
 Procedia Technology 4 (2012) 384 – 389

2212-0173 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.protcy.2012.05.059

C3IT-2012

Application of Data Mining Techniques for Software Reuse
Process

B V Ajay Prakasha, D V Ashokaa, V N Manjunath Aradhyab

a.Department of Information Sceience and Engineering, S J B I T, Bangalore,Karnataka, India
bDepartment of Information Science and Engineering, DSCE, Bangalore, Karnataka, India

Abstract

Nowadays’ most of the software products are developed by using existing versions or features in order to reduce the
delivery time of software product, to improve the productivity and quality and to reduce the development effort.
Software reuse has been a solution factor to acquire the existing knowledge from software repository. To extract
existing knowledge from software repository data mining can be used. Data mining is the process of extracting
useful patterns and analyzing enormous data sets from large data. This paper gives the description of software reuse
process, knowledge discovery process and software metrics for object oriented programming language are identified.
Software metrics are used as quantitative measure to determine, assess, evaluating the software components.
Mapping is done, for different data mining techniques which can be used for software reusability process using
different software metrics. We have prepared 167 instances data sets from open source projects. Data mining
techniques is used for evaluating the software components. There is gap between the need of useful data from
software repository to software project management practices. To bridge this gap we are applying data mining
techniques efficiently and effectively to extract useful knowledge from software repository using different software
metrics. Finally, this knowledge can be used by project managers for better management of the software projects.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of C3IT

Keywords: Software reuse, Software Metrics, Decision Tress, Clustering and Classification

1. Introduction

Software reuse is becoming a key factor in reducing the development time and effort in the software
development process and also to improve the software quality and productivity. New horizons are opened
since the idea of using the existing knowledge for software reuse appeared in 1968 [1]. The main idea
behind the software reuse is domain engineering (aka product line engineering). Reusability is the degree
to which a thing can be reused [2]. Software reusability represents the ability to use part or the
whole system in other systems [3,4] which are related to the packaging and scope of the functions
that programs perform [5]. According to [6], the US department of defense alone could save 300 million
$ annually by increasing its level of reuse as little as 1%. Moreover, software reusability aimed to
improve productivity, maintainability, portability and therefore the overall quality of the end product [7].

Available online at www.sciencedirect.com

385 B V Ajay Prakash et al. / Procedia Technology 4 (2012) 384 – 389

Figure 1: Software Reuse Process

Ramamoorthy et. al.[8] mentions that the reusability is not limited to the source code, but it has to include
the requirements, design, documents, and test cases besides the source code. New technologies and
techniques are required to reuse the existing knowledge from software historical data such as code bases,
execution traces, historical code changes, contains a wealth of information about a software project’s
status, progress, and evolution. Basically software reuse process consists of four steps such as identifying
the software components, understanding the context, applying software reuse techniques, integration and
evaluating. The software reuse process and description of each step is shown in Figure 1. Nowadays
different data mining techniques are used in project management to extract useful data from software
historical data. Data mining is the process of extracting patterns from data. Data mining, or knowledge
discovery, is the computer-assisted process of digging through and analyzing enormous sets of
data and then extracting the meaning of the data. A Typical knowledge discovery process (KDP) is
shown in Figure 2. KDP may consist of the following steps: data selection, data cleaning, data
transformation, pattern searching (data mining), and finding presentation, finding interpretation and
evaluation. Data collection phase is to extract the data relevant to data mining analysis. The data should
be stored in a database where data analysis will be applied.

Figure.2: Knowledge Discovery Process

Data cleaning and preprocessing and data transformation phase of KDP involves data cleansing and
preparation of data, converting the data suitable for processing and obtaining valid results to
achieve the desired results. Activity monitoring module deals with real time information. The purpose
of data mining (DM) phase is to analyze the data using appropriate algorithms to discover meaningful
patterns and rules to produce predictive models. Data mining is the most important phase of KDP cycle.
After building data warehouse data mining algorithms such as clustering, classification, artificial neural
networks, rule association, decision tree and classification and regression trees (CART) or chi-square
automatic induction (CHAID) are applied. Interpretation and evaluation of results is the final phase
involves making useful decisions by interpreting and evaluating results obtained from applying
knowledge discovery techniques. A key element in the success of software reuse is the ability to predict
needed variabilities in future assets. Research is needed to identify and validate measures of reusability,
including good ways to estimate the number of potential reuses. Data mining is becoming an
increasingly important tool to transform this data into information.

