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a b s t r a c t

System reliability design optimization models have been developed for systems exposed to changing and
diverse stress and usage conditions. Uncertainty is addressed through defining a future operating en-
vironment where component stresses have shifted or changed for different future usage scenarios. Due
to unplanned variations or changing environments and operating stresses, component and system re-
liability often cannot be predicted or estimated without uncertainty. Component reliability can vary due
to a relative increase/decrease of stresses or operating conditions. The uncertain parameters of stresses
have been incorporated directly into the new decision-making model. Risk analysis perspectives, in-
cluding risk-neutral and risk-averse, are considered as system reliability objective functions. A regret
function is defined, and minimization of the maximum regret provides an objective function based on
random future usage stresses. This is an entirely new formulation of the redundancy allocation problem,
but it is a relevant one for some problem domains. The redundancy allocation problem is solved to select
the best design solution when there are multiple choices of components and system-level constraints.
Nonlinear programming and a neighborhood search heuristic method are recommended to obtain the
integer solutions for risk-based formulations.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

System reliability optimization problems become more realistic
when considering uncertainty from associated stresses, operating
conditions, etc. for different components within a system. With
changing loads and stresses in the foreseeable future, a reliability
model is useful to predict or determine the impact from these
future usage profiles. This new model pertains to applications
where it is known that stresses or operating conditions of the
system will change, but it is not known the extent of the change,
although possible future outcomes can be defined and
enumerated.

Consider a new system design where decisions must be made
regarding the components to be used, i.e., the number of re-
dundant components and the system architecture. The Re-
dundancy Allocation Problem (RAP) is a well-known problem
solved to determine an optimal system configuration. RAP is al-
ready a difficult problem; however, now we consider that available
component reliability is affected by uncertain future stresses and
usage conditions. Design decisions must be made given there are
multiple future usage conditions or profiles that can occur.

Aircraft launcher and recovery systems provide some of the
motivation to model the anticipated future reliability of compo-
nents or systems [1–3]. These systems must operate at a very high
level of reliability yet it is anticipated that the airplanes using
these systems will be getting heavier due to changing mission
types with more required equipment, and also the distribution of
airplanes using these systems will be shifting (heavier airplanes
will conduct more missions). A particular aircraft launcher or re-
covery system is exposed to a random pattern of different airplane
types, with different characteristics (weights, speeds), creating
important and unique reliability issues.

RAP models are presented in this paper where opportunity loss
or a regret minimization approach is proposed to directly ac-
commodate uncertainty within the component and system relia-
bility functions. The model formulations considering uncertainty
provide additional modeling capabilities and have advantages
when compared to traditional reliability models that do not ac-
count for risk and uncertainty. The model is realistic and can be
applied to various industrial problems, as the uncertainty of sys-
tem configurations becomes a significant issue in industry.

www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2016.05.011
http://dx.doi.org/10.1016/j.ress.2016.05.011
http://dx.doi.org/10.1016/j.ress.2016.05.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2016.05.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2016.05.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2016.05.011&domain=pdf
mailto:coit@rci.rutgers.edu
http://dx.doi.org/10.1016/j.ress.2016.05.011


N. Chatwattanasiri et al. / Reliability Engineering and System Safety 154 (2016) 73–8374
1.1. Assumptions
Fig. 1. Series-parallel system with multiple choices of components in each
subsystem.
� Components and systems have two states (fully functional,
failed).

� Failure times of individual components are independent.
� Component failure times follow parametric Weibull

distributions.
� Component failure time distributions change in response to

different stress levels according to lifetime proportional models
(often known as accelerated failure time models).

� Failed components do not inflict any damage on other compo-
nents, and systems are non-repairable.

� All redundancy is active redundancy. Components fail at the
same rate whether they are a primary or redundant component.

� Operating and usage stress profile will undergo a single shift
from the current profile to a different one.

1.2. Notation

R(x;t) system reliability as a function of design vector x at time t
x (x11, x12, x13, …, xsms)
xij number of identical components for a particular choice

jth to be used in subsystem i
s number of subsystems in a series system
mi number of available component selection types or choi-

ces for subsystem i
U random future usage profile vector, U¼(U1, U2, …, Uc ),

U ∈ {u1, u2, …, uv}
Uk stress factor k (a random variable)
c number of different operating usage and stress factors
ul usage profile vector for future usage l, ul¼ (u1l, u2l, …, ucl)
ukl stress factor k in future usage l
pl probability or likelihood of future usage l, l¼1,2,.,v
v number of future usage scenarios
rij(ul;t) reliability for jth component choice to be used in sub-

system i in future usage l
ηij(ul) Weibull scale parameter of jth component choice in

subsystem i for future usage l
η0ij current Weibull scale parameter for jth component

choice to be used in subsystem i
βij Weibull shape parameter of jth component choice in

subsystem i
αijk sensitivity coefficient of stress factor k for the jth com-

ponent choice in subsystem i
W weight constraint
C cost constraint
wij weight of jth component choice in subsystem i
cij cost of jth component choice in subsystem i

1.3. Redundancy Allocation Problem (RAP)

This research is focused on series-parallel systems with s sub-
systems connected in series. Within each subsystem i, there are
potentially redundant components of different choices connected
in parallel as depicted by the example in Fig. 1. All redundancy is
active redundancy. The numbers in the figure represent the par-
ticular component choice j. The number of identical components
for a particular choice is xij, and all the components are connected
in parallel within each subsystem. In the example in Fig. 1, there
are mi¼5 functionally equivalent component choices for each
subsystem, and ni is the sum of all xij in subsystem i. For example,
there are two identical components of choice 1, one component of
choice 2 for subsystem 1 and three total components (x11¼2,
x12¼1, x13¼x14¼x15¼0, n1¼3); two identical components of
choice 3 for subsystem 2 (x23¼2, x21¼x22¼x24¼x25¼0, n2¼2);
and for subsystem 3, x31¼x32¼x33¼0, x34¼3, x35¼1, n3¼4, and so
on. Components for a subsystem are selected by solving the RAP
subject to system-level cost and weight constraints.

System reliability with deterministic component reliability and
active redundancy is ( ) = ∏ ( − ∏ ( − ( )) )= =R t r tx; 1 1i

s
j
m

ij
x

1 1
i ij where

based on the Weibull distribution, ( )η( ) = −( )βr t texp /ij ij ij . The re-
liability models in this paper are all for applications with active
redundancy (or hot standby) and Weibull distributed component
failure times (with constant stress levels). The Weibull distribution
is a widely applied and flexible distribution, so this is not very
restrictive. On the other hand, an important future extension to
these models will be to make them more general and to apply to
cold-standby redundancy and mixed redundancy types.

