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Order picking is one of the most time-critical processes in warehouses. We focus on the
combined effects of routing methods and storage location assignment on process perfor-
mance. We present exact formulas for the average route length under any storage location
assignment for four common routing methods. Properties of optimal solutions are derived
that strongly reduce the solution space. Furthermore, we provide a dynamic programming
approach that determines storage location assignments, using the route length formulas
and optimality properties. Experiments underline the importance of the introduced proce-
dures by revealing storage assignment patterns that have not been described in literature
before.
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1. Introduction

Warehouses offer a variety of benefits to the company employing them, among which accomplishing least total cost logis-
tics with a desired level of customer service and supporting the just-in-time programs of suppliers and customers (De Koster
et al., 2007). However, operating a warehouse can be quite costly as typically a great deal of manual labor is involved. One of
the most laborious and costly activities in a warehouse is order picking; the process of retrieving a set of items from storage
locations in response to customer orders. The cost of this process can be as much as 55% of the total operating costs of a
warehouse (Tompkins et al., 2003). Several operational decisions strongly influence the performance of the order-picking
process.

Before customer orders can be retrieved, items must first have been stored in the available locations. The problem of
choosing appropriate storage locations for the items is called the storage location assignment problem (Hausman et al.,
1976; Gu et al., 2007). This problem shows similarities with the Assignment Problem, a fundamental problem from the field
of Operations Research. Both problems require the matching of objects from two mutually exclusive sets, in our case a
matching of items to locations. However, the two problems differ strongly in their objective functions. The objective function
of the standard Assignment Problem has a simple structure, which makes the problem solvable in polynomial time. The stor-
age location assignment problem, on the other hand, has the objective to minimize the average route length traveled by the
workers (order pickers) while retrieving items from locations in the warehouse. This results in a complex function that
depends on the layout of the warehouse, the routing method employed, the demand frequencies of all items, and the
item-to-location assignment itself.
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The routing method prescribes how an order picker should navigate the warehouse to collect the items in an order. A
good routing method yields short route lengths, which decreases the time to pick an order. The physical structure of the
warehouse limits the movements of the order picker, who has to navigate between the racks that store the items. Essentially,
the routing problem in warehouses classifies as a special case of the Steiner Traveling Salesman Problem (see De Koster et al.,
2007), that in some layouts is solvable to optimality in polynomial time (Ratliff and Rosenthal, 1983). However, as De Koster
et al. (2007) note, ‘‘in practice, the problem of routing order pickers in a warehouse is mainly solved by using heuristics”. For
this purpose, a number of heuristic routing methods are available from literature. These heuristics can be of a constructive
(greedy) nature, employing properties of the layout to find solutions (Hall, 1993) or contain a procedure to search the solu-
tion space (Theys et al., 2010).

In this paper, we develop methods for determining storage location assignments in warehouses where order pickers span
multiple aisles in each route, and where each order may contain any number of items to be picked (multi-aisle multi-item
picking). We solve a number of multi-aisle multi-item storage location assignment problems and can guarantee optimality
for the first time. As a core component for achieving this, we present formulas for four routing methods that give the value
for expected route length in multi-aisle multi-item picking warehouses. In contrast to existing research work, these formulas
give the exact expected route length, not an approximation, and they hold for any storage location assignment. Furthermore,
structural properties of optimal solutions are derived, which aid in narrowing down the solution space. Due to the low com-
putational requirements for our formulas, in combination with the structural properties, a number of instances can be solved
to proven optimality by means of complete enumeration. Using the formulas at its core, we present a dynamic programming
approach for determining storage location assignments. The dynamic program provides optimal solutions for one routing
method, and near-optimal solutions for another routing method. For the remaining two routing methods, we have no opti-
mal benchmark, but the dynamic program is shown to consistently outperform common storage location assignment rules
from literature. Results from our experiments demonstrate patterns for storage location assignment that have not been
described before in literature, and that challenge current assumptions about predetermined storage location assignment pat-
terns. A detailed comparison of our work to existing literature is given in Sections 3 and 4.