Searching in Software Repository: Internal Memory: Web Search
Tool, Keywords, Natural Language. External: Searching in Library,

Understanding the internal and external representations of the
program analysing the Design Patterns from existing descriptions and

Write/copy/paste, Code scavenging, Design scavenging, Generator-
B d d A i d f d l

Code Cloning (Black Box), Code Invocation (White Box), COTS

Step1: Identifying

Step2: Understanding the

Step3: Applying Software
Reuse Techniques or

Step4: Integration and
T ti

Selecting Target
Data

Use full
Patterns

Knowledge
Discovery

Data Collection

Data
Transformation

Applying Data Mining
Techniques

Clustering

Classification

Artificial
Neural

Networks

Association
RulesCART

Pre-
processed

Data

Transformed
Data

Data
Cleaning
& pre-

processing

Interpretation

Evaluation
of Results

Activity Monitoring

386 B V Ajay Prakash et al. / Procedia Technology 4 (2012) 384 – 389

This paper consist of five sections: Section 2 gives detailed survey of different knowledge discovery
techniques applied to various aspects of the software reuse activities. In Section 3 deals with application
of data mining techniques to software reuse. Section 4 gives the conclusion.

2. Related Works

Several research works has been carried out on software reuse by many authors. Morisio et. al [9] has
identified some of the key factors such as adapting or running a companywide software reuse. Prediction
of reusability of object oriented software systems using clustering approach have been made by [10]. G.
Boetticher et.al proposed a neural network approach that could serve as an economical, automatic tool to
generate reusability ranking of software [11]. Morisio et. al [9] TSE article success and failure factors in
software reuse sought key factors that predicted for successful software reuse. Tim Menzies et. al [21] has
identified numerous discrepancies which exist between expert opinion and empirical data reported by
Morisio et.al.’s in TSE article. Michail [12] have applied association rules, frequent sequence mining and
clustering techniques to reveal usage patterns of program components from a corpus of existing code
examples. Numerous work has being done in developing platforms for machine learning and on
software engineering based on reusable components. Among that well known open-source machine
learning platforms are WEKA [13], R-project [14] and Rapid Miner [15]. In [16] authors propose a
DMTL (data mining template library) which consists of generic containers and algorithms for
frequent pattern mining. They show that “the use of generic algorithms is competitive with special
purpose algorithms”. Murthy, Safavian et. al [17] have done comparison of decision tree design. Large
number of object-oriented (OO) measures has been proposed in the literature (see for example [18], [19]).
Basili et. al. show in [20] that most of the metrics proposed by Chidamber and Kemerer in [19] are useful
for predicting the fault-proneness of classes during the design phase of OO systems. Li and Henry showed
that the maintenance effort could be predicted with combinations of metrics collected from the source
code of OO components [20]. Sonia et. al [22] have proposed a framework for evaluating reusability of
procedure oriented system using metrics based approach.

3. Methodology

We have prepared the data sets using Chidamber and Kemerer tool for object oriented programming by
downloading open source projects from (www.sourceforge.net).

3.1 Selection of Software Metrics

There is need for software metrics and models to determine quality, predict, and to measure the
reusability aspects. [19,24] Software metrics such as Cyclomatic Complexity(CC), Cyclomatic Density
(CD), LOC Total (LOCT), LOC Executable (LOCE), LOC Comments (LOCC), LOC Code and
Comments, LOC Blank (LOCB), Number of Lines (NOC), Node Count (NC), Edge Count (EC),
Weighted Methods per Class (WMC), Depth of Inheritance Tree (DIT), NOC Number of Children
(NOC), Coupling between Object Classes (CBO), Response for a Class (RFC), Lack of Cohesion of
Methods (LCOM1), Method Hiding Factor (MHF), Method Inheritance Factor (MIF), Polymorphism
Factor (PF), Coupling Factor (CF), Number of interfaces, Class size, Number of classes, etc. are available
for different programming paradigm such as procedure oriented and object oriented. We have classified
the software metrics based on procedure and object oriented programming paradigm as shown in Table 1.
Using this, it would be easy to apply different data mining techniques for software reuse process in
various aspects.