RAP considering uncertain conditions was studied by Hada
et al. [2,3]. They evaluated the use of stress covariates for changing
stress profiles for aircraft systems. Component-level methods were
used to model stress functions for future reliability predictions. A
general modeling approach for components with changing future
stress levels was presented by Johnson et al. [1].

To compensate for uncertainty in the RAP, risk minimization
can be considered when selecting a system reliability objective
function. This stochastic optimization problem can be transformed
to an equivalent deterministic problem by defining a future usage
stress profile composed of discrete usage or stress scenarios. A
risk-neutral approach is to maximize the expected value of the
uncertain system reliability. However, if the consequences of low
reliability are very dire or undesirable, it may be too risky to use
the expected value as an objective function. Even if it is unlikely,
the worst or most extreme conditions can occur sometimes, and
for some applications, it is important that the system be maxi-
mally reliable even then. In these cases, it may be advantageous to
use an alternative optimization strategy. The system designer can
adopt a minimax regret with robust decision criteria to address
uncertainty over possible usage scenarios. In this approach, a re-
gret function is defined and the objective is to minimize the
maximum regret given the uncertainty.

For RAP with uncertainty, a decision-maker needs to decide
whether they are risk-neutral or risk-averse. The optimal decision
is generally different for the two formulations, although for same
applications they can be very similar. Given many opportunities,
the risk-neutral decision-maker achieves higher system reliability
more often. However, they may occasionally achieve un-
satisfactorily lower reliability. The risk-averse decision-maker is
concerned with the least desirable solutions even if the probability
is low. The risk-averse decision-maker may have marginally lower
reliability more often, but they will more rarely have very poor
reliability.

For decision-making with an uncertain performance criterion,
the ‘regret’ of a decision can be defined as the relative



N. Chatwattanasiri et al. / Reliability Engineering and System Safety 154 (2016) 73–83 75
performance loss when compared with the optimal decision
which would have been made if perfect knowledge was available.
When full knowledge of the underlying model is not available, it is
important to consider uncertainty directly in the decision-making
process.
2. Background

Reliability optimization and RAP has been thoroughly and ex-
tensively studied. System reliability optimization research usually
assumes that the components in the system have reliability values
that are already known, i.e., deterministic. This assumption,
however, is not always appropriate. RAP models have already been
formulated and solved many times with known component re-
liability [4,5]. Ardakan et al. [6] studies RAP when both active and
standby strategies can be used in a specific system. Discount po-
licies have also been included in RAP problems and two ap-
proaches of all unit discount and incremental discount policies
were used [7].

The optimal design of a reliable system with the presence of
uncertainty has also been investigated in previous research. Coit
[8] developed a flexible procedure to approximate confidence in-
tervals for system reliability when there is uncertainty in com-
ponent reliability information. An optimization model considering
risk profiles of system designers and users has also been for-
mulated [9]. This work was further advanced by Coit and Smith
[10] who used a genetic algorithm (GA) to maximize a lower
bound for system failure time [11] when there is uncertainty in the
Weibull distribution parameters. Coit et al. [12] extended this
work by assuming that component and system reliability are
random variables. Multiple objective optimization methods were
then applied to maximize system reliability and to simultaneously
minimize the associated variance. Marseguerra et al. [13] further
investigated optimal network design in the presence of compo-
nent reliability uncertainty by combining Monte Carlo simulation
with multiple objective GA.

Recent research pertaining to RAP considering uncertainty was
performed by Tekiner-Mogulkoc and Coit [14,15]. Integer pro-
gramming combined with a search heuristic was used to select the
optimal system design with uncertain component reliability esti-
mation, with an objective function to minimize the coefficient of
variation (CV). Assuming uncertainty of a failure threshold for the
reliability analysis was extended to a degradation model as well
[16]. RAP was studied in [17] considering uncertainty by con-
sidering cumulative distributions of capacity for a series-parallel
system. Taflanidis et al. [18] implemented a stochastic subset op-
timization algorithm.

Bhunia et al. [19] presented a nonlinear integer programming
problem for maximizing the overall system reliability under
chance constraints. Several other papers proposed the constrained
RAP with interval valued reliability of each component [19–22].
Although several approaches have been proposed for system re-
liability optimization considering uncertainty, these approaches
have not considered uncertain stress directly as it relates to
component and system reliability and risk.

The concept of regret has not used often for system reliability
optimization, but it is a logical approach when considering un-
certainty. Regret analysis has been studied previously for con-
sideration by risk-averse decision-makers. Regret is an emotion
often observed in research of decision-making choices. Savage [23]
defined the term ‘regret’ in Savage's minimax regret criterion as
the difference between the actual pay-off one received for the
decision he made and the optimal pay-off that could have ob-
tained if the best decision was made. Generalization of the regret
approach was developed by Loomes et al[24]. The early regret
studies were presented by Kahneman et al. [25] and Bell [26]. The
retrospective regret was studied by Gilovich et al. [27] and they
proposed a regret model called decision justification theory [25–
28]. Making a poor decision under uncertainty can lead to dis-
appointment when alternative choices would have been prefer-
able. Risk analysis and reliability analysis have been discussed
previously in the literature [29,30].

For system reliability evaluation, Feizollahi et al. [22] proposed
the linear-transformed optimization model with constraints. They
implemented robust deviation called minimax regret to address
uncertainty of component reliability. Feizollahi et al. [31] extended
the constrained redundancy optimization problem such that
component reliabilities belong to a uncertainty set.

In our new model, RAP is extended by relating uncertain stress
variables to component reliability with different system perspec-
tives, including regret or opportunity loss analysis. Future usage
profiles are enumerated and associated optimization models are
formulated and solved. The model presented in this paper is
general and can be applied to a wide range of possible system
design problems where the component reliability is uncertain or
depend on uncertain stress variables.
3. Uncertain stresses in future usages

System reliability predictions or estimates can be inaccurate or
subject to uncertainty due to unplanned variation or changing
operating stresses [32,41]. Future usages of components and sys-
tems include changing operating conditions and stresses, and also
uncertain environments such as average temperature or usage
rates. In general, the stress variables that influence component
reliability can be generally classified as (i) environment, (ii) me-
chanical or electrical stresses, (iii) operating conditions, and (iv)
others. The categorization is not rigid, and some stress variables
could be categorized in different ways or even included in more
than one category. In our model, we collectively refer to them as
“stress factors” or “stress variables.” Stress is defined generally as
any mechanism or influence that affects reliability. Component
reliability is defined as a function of these random stress variables.