The remainder of this paper is organized as follows. First, in Section 2 the warehouse layout and the routing methods used
are explained. Thereafter, the backgrounds on storage location assignment and on route length estimation are given in Sec-
tions 3 and 4, respectively. In Section 5 the problem is defined mathematically. In Section 6 we derive formulas for the exact
expected route lengths for four routing methods. These formulas are used to determine optimality conditions in Section 7
and serve as inspiration for the Dynamic Program presented in Section 8. Section 9 provides computational results. Finally,
concluding remarks are given in Section 10.
2. Warehouse layout and routing methods

We consider a warehouse with two cross aisles as depicted in Fig. 1. The warehouse has a number of parallel aisles where
items are stored in locations. A front cross aisle and a back cross aisle provide access to the aisles, but do not contain storage
locations themselves. All routes start and end at the depot (marked ‘‘D” in Fig. 1, where the order picker takes an empty
Fig. 1. Schematic overview of the warehouse.
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product carrier at the start of the route, and deposits picked items at the end of the route. The depot is located at the left of
the front cross aisle. The aisles are sufficiently narrow for order pickers to be able to retrieve items from both sides of an aisle
without moving sideways, implying that for the routing we can assume order pickers to travel in the exact middle of the
aisles. Each item uses identical storage space. This is a common configuration that is studied widely in literature (e.g.,
Chen et al., 2010; Chew and Tang, 1999; Le-Duc and De Koster, 2005; Petersen and Schmenner, 1999; Rao and Adil,
2013b). In this paper, we consider the configuration to be fixed. Examples of papers studying warehouse design are
Heragu et al. (2005), Hsieh and Tsai (2005), Hwang and Cho (2006), Parikh and Meller (2010), Thomas and Meller (2014).

Even though our primary goal is to optimize the storage location assignment, a significant part of the paper deals with
routing methods. This is for two reasons. First, the storage location assignment is strongly dependent on the routing method
employed (Petersen and Schmenner, 1999). Therefore, we aim for optimizing the storage location assignment for each of four
constructive routing methods. Second, the quality of the mathematical description of the routing method’s expected route
length influences the quality of the storage location assignment optimization process. After all, if we cannot precisely deter-
mine the expected route length of any given configuration, then comparisons between configurations cannot be reliably
made by any optimization procedure. We focus on four constructive routing methods that appear regularly in literature
and practice. Examples of routes for each of these methods are depicted in Fig. 2.

For the Return routing method, the order picker enters each aisle from the front, if at least one item has to be picked in that
aisle. The aisle is traversed up to the pick item farthest from the front cross aisle, after which the order picker returns to the
front cross aisle. Connections between aisles are exclusively made via the front cross aisle. This is the only logical routing
method for warehouses that have a single cross aisle. It is used in many articles, including Caron et al. (1998), Le-Duc
and De Koster (2005), and Chen et al. (2010). A method that does use both cross aisles, is the S-shape (or transversal) method.
For the S-shape routing method, starting from the depot, the order picker visits aisles from left to right. Each aisle in which a
pick item is located, is traversed completely, implying that an aisle entered from the front cross aisle is exited via the back
cross aisle, and vice versa. In the case that the number of aisles with pick items is odd, the last aisle does not have to be tra-
versed completely; instead, the picker can return to the front cross aisle after picking the last item. Finally, the order picker
returns to the depot. Articles that consider S-shape routing include Chen et al. (2010), Pan et al. (2012), and Rao and Adil
(2013a).