 Software Metric used for Procedure
Oriented Paradigm

Software Metric used for Object
Oriented Paradigm

Knowledge
Discovery or Data
Mining Techniques

Software Reusability
Activities C

C

C
D

L
O

C
T

L
O

C
E

L
O

C
C

L
O

C
B

N
O

C

N
C

E
C

W
M

C

D
IT

N
O

C

C
B

O

R
FC

L
C

O
M

1

T
C

C

M
H

F

M
IF

PF

Neural Networks,
Classification,

Identifying a software
components

Classification Locating and adapting

387 B V Ajay Prakash et al. / Procedia Technology 4 (2012) 384 – 389

Classification,
Decision Trees and
Clustering

Classification and
Retrieval

Artificial Neural
Network

Predicting
Maintainability

Clustering Predicting Reusability

Hierarchal
Clustering

Modeling

K-NN, Neural
Networks

Evaluating

Table 1: Shows the mapping of different data mining techniques used for software reusability activities using different
software metrics.

3.2 Data Cleaning and Data Transformation

We have identified software metrics for procedure and object oriented programming language, which is
used to measure quality of software components or system. Using this software metrics, we can apply
data mining techniques to evaluate, predict quality of software components. The following metrics are
used as input attributes of the software components of the open source projects:

Weight Method per Class (WMC)
Depth of Inheritance Tree (DIT)
Number of Childers (NOC)
Coupling Between Classes (CBO)

Response for Class (RFC)
Lack of Cohesion Method (LOC)
Coupling Afferent (CE)
Number of public method (NPM)

We have prepared 167 instances from open source projects from (www.sourceforge.net), for all this
instances software components are measured using software metrics. Standard deviation and mean are
calculated as shown in the Table 2.

 WMC DIT NOC CBO RFC LOC CE NPM
Min 7 0 0 0 8 3 0 7
Max 162 65 9 39 768 1213 78 109
Mean 57.539 14.078 1.198 16.707 254.353 198.647 18.323 58.952
Std Dev 38.35 9.824 2.582 12.86 164.452 343.393 15.017 28.409

Table2: Statistics of the Input Attribute of the Data Sets

For evaluating precision, recall, mean absolute error (MAE), root mean-squared error (RMSE) is
calculated. Precision for a class is the number of true positives (TP) (i.e. the number of items correctly
labeled as belonging to the positive class) divided by the total number of elements labeled as belonging to
the positive class [23]. The precision equation is:

/()precision TP TP FP --- (1)

Recall in this perspective is defined as the number of true positives divided by the total number of
elements that actually belong to the positive class (i.e. the sum of true positives and false negatives (FN),
which are items which were not labeled as belonging to the positive class but should have been) [23]. The
recall can be calculated as follows:

Re /()call TP TP FN --- (2)

Mean absolute error, MAE is the average of the difference between predicted and actual value in
all test cases; it is the average prediction error. The formula for calculating MAE is given in equation
shown below:

2 2 2
1 1 2 2() () ()n na c a c a c

MAE
n

--------------- (3)

Assuming that the actual output is a, expected output is c
RMSE is frequently used measure of differences between values predicted by a model or estimator and
the values actually observed from the thing being modeled or estimated. Root of the mean square error as
shown in equation given below:

2 2 2
1 1 2 2() () ()n na c a c a c

RM SE
n

------ (4)