The future usage profile is composed of a collection of specified
stresses in discrete scenarios. Component stress/load parameters
are collectively represented as vectors, corresponding to each fu-
ture usage scenario, which define the stress values in different
future usage scenarios. The scenarios are selected to represent the
diversity of the possible future usage variables.

Uncertain future usage stress factors are represented in the
form of a random vector U. The vector U¼(U1, U2,…, Uc) includes c
different operating usage and stress factors and each uncertain
usage factor has a different impact on the choice of components.
Uk is a random variable, which denotes the kth stress factor, e.g.,
usage rate, average temperature, average humidity, voltage, etc.

The future usage profile represents a collection of possible fu-
ture usage conditions that the system may experience with a
certain likelihood or probability. These usage scenarios can often
be enumerated based on the anticipated missions or environments
that the system is anticipated to be operating in or exposed to.
Reliability of each component is a function of the random future
usage vector U.

The future usage vector U is random, but in our model, it will
be one of a defined set of future usage vectors, U∈{u1, u2, …, uv}.
The properties associated with scenario definition are:

� ul is a determined vector of future usage in scenario l, ul ¼ (u1l,
u2l,…,ucl).

� ukl is a determined variable value or level for the kth stress factor
in scenario l.
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Fig. 2. Discrete scenarios in future usage profile.
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� The current operating condition and stress vector is u0 and
assumed to be known.

� The stress variables have all been scaled from 0 to 1 with u0¼0.

In Fig. 2, the possible future usage vectors in the future usage
profile are defined and each specific future usage scenario is as-
sociated with a probability pl. For example, for electronic compo-
nents, average temperature (u1l) is a critical contributor to com-
ponent failure and the risk of component failure increases with
increasing average temperatures. For mechanical components,
mechanical loading (u2l) and stress (u3l) are important factors. In
practice, a future usage stress could be lower than the current
stress level (uklo0), but we have assumed that is not the case. The
future usage profile with assigned likelihoods is used to model the
component and system reliabilities. The failure time of each
component is distributed as a Weibull distribution with a scale
parameter that depends on future usage scenarios.

In our formulation, the usage vector U will change to one of the
future usage scenarios vectors ul, U∈{u1, u2, …, uv}, and then will
remain there. A related problem would be one where the usage
vector changes periodically from one scenario to another at dif-
ferent time intervals. This is a logical extension to the current
paper.

Consider the reliability of large-scale IT installations which
must have high reliability. Several papers [35–37] reported the
failure behavior of a computer drive depends on the system op-
erating conditions. Schroeder et al. [36] studied hard drive cluster
failure rates affected by environmental factors, such as average
temperature and average humidity, data center handling proce-
dures, workloads or powered-on hourly patterns, all of which
could be considered as stress factors, Uk.

The discrete future usage scenarios are defined with certain
probabilities selected from available information to construct the
future usage profile. Each future usage scenario is associated with
a probability pl which defines the likelihood of that particular
scenario. Expert opinions, historical data or surveys are references
that can be used to evaluate the likelihood indexes or probabilities.
In practice, these probabilities may not be available, but estimates
from the best available knowledge can help to explain how stress
contributes to component failure in all probabilistic future
scenarios.

There are v possible discrete scenarios in the future usage
profile. In practice, the number of discrete scenarios can be in-
finity. However, the future usage profile embraces most explain-
able circumstances. v is selected as the minimum number of sce-
narios to fully characterize the variability in data. Summation over
likelihood indexes from all possible scenarios is one, i.e.,
∑ == p 1l

v
l1 .

Scenario definition and selection have been studied extensively
within the financial research community and we borrow and ex-
ploit their findings. The portfolio selection problem originated
from Markowitz [33] takes into account high-order moments in
financial engineering. The problem of scenario selection with
uncertainties has been used in the portfolio selection problem
[34].
4. Reliability models considering uncertainty

This new RAP model is fundamentally different from other
models [11,12] that consider reliability with uncertainty. This new
model is evaluated based on the perspective of stress variation as
it relates to component and system reliability. In addition, system
reliability is expressed directly as a function of uncertain stresses
and then integrated into the optimization models. To predict fu-
ture reliability and estimate the future failure time distribution,
the component and system reliabilities incorporate stress factors
by utilizing accelerated lifetime concepts or proportional lifetime
models, which are analogous to accelerated testing models.

4.1. Component reliability model

Component reliability models have been developed in this
paper based on the Weibull distribution with the random stress
factors and coefficients given in the probabilistic future usage
profile. The Weibull distribution is widely used in component re-
liability analyses and has repeatedly been demonstrated to be an
appropriate model. Nevertheless, other distribution models could
also be applied to component reliability once data analyses pro-
vides relevant information, and our models can readily be ex-
tended to these cases.

A component-specific Weibull distribution is used to model
component failure time, and the distribution shifts in response to
changing usage stress factors. For different levels of component
usage stress, the component failure time distribution changes ac-
cording to the values of the operating conditions and stresses.
Since it is unknown which future usage scenario will occur, the
Weibull distributions for component failure time, and the asso-
ciated parameters, are also uncertain.

Accelerated life models for translating failure time distributions
from one stress level to another can generally be classified into
(i) proportional hazards models, where hazard rates increase and
decrease proportionally according to a function of stresses, or (ii)
proportional lifetime models, where the failure time probability
density functions compress or expand proportionally based on an
acceleration function or factor. In this paper, we adopt a propor-
tional lifetime approach, which means that for the Weibull dis-
tribution, the shape parameter is independent of stress, while the
scale parameter is a function of stress. Therefore, uncertainty of
stress results in changes or shifts in the Weibull distribution scale
parameter [1–3], but the shape parameter is constant. An ac-
celerated life model is developed to incorporate uncertain stresses
in the reliability functions.

The general equation for the Weibull scale parameter is Eq. (1).
For this model, coefficients αijk indicate component sensitivity to
usage and operating stresses and should either have a physical
interpretation or based on empirical observations of the relation-
ships between stress and failure time. The Weibull scale parameter
is modeled as a log-linear function commonly used for accelerated
life testing, as a function of stress factors ul and coefficients αijk.