The third and fourth method we consider are the largest-gap and midpoint routing methods. Both methods follow the
perimeter of the warehouse. The first aisle with pick items is entered and traversed completely. From the back cross aisle,
each subsequent aisle is entered and left from the back. The last aisle with pick items is traversed completely to return to the
front cross aisle. Finally, the order picker travels through the front cross aisle towards the depot while entering and leaving
each aisle from the front. This implies that, except for the first and last aisles with pick items, all aisles may be visited twice.
The distinction between the midpoint and the largest-gap routing method is in the selection of items to pick when entering
the aisle from respectively the front or back cross aisle. For the midpoint routing method, items that are in the back half of
the aisle are picked via the back cross aisle, and the items in the front half of the aisle via the front cross aisle. The middle of
the warehouse is therefore never crossed by the order picker, except in the first and last aisle with pick items. For the largest-
gap routing method, the division of pick items is optimized, i.e., the largest stretch of the aisle that does not contain pick
items, is not visited. Midpoint and largest-gap routing methods are used in, e.g., Hall (1993), Petersen and Schmenner
(1999), and Dekker et al. (2004).

Note that for all four routing methods, aisles that contain no pick items are not visited. Furthermore, in case an order con-
sists of only items in a single aisle, then all routing methods give the same route as the Return routing method.
3. Background on storage location assignment

Storage assignment problems can be subdivided into the problem of assigning items to storage departments, assigning
items to zones within these departments, and assigning items to locations within these zones (Gu et al., 2007).

The assignment of items to departments, such as reserve storage and forward picking areas, can be guided by external
factors, such as departments dedicated to a single customer. However, items need not be assigned to a single department.
Frequently, items are assigned to both a reserve area, as well as a forward picking area. The reserve area is designed to hold
large quantities of products, whereas the forward picking area is designed for fast retrieval of products in response to cus-
tomer orders. The forward-reserve problem then is how inventory of an item should be divided between these departments
(e.g., Frazelle et al., 1994). Extensions of this problem study, for example, how cross-docking can be incorporated (Heragu
et al., 2005).

Physical attributes of items are usually taken into account when assigning items to zones within departments. Storage
technology and physical arrangement are usually decided on this level (Gu et al., 2007). Additionally, zones can be employed
to organize order-picking activities more efficiently (see, e.g. Jewkes et al., 2004).

Finally, the assignment of items to storage locations within zones aims to minimize the expected time of retrieval of these
items. This is what we refer to as the storage location assignment problem in this paper. Often papers on storage location
assignment restrict the solution space to class-based storage. Under class-based storage, all items are divided into a number
of (often two or three) classes based on demand frequency of the items. The fastest moving items are usually called A-items.
The next fastest moving items are called B-items, and so on. Each class needs to be assigned to a part of the warehouse, but
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assignment within the class is assumed random with equal probability. Demand frequencies for all items within a class are
subsequently assumed equal to the average of the class to mimic long-term behavior. As a consequence, for a warehouse

with m aisles each with n locations, instead of ðmnÞ! possible storage configurations, only ðmnÞ!=Qk
i¼1ðti!Þ unique configura-

tions remain, where k denotes the number of classes and ti is the number of locations assigned to class i. It must be noted
that the remaining number configurations is usually still a very large number for most practical instances, causing complete
enumeration to be intractable. To counter this problem a common approach for studies on storage location assignment for
multi-aisle multi-item picking is to introduce pre-determined storage patterns, and subsequently to compare performance of
these patterns, often in combination with other operating policies. Commonly used patterns include within-aisle storage and
across-aisle storage (Petersen and Schmenner, 1999). These studies provide valuable insights into the issues of storage loca-
tion assignment, however, it typically gives no information on the absolute quality of the solutions. Research includes Caron
et al. (1998), Petersen and Schmenner (1999), Hwang et al. (2004) and Chen et al. (2010).