388 B V Ajay Prakash et al. / Procedia Technology 4 (2012) 384 – 389

3.3. Applying data mining Techniques

Using REP tree, J48 pruned tree and by setting the test mode to 10-fold validation, we have applied the
classification for input attributes and the results are shown in Figure 3 and Figure 4. Using WEKA 3.6
visualize classifier graph has been plot shown in Figure 5.
ResponseForClass < 206
| LackofCohesionMethod < 126
| | DepthofInheritanceTree < 8
| | | CouplingBetweenClasses < 1
| | | | ResponseForClass < 93
| | | | | DepthofInheritanceTree < 1.5 : 12 (3/0) [1/0]
| | | | | DepthofInheritanceTree >= 1.5 : 7 (2/0) [1/0]
| | | | ResponseForClass >= 93 : 16 (9/0) [8/0]
| | | CouplingBetweenClasses >= 1 : 22.24 (12/0.58) [9/1.14]
| | DepthofInheritanceTree >= 8 : 33.21 (8/0.19) [6/0.15]
| LackofCohesionMethod >= 126
| | DepthofInheritanceTree < 17 : 53.56 (7/0.49) [2/1.51]
| | DepthofInheritanceTree >= 17 : 50 (7/0) [4/0]
ResponseForClass >= 206
| CouplingBetweenClasses < 36.5
| | DepthofInheritanceTree < 23.5
| | | ResponseForClass < 365
| | | | Numberofpublicmethod < 67

| | | | | CouplingBetweenClasses < 26
| | | | | | DepthofInheritanceTree < 16.5 : 62 (6/0) [3/0]
| | | | | | DepthofInheritanceTree >= 16.5 : 67.22 (7/0.12)
| | | | | CouplingBetweenClasses >= 26 : 54 (2/0) [1/0]
| | | | Numberofpublicmethod >= 67
| | | | | ResponseForClass < 332.5
| | | | | | DepthofInheritanceTree < 19 : 91 (9/0) [0/0]
| | | | | | DepthofInheritanceTree >= 19 : 84 (9/0) [3/0]
| | | | | ResponseForClass >= 332.5
| | | | | | DepthofInheritanceTree < 17 : 62 (3/0) [0/0]
| | | | | | DepthofInheritanceTree >= 17 : 72 (5/0) [5/0]
| | | ResponseForClass >= 365
| | | | DepthofInheritanceTree < 19.5 : 43 (4/0) [3/0]
| | | | DepthofInheritanceTree >= 19.5 : 30 (3/0) [2/0]
| | DepthofInheritanceTree >= 23.5
| | | ResponseForClass < 664.5 : 96 (3/0) [1/0]
| | | ResponseForClass >= 664.5 : 113 (5/7.84) [2/16.66]
| CouplingBetweenClasses >= 36.5 : 162 (7/0) [3/0]

Figure 3: REP Tree of Input Attributes.

Figure 4: J48 pruned tree

 (a) (b)

 Figure 5 (a) Visualization of WMC (X-axis) vs NPM (Y-axis) (b) Visualization of DIT (X-axis) vs RFC (Y-axis).

Results are obtained from WEKA tool, version 3.6, as shown in Table 3. With 10-fold cross validation,
coupling between classes (cluster 0) and coupling afferent class (cluster 1) precision, recall, TP rate and
FP rate is calculated using equation 1and 2. MAE and RMSE is calculated from equation 3 and 4 and
obtained 0.0526, 0.2294 respectively.

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.964 0.069 0.931 0.964 0.947 0.948 cluster0
0.931 0.036 0.964 0.931 0.947 0.948 cluster1

Weighted Avg. 0.947 0.052 0.948 0.947 0.947 0.948

Table3. Detailed accuracy by class

389 B V Ajay Prakash et al. / Procedia Technology 4 (2012) 384 – 389

4. Conclusions

Software reuse has become the solutions to reduce development time, improve productivity and quality.
Data mining techniques can be effectively used in software reuse process. The main contributions for this
paper are as follows:

Identified the need of software reuse in software development practices.
Mapping of different data mining techniques which can be used for software reuse process using
different software metrics.
Prepared data sets from open source projects, i.e.,167 instances are identified
Applied data mining techniques such as classification, clustering and visualizing for evaluating software
reusable components.

These yield a better understanding and evaluating of software reuse components. For object oriented
programming language C&K tool can be used to construct the software metrics such as WMC, DIT,
NOC, CBO, RFC, LOC, CE and NPM. Using REP and J48 pruned tree is constructed, to classify the
software reusable components. For more accuracy precision, recall, MAE and RMSE is calculated.

References

1. Gomes. P and Bento. C, "A Case Similarity Metric for Software Reuse and Design," Artif. Intell. Eng. Des. Anal.Manuf., Vol.
15, pp. 21-35, 2001.