∑η η α( ) = −
( )=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟uu exp

1
ij l ij

k

c

ijk kl0
1

ηij(ul) is the Weibull scale parameter as a function of the stress
vector for component choice j in subsystem i in future usage
scenario l. The ukl stress factors may require a transformation. As
an example, if average temperature is an important stress factor
and the Arrhenius relationship was appropriate, then ukl would be



Table 2
Distribution parameters and sensitivity coefficients.

Choice Coefficients of stress
factors (α1jk)

Weibull shape
parameter

Initial Wei-
bull scale

Cost weight

j 1 2 β1j η01j c1j w1j

1 α11k 0 1.86 β11 3.03 38140 0.05 1.2
2 α12k 0 2.90 β12 3.03 35542 0.25 0.1

NOTE: Data from choice j¼2 is generated for model-based test.
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defined as the inverse of temperature expressed in °K, and the
stress sensitivity coefficient would be the activation energy di-
vided by Boltzman's constant.

Component reliability for random U is given by rij(U;t). Since U
is a random vector, rij(U;t) is also a random variable. However,
within a specific scenario l, the component reliability is given as
rij(ul;t) which is a deterministic or constant value for specified
time t and ul. For life or failure time proportional models, the
Weibull shape parameter is constant when stress is varying due to
different usage conditions. The component reliability, rij(ul;t), is
given as Eq. (2).

( )( )η( ) = − ( ) ( )
β

r t tu u; exp / 2ij l ij l
ij

4.2. Component stress sensitivity

The sensitivity of component reliability pertains to the change
of reliability due to a relative increase/decrease of operating forces
or stresses. Stress coefficients are defined as the component stress
sensitivity. Sensitivity coefficients for usage stresses, αijk, model
the relative effects of different stresses. Coefficients can either be
estimated from test data by conducting tests over a range of
conditions, based on physics-of-failure models, or obtained from
handbooks or published values, e.g., Arrhenius reaction rates. The
usage stress functions are applied with these coefficients to de-
termine failure time distribution models considering the effect of
different factors/usage conditions. In practice, these coefficients
may not be known and dedicated testing is required to quantify
the coefficients prior to design optimization. Alternatively, coeffi-
cients and parameters can sometimes be assumed based on si-
milar part types or technologies with the same failure modes and
mechanisms.

Typical sensitivity coefficients are listed in Table 1 to provide an
illustrative example. Component reliability is defined and affected
by stresses, e.g., average temperature (U1), usage rate (U2), and
vibration (U3), respectively and the estimated αijk coefficients are
given in Table 1 for two component choices in each subsystem
(one to three). αijk provides a relative indication of the component
sensitivity to changes in stress. The values of the coefficients re-
flect the extent that the reliabilities of different components re-
spond to the stress factors. For example, the second component
choice of subsystem 2 is not affected by the stress factor 2
(α222¼0). However, component choice 2 available for subsystem
1 is significantly impacted by the stress factor 1 (α121¼1) as it
changes.

4.2.1. Experimental bearing data
Considering a system of bearings as an example, bearing failure

is one of the causes of breakdowns in rotating machinery. De-
gradation of bearings leading to failure is influenced by shaft ro-
tation speed (U1) and radial load (U2). Bearing reliability can be
expressed as a function of shaft rotation speed and radial load, and
where they are subject to change, scenarios are defined with
specific numerical values.

The experimental data from “IEEE PHM 2012 prognostic
Table 1
Sensitivity of stress coefficients.

Subsystem i Component
choice 1

Usage and op-
erating stress
(k)

Component
choice 2

Usage and op-
erating stress
(k)

1 α11k 0.1 0.4 0.5 α12k 1 0.8 1
2 α21k 1 0 0.4 α22k 0.2 0 0.8
3 α31k 0.4 0.8 0.2 α32k 0.5 1 0.2
challenge” [42] are used as a case study for this model. Bearing
degradation run-to-failure experiments were performed to gather
data on ball bearings with various levels of operating conditions.
There are two stress variables, rotational speed (U1) and load (U2),
which are uncertain for future usage conditions.

Experiments were conducted for the PHM challenge, and data
were collected from three different stress levels, namely (i) speed
1800 rpm and load 4000 N, (ii) speed 1650 rpm and load 4200 N,
and (iii) speed 1500 rpm and load 5000 N. There were seventeen
observed failures of bearings [42] which were used to estimate
component reliability distribution parameters. Bearing failure data
and scaled stress values were used to fit parameters based on
maximum likelihood estimation (MLE) (using Reliasoft ALTA
software) as shown in Table 2 for component 1. Based on this data
analysis, load was a very significant variable affecting reliability,
but rotational speed was not, so α111¼0. Component 2 represents
an alternate component choice with assumed model parameters.
Bearing reliability is given by Eq. (2) for any future scenarios with
defined stress and αijk from Table 2.

4.3. System reliability model

Uncertainty of stress factors is incorporated directly in the
system and component reliability function, and thus, the system
and component reliability are no longer deterministic. With con-
sideration of uncertain stress factors, the new system reliability
function is given in Eq. (3). U is a random future usage vector, so
rij(U;t) and R(x,U; t) are also random.

∏ ∏( ) = − ( − ( ))
( )= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟R t r tx U U, ; 1 1 ;

3i

s

j

m

ij
x

1 1

i
ij

The decision-maker must decide whether they are risk-averse
or risk-neutral. If the decision-maker desires the highest system
reliability on average and is less concerned with possible but un-
likely low reliability (as long as there is also the corresponding
opportunity for very high reliability), then they are risk-neutral
decision-makers and can adopt a risk-neutral formulation. The
expected value of system reliability is used as the objective func-
tion for risk-neutral decision-makers. Often if the implications for
low reliability are not severe or only economic, then decision-
makers may prefer the risk-neutral model.

Often the decision about risk-neutral vs. risk-averse relates to
the implications of poor reliability. If lower than anticipated re-
liability is extremely undesirable relating to safety or organiza-
tional failures, then the decision-maker is likely to be risk-averse.
On the other hand, if the implications of low reliability are not
critical, a risk-neutral approach may be preferable.

The new proposed method, based on opportunity loss/regret,
can be preferable for risk-averse system designers for decision-
making with uncertainty. Regret is interpreted as the difference
between the actual system reliability obtained and the value that
would have been obtained if a different and preferred course of
action had been chosen once the future is observed (which is only
known afterwards), or if the particular future usage scenario was
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known with certainty in advance.

4.3.1. Expected system reliability
The expected value of system reliability is derived based on

possible future usages and their corresponding probabilities. The
expected system reliability is expressed in Eq. (4) as a function of
random vector U and the number of components for each choice.

