive class [23]. The precision equation is:

/( )precision TP TP FP --------------------------------------------- (1) 

Recall in this perspective is defined as the number of true positives divided by the total number of 
elements that actually belong to the positive class (i.e. the sum of true positives and false negatives (FN), 
which are items which were not labeled as belonging to the positive class but should have been) [23]. The 
recall can be calculated as follows: 

Re /( )call TP TP FN ----------------------------------------- (2)

Mean  absolute  error,  MAE  is  the  average  of  the  difference between  predicted  and  actual  value  in  
all  test  cases;  it  is  the average  prediction  error.  The formula for calculating MAE is given in equation 
shown below: 

2 2 2
1 1 2 2( ) ( ) ...... ( )n na c a c a c

MAE
n

--------------- (3)

Assuming that the actual output is a, expected output is c  
RMSE is frequently used measure of differences between values predicted by a model or estimator and 
the values actually observed from the thing being modeled or estimated.  Root of the mean square error as 
shown in equation given below: 

2 2 2
1 1 2 2( ) ( ) ...... ( )n na c a c a c

RM SE
n

------ (4)
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3.3. Applying data mining Techniques  

Using REP tree, J48 pruned tree and by setting the test mode to 10-fold validation, we have applied the 
classification for input attributes and the results are shown in Figure 3 and Figure 4. Using WEKA 3.6 
visualize classifier graph has been plot shown in Figure 5. 
ResponseForClass < 206 
|   LackofCohesionMethod < 126 
|   |   DepthofInheritanceTree < 8 
|   |   |   CouplingBetweenClasses < 1 
|   |   |   |   ResponseForClass < 93 
|   |   |   |   |   DepthofInheritanceTree < 1.5 : 12 (3/0) [1/0] 
|   |   |   |   |   DepthofInheritanceTree >= 1.5 : 7 (2/0) [1/0] 
|   |   |   |   ResponseForClass >= 93 : 16 (9/0) [8/0] 
|   |   |   CouplingBetweenClasses >= 1 : 22.24 (12/0.58) [9/1.14] 
|   |   DepthofInheritanceTree >= 8 : 33.21 (8/0.19) [6/0.15] 
|   LackofCohesionMethod >= 126 
|   |   DepthofInheritanceTree < 17 : 53.56 (7/0.49) [2/1.51] 
|   |   DepthofInheritanceTree >= 17 : 50 (7/0) [4/0] 
ResponseForClass >= 206 
|   CouplingBetweenClasses < 36.5 
|   |   DepthofInheritanceTree < 23.5 
|   |   |   ResponseForClass < 365 
|   |   |   |   Numberofpublicmethod < 67 

|   |   |   |   |   CouplingBetweenClasses < 26 
|   |   |   |   |   |   DepthofInheritanceTree < 16.5 : 62 (6/0) [3/0] 
|   |   |   |   |   |   DepthofInheritanceTree >= 16.5 : 67.22 (7/0.12)  
|   |   |   |   |   CouplingBetweenClasses >= 26 : 54 (2/0) [1/0] 
|   |   |   |   Numberofpublicmethod >= 67 
|   |   |   |   |   ResponseForClass < 332.5 
|   |   |   |   |   |   DepthofInheritanceTree < 19 : 91 (9/0) [0/0] 
|   |   |   |   |   |   DepthofInheritanceTree >= 19 : 84 (9/0) [3/0] 
|   |   |   |   |   ResponseForClass >= 332.5 
|   |   |   |   |   |   DepthofInheritanceTree < 17 : 62 (3/0) [0/0] 
|   |   |   |   |   |   DepthofInheritanceTree >= 17 : 72 (5/0) [5/0] 
|   |   |   ResponseForClass >= 365 
|   |   |   |   DepthofInheritanceTree < 19.5 : 43 (4/0) [3/0] 
|   |   |   |   DepthofInheritanceTree >= 19.5 : 30 (3/0) [2/0] 
|   |   DepthofInheritanceTree >= 23.5 
|   |   |   ResponseForClass < 664.5 : 96 (3/0) [1/0] 
|   |   |   ResponseForClass >= 664.5 : 113 (5/7.84) [2/16.66] 
|   CouplingBetweenClasses >= 36.5 : 162 (7/0) [3/0]

Figure 3: REP Tree of Input Attributes.  

Figure 4: J48 pruned tree 

      
  (a)       (b) 

   Figure 5 (a) Visualization of WMC (X-axis) vs NPM (Y-axis) (b) Visualization of DIT (X-axis) vs RFC (Y-axis). 

Results are obtained from WEKA tool, version 3.6, as shown in Table 3. With 10-fold cross validation, 
coupling between classes (cluster 0) and coupling afferent class (cluster 1) precision, recall, TP rate and 
FP rate is calculated using equation 1and 2. MAE and RMSE is calculated from equation 3 and 4 and 
obtained 0.0526, 0.2294 respectively.  

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class 
0.964 0.069 0.931 0.964 0.947 0.948 cluster0 
0.931 0.036 0.964 0.931 0.947 0.948 cluster1 

Weighted Avg. 0.947      0.052      0.948      0.947      0.947      0.948  

Table3. Detailed accuracy by class  
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4. Conclusions

Software reuse has become the solutions to reduce development time, improve productivity and quality. 
Data mining techniques can be effectively used in software reuse process. The main contributions for this 
paper are as follows: 

Identified the need of software reuse in software development practices. 
Mapping of different data mining techniques which can be used for software reuse process using 
different software metrics. 
Prepared data sets from open source projects, i.e.,167 instances are identified 
Applied data mining techniques such as classification, clustering and visualizing for evaluating software 
reusable components. 

These yield a better understanding and evaluating of software reuse components. For object oriented 
programming language C&K tool can be used to construct the software metrics such as WMC, DIT, 
NOC, CBO, RFC, LOC, CE and NPM. Using REP and J48 pruned tree is constructed, to classify the 
software reusable components. For more accuracy precision, recall, MAE and RMSE is calculated.   
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