2. Frakes.W and C.Terry, Software Reuse: Metrics and Models, ACM Computing Surveys, Vol. 28, No. 2, June 1996
3. Mccall,J.A et. al., "Factors in Software Quality," Griffiths Air Force Base, N.Y. Rome Air Development Center Air Force

Systems Command, 1977.
4. Gill.N.S "Reusability Issues in Component-Based Development," Sigsoft Softw. Eng. Notes, Vol. 28, pp. 4-4, 2003.
5. Gaffney,J.J.E "Metrics in Software Quality Assurance," Presented at the proceedings of the ACM '81 Conference, 1981.
6. Poulin, J. S., 1997. Measuring Software Reuse–Principles, Practices and Economic Models, Addison-Wesley,
7. Sharma.A, et al., "Reusability assessment for software components," Sigsoft Softw. Eng. Notes, Vol. 34, pp. 1-6, 2009.
8. Ramamoorthy C. V., et. al., "Support for Reusability in Genesis," Software Engineering, IEEE Transactions, Vol. 14, pp.1145-

1154, 1988.
9. Morisio, M. Ezran, and C. Tully, “Success and Failure Factors in Software Reuse,” IEEE Transactions on Software Engineering,

Vol. 28, No. 4, pp. 340–357, 2002
10. Anju Shri, Parvinder S. Sandhu, Vikas Gupta, Sanyam Anand, Prediction of Reusability of Object Oriented Software Systems

Using Clustering Approach, World Academy of Science, Engineering and Technology, pp. 853-858, 2010.
11. Boetticher.G and D. Eichmann, “A Neural Network Paradigm for Characterising Reusable Software,” Proceedings of The 1st

Australian Conference on Software Metrics, 18-19 November 1993.
12. Michail.A. Data Mining Library Reuse Patterns Using Generalized Association Rules. In Proc. International Conference on

Software Engineering (ICSE), pp 167–176, 2000.
13. Witten I. and Frank E., Data Mining: Practical Machine Learning Tools And Techniques, 2nd Edition, Morgan Kaufmann, San

Francisco, 2005.
14. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical

Computing, Vienna, Austria, 2008 [http://www.R-Project.Org].
15. Mierswa, I. M. Wurst, R. Klinkenberg, M. Scholz And T. Euler, Yale: Rapid Prototyping For Complex Data Mining

Tasks. in: Proceedings of The 12th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, ACM
Press, 2006, pp. 935-940.

16. Zaki, M.J. Parimi,N. . Gao N. De, F, B. Phophaakdee, J. Urban, V. Chaoji, M. Al Hasan and S Salem, Towards Generic Pattern
Mining, Lecture Notes in Computer Science (2005), 91-97.

17. Murthy S.K., Automatic Construction of Decision Trees from Data: A Multidisciplinary Survey, Data Mining And Knowledge
Discovery 2, 345-389.

18. Briand L. C. , S. Morasca , and V. R. Basili, Defining and Validating Measures for Object-Based High-Level Design, IEEE
Transactions on Software Engineering, Vol. 25, No. 5, 1999, pp. 722-743

19. Chidamber S.R.,. Kemerer. C.F, “A Metrics Suite for Object Oriented Design”, IEEE Transactions on Software Engineering, 20
(6), 476-493, 1994.

20.] Basili V. R., Briand. L. & Melo, W. “How reuse influences productivity in object-oriented systems”. Communications of the
ACM, Vol. 30, N. 10, pp104-114, 1996.

21. Tim Menzies, Justin S. Di Stefano. “More Success and Failure Factors in Software Reuse", IEEE Transactions on Software
Engineering, May 2003

22. Henry W. Li, S., “Object-Oriented Metrics That Predict Maintainability”, Journal of Systems and Software, 23 (2), 111-122,
1993.

23. Sonia Manhas, Rajeev Vashisht, Reeta Bhardwaj “Framework for Evaluating Reusability of Procedure Oriented System using
Metrics based Approach” International Journal of Computer Applications Vol 9, Nov – 2010.

24. www.wikipedia.org/wiki/Precision_and_recall
25. Macabe T. , “A Software Complexity measure”, IEEE Trans. Software Eng., vol. SE-2, December 1976, pp. 308-320.