( )∑ ∏ ∏[ ( )] = − − ( )
( )= = =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟E R t p r tx U u, ; 1 1 ;

4l

v

l
i

s

j

m

ij l
x

U
1 1 1

i
ij

Future usage stress vector ul and sensitivity coefficient of usage
and stress factors αijk are introduced in Eq. (5). Based on Eqs.
(1) and (2), and given probabilities for future usage scenarios, the
expectation of system reliability as a function of decision variables
xij is given by,
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The mean or expected value of system reliability is used as the
objective function when a decision-maker desires risk-neutral
evaluation. The number of components of each choice in the
parallel subsystems can be determined by maximizing the ex-
pected system reliability.

4.3.2. Regret of system reliability
The regret analysis approach for optimizing system reliability is

for risk-averse decision-makers. The possible future usage profile
includes discrete scenarios, and the objective is to find a solution
that performs reasonably well for all scenarios, i.e., “best worst-
case” performance to hedge against the possible risk under other
scenarios [29–31]. The regret approach is proposed for the risk-
averse decision-makers to select the best possible solution that
minimizes the maximum potential loss in case a poor decision
yields an undesirable large risk.

Given v future usage scenarios in the future usage profile, xl* is
the optimal solution in each individual scenario l (l ¼1,2,…,v), if it
is known with certainty that particular scenario would occur.
Therefore, there are v different xl* solutions, i.e., one for each
scenario. These are determined beforehand by solving v different
nonlinear optimization problems. Each optimal solution consists of
different component selections that maximize system reliability
max(R(x,ul;t)) for that scenario. Regret or loss is denoted byΔl as a
function of configuration x in future usage scenario l. If x is chosen
instead of xl* as the solution for scenario l, the pairwise regret is
defined as
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where ( * ) = { ( )} = { }R t max R t l vx u x u, ; , ; ; 1, 2, ... ,l l l
x

In contrast to consideration of interval component reliability,
our component reliability is evaluated deterministically for each
discrete scenario in the future usage profile. For the minimax re-
gret approach [31,39,40], we define a set of scenarios and set of
solutions in each scenario of the future usage profile.
5. Optimization models

The system reliability optimization model has been formulated
and solved to minimize maximum regret. The regret or opportu-
nity loss of system reliability is used as the objective function and
the expected system reliability is also determined for all problems.
The problem can be solved as a nonlinear integer problem either
by using a global nonlinear solver designed specifically for these
difficult problems or by new heuristic method proposed in this
paper. When a global nonlinear integer solver is available, it is the
preferred approach to solve the problem. However, when an ap-
propriate solver is not available or integer variable restrictions
have been surpassed, then the NS heuristic is proposed as an
alternative.

For series-parallel systems, RAP is formulated with decision
variables xij. We initially introduce a simple risk-neutral objective
to maximize expected system reliability by determining the
component choices, and the number of components of each choice
in each subsystem. As shown in Eq. (8), the expected value of
system reliability is maximized considering cost and weight con-
straints.
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In this optimization problem, each possible future usage l with
probability pl for all l is used to compute the expected value of the
system reliability. The decision variables xij are selected for each
component choice j at subsystem i to maximize the objective
function with cost and weight constraints. For these examples,
component and system weight refers the physical weight or mass
(measured in kg or lbs).

In this optimization formulation, the system cost is represented
as a summation of the component costs. While this constraint or
very similar ones have been used often before [4,5,8], is only a
gross approximation of the true costs of developing and operating
a system. A realistic and accurate cost function would require
many additional factors and considerations including the con-
sumed energy and materials used during operation and many
other factors. For some examples of more detailed and rigorous
cost modeling, refer to Levitin et al. [43–46] for cost models of
standby systems.
5.1. System reliability optimization: minimizing maximum regret

Regret analysis is the approach used for RAP with uncertainty
and risk-aversion. When the decision-makers are uncertain about
the consequences of system reliability under different future usage
scenarios and a poor decision can lead to severe risk, the regret
formulation is a viable option [28,29]. Solutions that have good
performance, even good worst-case performance, for all scenarios
are called robust solutions [38].

The objective function is to minimize the maximum pairwise
regret or opportunity loss, considering system cost and weight
constraints, and given as Eq. (9). The optimal solutions for each
specific future usage scenarios are pre-determined and then ap-
plied in the model.

= Δ

= ( * ) − ( ) ( )R t R tx u x u

min max regret min max

min max , ; , ; 9

l
l

l
l l l

x

x

It is difficult to solve the problem directly, so it is transformed
into an equivalent problem, as shown in Eq. (10).
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The regret model requires the solution of vþ1 different opti-
mization models whereas the expected system reliability model
requires the solution of only a single problem. As a result, the
expected system reliability model is inherently computational
more efficient.

These optimization models have complex nonlinear objective
and constraint functions and integer decision variables. These in-
teger nonlinear programming models are very difficult to solve,
and heuristics or meta-heuristics are often used for this class of
problems. If a global nonlinear integer solver is available to solve
the problems to optimality (e.g, LINGO Global Solver), it is the
recommended approach to solve the problem, although they po-
tentially require additional software add-ins and have restrictions
on the number of allowable integer variables. Alternatively, we
have developed a heuristic specifically for this problem that can be
more readily applied by commonly available software (e.g., MA-
TLAB optimization toolbox). It is called the NS heuristic and de-
scribed in the following section.

5.2. Neighborhood Search (NS) heuristic algorithm

Efficient heuristic methods can be used as an alternative option
to solve these complex large-scale problems and to obtain solu-
tions. A generally effective heuristic is developed to solve this
problem based on nonlinear programming and neighborhood
search.

The heuristic approach developed for this paper is to initially
relax integer constraints and to solve a continuous nonlinear op-
timization problem. Then a thorough neighborhood search (NS) is
applied to determine recommended integer solutions that are in
close proximity to the continuous solution. The NS heuristic is
required for the risk-neutral problem (case 1), for v different initial
problems in the regret analysis for each scenario (case 2), and for
the minimax problem (case 2). The regret analysis approach re-
quires the solution of vþ1 different problems, and it is less effi-
cient. To search for the optimal integer number of components of
each choice in each subsystem, the heuristic approach selects the
best feasible integer solution in the neighborhood [32,42].

The NS heuristic proceeds as follows:

Step 1: The integer problem is transformed by relaxing integer
constraints. The relaxed continuous nonlinear problem is solved
and solutions found. Nonlinear optimization using the pattern
search solver (e.g., from MATLAB optimization toolbox) is used
to find the continuous solutions xcon.
Step 2: Different integer system solutions are enumerated
considering all combinations of possible component integer
solutions, which are constructed considering the integer solu-
tions immediately higher and lower than the optimal con-
tinuous solution. xcon represents the relaxed continuous solu-
tions of the optimization model and xin represents the integer
solutions of the optimization model by creating bounds that are
integers immediately lower and higher than the continuous
solutions.

{ }← ⌊ ⌋ ⌈ ⌉x x xset of , ... ,in con con there are 2s number of vectors in
the set
For in ¼1,2,…, 2s, compute objective function and evaluate
feasibility in Step 3.
For the set of solutions that do not violate a constraint, proceed
to Step 4.
Step 3: Check if constraints are violated.

≤ ≤ ≤ ≤C W1 x x cx wx, ,in in inmax

When iterating solutions that violate constraints, the algorithm
ignores those infeasible solutions and returns to Step 2 itera-
tions. When feasible, compare objective functions to best found,
and retain the best solution and objective function.

{ }← [ ( )]R E R tx Umax , ;in , for case 1
{ }← ( )R R tx umax , ;l

in l , for all l, for case 2
Step 4: The final best feasible solution is the recommended
solution as vector xn

Step 5: Calculate system reliability

← [ ( * )]R E R tx U, ;s , for case 1
← ( * )R R tx u, ;s

l
l , for all l, for case 2

For case 2, the regret modeling approach, the system reliability
in Step 5 is used for the pairwise of regret calculation of each
scenario l.

5.2.1. Procedure of pairwise regrets and maximum regret
The procedure for minimization of maximum regret analysis

(case 2) approach is as follows:

Step 1: The NS heuristic from Section 5.2 is used to initially
determine integer solutions for each of the l scenarios.
Step 2: The integer solutions and reliability from solutions in
Step 1 are used in Eq. (10).
Step 3: By comparing the pairwise regrets and using the model
derived in Eq. (10), the continuous solution that minimizes the
maximum regret can be found using the pattern search opti-
mizer (in MATLAB toolbox).
Step 4: The neighborhood of the optimal continuous solutions,
as defined in Step 2 of Section 5.2, is enumerated to find the
best feasible integer solution in the neighborhood.
6. Examples

Several examples were solved to demonstrate and evaluate the
model. The NS heuristic was used to solve the problems, but later
compared to other optimization approaches to the problem. The
first example addresses design of a system of bearings, while the
second and third examples are hypothetical examples. In the
second example, the three stress variables all decrease as the fu-
ture random scenarios become less stressful, while the third ex-
ample has more randomly distributed stress variable values
creating a more difficult problem and more interesting trade-offs.

6.1. Example 1: bearing system design

The first example continues the bearing descriptions from
Section 4.2.1. The system objective is to design a manufacturing
system with redundancy added to increase the reliability of a
single parallel structure (s¼1) for a critical operating duration of
t¼15,000. The experimental data from degradation run-to-failure
experiments [42] were used to quantify the component reliability
model (which was presented in Section 4.2.1). There are system
level constraints of C¼1.0 and W¼2.0.

The future random stress variables are rotational speed and
load, i.e., U ¼ (U1, U2). A future usage profile is defined by three
future usage scenarios, U ∈ {ul, u2, u3}, which represent three
possible operating condition settings with probabilities pl ¼ (1/3,
1/3, 1/3) as shown in Table 3. The stress vectors for the three
scenarios ul, u2 and u3 are scaled between 0 to 1.



Table 3
Future usage profile of bearing testing.

Example 1 ukl

Probability at future l u1l u2l

p1 1/3 1 1/3
p2 1/3 5/8 7/15
p3 1/3 1/4 3/4

Table 4
Future usage profile (Examples 2 and 3).

Example 1 ukl (Example 2) ukl (Example 3)

Probability at future l u1l u2l u3l u1l u2l u3l

p1 0.04 0.95 1 0.90 0.95 1 0.20
p2 0.08 0.80 0.85 0.80 0.80 0.85 0.10
p3 0.08 0.75 0.78 0.75 0.75 0.78 0.10
p4 0.12 0.60 0.70 0.65 0.60 0.70 0.80
p5 0.16 0.55 0.55 0.60 0.55 0.55 0.30
p6 0.15 0.42 0.42 0.49 0.42 0.42 0.20
p7 0.13 0.36 0.38 0.40 0.36 0.38 0.50
p8 0.10 0.28 0.25 0.30 0.28 0.25 0.50
p9 0.09 0.19 0.18 0.17 0.19 0.18 0.70
p10 0.05 0.10 0.05 0.10 0.1 0.05 0.90

Table 6
Usage and operating stress coefficients for available components in each
subsystem.

Choice 1 usage and operating
stress (k)

Choice 2 usage and operating
stress (k)

i αijk 1 2 3 αijk 1 2 3
1–4 αi1k 0.6 .45 0.2 αi2k 0.5 0.35 0.4
5–8 αi1k 0.35 0.4 0.2 αi2k 0.3 0.55 0.8
9–11 αi1k 0.7 0.5 0.6 αi2k 0.5 0.35 0.4
12–14 αi1k 0.4 0.1 0.4 αi2k 0.6 0.75 0.4

Choice 3 usage and operating
stress (k)

Choice 4 usage and operating
stress (k)

i αijk 1 2 3 αijk 1 2 3
1–4 αi3k 0.7 0.2 0.6 αi4k 0.4 0.8 0.3
5–8 αi3k 0.6 0.2 0.25 αi4k 0.25 0.45 0.65
9–11 αi3k 0.7 0.2 0.6 αi4k 0.6 0.4 0.45
12–14 αi3k 0.4 0.5 0.35 αi4k 0.6 0.5 0.3

NOTE: Italicized numbers are not used in Examples 2 and 3, but were used in the
experimental comparisons in Section 6.3

Table 7
Weibull shape parameters of available choices of components in each subsystem.

i Choice 1 Choice 2 Choice 3 Choice 4
Subsystem β1 β2 β3 β4

1 1.5 1.5 2 1.5
2 2 2.5 1.5
3 1.5 2 1.5 2
4 1.5 2 2
5 2 2.5 2
6 1.5 1.5 2 1
7 1.5 2 1.5
8 1.5 2 2
9 1.5 1.5 1.5 1.5

10 1.5 1.5 1
11 2 1.5 1.5
12 1.5 2 2 1.5
13 1.5 2 2.5
14 1.5 1.5 1.5 2

NOTE: Italicized numbers are not used in Examples 2 and 3, but were used in the
experimental comparisons in Section 6.3
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From an optimization perspective, this is an easy problem to solve
with only two decision variables. In fact, the initial continuous solutions
for each of the l scenarios are integers, and are the same solution for all
three scenarios (x11¼8, x12¼0). Therefore, the maximum regret is zero,
and this is the best solution from both risk-averse and risk neutral
perspectives. Larger problems are studied in the following sections.

6.2. Additional examples (Examples 2 and 3)

The second and third problems are much larger with 14 sub-
systems (s¼14) and between one and four component choices for
each subsystem. Ten scenarios with associated stress factors and
probabilities are given as the future usage profile for both pro-
blems, and presented as Table 4. The problems are similar but with
one important difference. For Example 2, the stress variable values
are all decreasing with the scenario number for all three stress
variables. For Example 3, the third stress variable value has been
randomized creating a more interesting problem with more
complex trade-offs. For the third example, the relative difference
between component choice reliability can vary depending on the
stress sensitivity coefficients (αijk).
Table 5
Example parameters for available choices of components in each subsystem.

i Choices (mi) η0i1 ci1 wi1 η0i2 ci2

1 3 448.3 1 3 574.8 1
2 1 441.5 2 8 304.4 1
3 4 248.1 2 7 308.1 3
4 3 536.7 3 5 268.0 4
5 2 1616.2 2 4 285.6 2
6 2 2147.2 3 5 4949.8 3
7 1 325.6 4 7 346.3 4
8 1 186.4 3 4 308.1 5
9 3 3283.1 2 8 2147.2 3
10 2 306.5 4 6 615.3 4
11 1 1616.2 3 5 724.4 4
12 1 262.1 2 4 224.5 3
13 2 1348.1 2 5 997.5 3
14 3 448.3 4 6 1199.3 4

NOTE: Italicized numbers are not used in Examples 2 and 3, but were used in the expe
The system reliability optimization is conducted for a critical
mission time of t¼100. Tables 5–7 present the component data,
which are modified versions of the parameters from Tekiner and
Coit [15]. Table 5 presents component cost, weight and baseline
Weibull scale parameter. αijk coefficients relate to usage stresses,
and are given in Table 6. A higher number indicates that the
wi2 η0i3 ci3 wi3 η0i4 ci4 wi4

4 1060.3 2 2 724.4 2 5
10 574.8 1 9
5 372.2 1 6 346.3 4 4
6 615.3 5 4
3 1949.6 3 5
4 3283.1 2 5 2449.7 2 4
8 1616.2 5 9
7 325.6 6 6
9 843.5 4 7 482.6 3 8
5 949.1 5 6
6 843.5 5 6
5 248.1 4 6 448.3 5 7
5 3283.1 2 6
7 1949.6 5 6 997.5 6 9

rimental comparisons in Section 6.3



Table 8
Optimal system reliabilities for future usage scenarios (Example 2).

Future usage l 1 2 3 4 5 6 7 8 9 10
reliability (continuous solution) .4695 .6920 .7667 .8715 .9217 .9630 .9745 .9866 .9925 .9960
reliability (integer solution) .4120 .6296 .7023 .8122 .8678 .9213 .9385 .9589 .9711 .9796

Table 9
Selections of components in minimax regret approach (Example 2).

s ¼ 14 Regret analysis: max regret¼0.0274

xij # xij # xij #

x11 0 x43 3 x101 0
x12 0 x51 1 x102 3
x13 3 x52 0 x111 2
x21 3 x61 0 x121 5
x31 0 x62 2 x131 2
x32 4 x71 3 x132 0
x33 1 x81 6 x141 0
x34 0 x91 1 x142 0
x41 0 x92 0 x143 2
x42 0 x93 0 cx ¼122, wx ¼ 200

Table 10
Selections of components for expected system reliability (Example 2).

s¼14 Expected system reliability¼0.8652

xij # xij # xij #

x11 0 x43 3 x101 0
x12 0 x51 1 x102 3
x13 2 x52 0 x111 2
x21 3 x61 0 x121 5
x31 0 x62 1 x131 2
x32 1 x71 4 x132 0
x33 0 x81 7 x141 0
x34 4 x91 1 x142 0
x41 0 x92 0 x143 2
x42 0 x93 0 cx ¼130, wx ¼ 200

Table 12
Selections of components in minimax regret approach (Example 3).

s ¼ 14 Regret analysis: max regret ¼ 0.0257

xij # xij # xij #

x11 0 x43 3 x101 0
x12 0 x51 1 x102 3
x13 3 x52 0 x111 2
x21 3 x61 0 x121 5
x31 0 x62 1 x131 1
x32 2 x71 3 x132 1
x33 2 x81 7 x141 0
x34 1 x91 1 x142 0
x41 0 x92 0 x143 2
x42 0 x93 0 cx ¼122, wx ¼ 200

Table 13
Selections of components for expected system reliability (Example 3).

s ¼ 14 Expected system reliability¼ 0.9053

xij # xij # xij #

x11 0 x43 3 x101 0
x12 0 x51 2 x102 3
x13 2 x52 0 x111 2
x21 3 x61 0 x121 5
x31 0 x62 1 x131 1
x32 1 x71 4 x132 1
x33 0 x81 7 x141 0
x34 3 x91 1 x142 0
x41 0 x92 0 x143 2
x42 0 x93 0 cx ¼129, wx ¼ 200

Table 14
Comparisons of solutions for Examples 2 and 3.

Example 2 Example 3

Regret Expected
reliability

Regret Expected
reliability

objective
function

0.0274 0.8652 0.0257 0.9053

expected
reliability

0.8518 0.8652 0.8925 0.9053

max regret 0.0274 0.0436 0.0257 0.0511
reliability
variance

0.032136 0.034099 0.0067438 0.0086379

cost 122 130 122 129
weight 200 200 200 200
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component reliability is more sensitive to that stress. In practice,
the αijk coefficients should be determined based on conducting
experiments, coefficients from physics-of-failure models or other
published data, e.g., Arrhenius reaction rates. For all components
considered in these examples and all scenarios, the Weibull shape
parameter is given in Table 7 and the scale parameter is given as
η η α α α( ) = ( − ( + + )u u uu expij l ij ij l ij l ij l0 1 1 2 2 3 3 .

The regret optimization model is solved for both problems.
Probabilities of future usage scenarios are not necessary to mini-
mize the worst-case regret, but they are needed to maximize ex-
pected system reliability. The scenario probabilities and stress
values for these two examples are given in Table 4. The NS heur-
istic is used to obtain the integer solutions.

6.2.1. Example 2: stress factors in decreasing direction
For this example, the stress factors in the future usage profile

are all decreasing for future usage scenarios 1–10 as shown in
Table 4. The current operating stress vector is given as u0¼0. In
future usages, the system or components can experience different
usage scenarios with probabilities given in Table 4. For instance,
future usage scenario 1 occurs with probability 0.04 and with
Table 11
Optimal system reliabilities for future usage scenarios (Example 3).

Future usage l 1 2 3 4
reliability (continuous solution) .7652 .8824 .9065 .8409
reliability (integer solution) .7011 .8295 .8584 .7831
operating stress vector u1¼(0.95, 1, 0.9).
To determine regret, it is necessary to initially maximize system

reliability for each scenario individually and those results are in
Table 8. For Example 2, the problem was solved and the minimax
opportunity loss or regret obtained is 0.0274, and the solution xn is
5 6 7 8 9 10
.9508 .9768 .9700 .9813 .9818 .9844
.9083 .9429 .9316 .9481 .9475 .9497



Table 15
Expected system reliability obtained by using different search methods.

Example 2 Expected system reliability Computation time (s)a

s C, W NS B-and-B GA Global NS B-and-B GA Global

1 5, 10 .9992 .9992 .9992 .9992 0.529 o1 0.594 o1
2 20, 30 .9885 .9885 .9885 .9885 0.556 o1 0.613 o1
3 40, 60 .9806 .9806 .9806 – 0.626 o1 1.457 –

4 60, 80 .9832 .9832 .9832 – 0.698 o1 2.791 –

5 60, 80 .9757 .9697 .9757 – 0.760 o1 5.825 –

14 150,200 .8652 .8631 .7600 – 28.62 o5 1948.4b –

NOTE:
a Personal computer with CPU Core i5-4210U 1.70 GHz.
b GA with s¼14 was also tested by developing custom code on a i7 Core personal computer. 12 runs were performed and GA was run for4two hours. The best solution

found was reliability¼0.8385, cost¼127 and weight¼200.
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shown in Table 9. The problem was also solved to maximize ex-
pected system reliability, and the results are presented in Table 10.
The solutions to minimize maximum regret and to maximize ex-
pected system reliability are similar, but there are distinct differ-
ences. Those decision variables that are different are indicated in
bold in the tables.

6.2.2. Example 3: stress factors are randomized
In Example 3, the stress factors u3l are randomly generated as

shown in Table 4 to observe how the proposed model performs for
a more interesting example. Since the sensitivity coefficients are
also not in decreasing order, the selection of components requires
a further compromise and more interesting trade-offs.

The problemwas solved to minimize maximum regret. Table 11
indicates system reliabilities obtained for each possible future
usage scenarios. The maximum opportunity loss or regret is found
to be 0.0257, and the compromise solution decision variables xn

are shown in Table 12. Example 3 was also solved to maximize
expected system reliability and those results are indicated in Ta-
ble 13. The bolded numbers in Tables 12 and 13 indicate where the
solutions are different.

6.2.3. Results comparisons
For Examples 2 and 3, there are a total of four different solu-

tions (expected reliability and max regret solutions for two dif-
ferent problems), and it is interesting to compare them. For all
solutions without regard to the objective function, the maximum
regret and expected system reliability were both computed. Fur-
thermore the variance of system reliability, considering the un-
certainty in future stress variables, was also computed. Table 14
presents the results from regret and expected reliability ap-
proaches for the two examples.

In the comparisons, the expected reliability is naturally higher
when used as the objective function, and the maximum regret is
naturally lower when it is the objective function. As expected, the
risk-neutral decision makers have higher expected reliability,
while the risk-averse decision-makers have lower maximum re-
gret. However, there are other very interesting results. Variance is
a measure of uncertainty, and for decision making, uncertainty is
aligned with risk. For Example 2, the variance is lower for the risk-
averse case (minimize maximum regret) as would be expected, but
they are very close. It could be argued based on the comparisons
for Example 2, that both objective functions provide good solu-
tions for both risk-averse and risk-neutral decision makers. How-
ever, the Example 3 results are different because the variance is
almost 30% higher for the expected reliability objective function,
making it less desirable for risk-averse decision-makers.
6.3. Experimental evaluation of the NS heuristic

The problems can be solved using a global nonlinear solver or
the NS heuristic or another effective optimization algorithm. If a
global nonlinear integer solver is available, it should be used
otherwise the NS heuristic is relative straightforward to imple-
ment and use. To evaluate the performance of the NS heuristic, we
then solved additional variations for Example 2 with less than or
equal to 14 subsystems to maximize expected system reliability.
The performance of the NS heuristic was compared over a range of
different problem sizes. Each problem was then also solved by
B-and-B (nonlinear branch-and-bound) and GA, to compare the
performance of the NS heuristic. The optimization algorithms
were run on different computers using different software, so
computation time comparisons are difficult. For the problems with
s¼1, 2, …, 5, all four component choices were considered (the
italicized numbers in Tables 2–4).

Table 15 shows the expected system reliability values for the
recommended solutions for six variations of the problem obtained
using NS heuristic, B-and-B and GA. For s ¼ 1 and 2, global solver
was also used. (LINGO Global Solver is also a branch-and-bound
approach but designed to find the global, not local solution.) The
performance of each method varies as we change the number of
subsystems. Note that computation time for GA and NS increases
significantly with problem size.

The comparisons are not conclusive and not generalizable.
However, they indicate that the NS heuristic performs well com-
pared to the other methods or certainty as well, and is relatively
straightforward to implement. For the most difficult problem, the
NS heuristic had higher objective function, but also with sig-
nificantly more computation time than B-and-B.
7. Discussion

RAP was formulated considering uncertainty in future usage
stresses. Two system reliability modeling approaches are im-
plemented and the results obtained depending on the decision-
maker risk preferences. Risk-averse designers or decision-makers
can utilize the regret technique solutions. The decision-makers
who desire good average system reliability results can adopt the
risk-neutral formulation.

This paper presents system reliability optimization models
which consider variations of component reliability caused by un-
certain future stresses. In decision-making, the objectives are to
minimize the maximum regret. Regret or opportunity loss is in-
troduced to avoid consequences of a poor decision and the cor-
responding superior risk.
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