Research on storage location assignment that aims at developing procedures that can actively search for a good storage
location assignment is very limited for multi-aisle multi-item picking. Dekker et al. (2004) use a 2-opt exchange procedure
based on Lin and Kernighan (1973) to improve on a number of predetermined class-based storage configurations. For a dif-
ferent layout, Le-Duc and De Koster (2005) also apply 2-opt to improve the storage location assignment. Related work of Pan
et al. (2015) presents a genetic algorithm for storage location assignment in a pick-and-pass system (single-aisle multi-item
picking). Muppani and Adil (2008) present a branch-and-bound method for finding a storage location assignment for unit
load warehouses (multi-aisle single-item picking). Ene and Öztürk (2011) use an ILP to determine the storage locations in
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a warehouse from the automotive industry with 7 aisles and a single cross aisle, where travel time is approximated by a
weighting factor for different storage classes.

To our knowledge no optimal algorithm has been presented in literature for the problem of determining storage location
assignments in multi-aisle multi-item picking, nor have any instances been solved to proven optimality for any routing
method. We present in this paper a constructive approach based on dynamic programming, which yields proven optimal
solutions in polynomial time for the return routing method. Furthermore, heuristic procedures for constructing solutions
for multi-aisle multi-item picking are scarce in literature, and their performance is not exactly known, since solutions have
not been benchmarked against optimal solutions. We use our dynamic programming approach for the S-shape routing
method to obtain near-optimal solutions, as is proven by a comparison to benchmark instances that we could solve to opti-
mality due to derived properties. Finally, application of our method with two other routing methods reveals new patterns for
storage location assignment that have not been reported before in literature, and may provide new cues for further research
towards optimality.
4. Background on route length estimation

To assess the efficiency of any storage location assignment, we need to be able to evaluate the resulting average route
length. The two main methods to achieve this are the creation of a simulation model and developing formulas based on sta-
tistical properties of the routing method. We focus on the latter, since we aim towards optimality.

To the best of our knowledge, no formula exists that gives the exact average route length for any routing method in a
multi-aisle multi-item picking warehouse. Formulas either contain statistical approximations, are based on a simplified ver-
sion of the actual routing method, or both. For return routing, Le-Duc and De Koster (2005) assume the storage locations in
an aisle are continuous to obtain an approximation of expected route length under class-based storage. Another approxima-
tion for return routing is proposed by Caron et al. (1998), who assume the number of pick items per aisle to be equal to the
total number of pick items divided by the number of aisles and use order statistics to determine the expected travel distance
in an aisle. This method only allows for identical storage in all aisles. The methods both yield maximum differences with
simulation of about 4%. Rao and Adil (2013b) assume all pick items are distributed over the classes per fraction of their total
turnover, which yields an approximation for the travel in a single aisle with flexible class boundaries.

For S-shape routing, approximations for average route length mostly differ in the way they handle the return in the last
aisle when the number of aisles is odd. Hall (1993) adds the length of one aisle with a probability of 0.5 regardless of the
actual probability and travel distance in the last aisle. Jarvis and Mcdowell (1991) assume the picker continues to the back
of the warehouse and do not account for the return to the front cross aisle, which essentially provides the same distance as in
Caron et al. (1998) where it as assumed that the return is always from the middle of the last aisle. An exact expression for
average route length under class-based storage is given by Chew and Tang (1999), but this allows only one storage class to be
stored in a single aisle. They derive an approximation based on their exact formula, which has been improved by Roodbergen
and Vis (2006) for random storage and by Rao and Adil (2013a) for class-based storage.

For midpoint and largest-gap routing, the approximation of average route length has received less attention in literature.
Two different approximations for midpoint routing under random storage are proposed by Hall (1993). Additionally, Hall
(1993) derived an approximation for largest-gap routing with a component in the formula that contains results from a sim-
ulation of the largest gap in an aisle for a given number of pick items. Roodbergen and Vis (2006) improved this approxima-
tion. Hwang et al. (2004) propose a travel model for midpoint routing for a specific storage strategy, based on approximate
probabilities to enter an aisle as proposed by Kunder and Gudehus (1975). In this paper, we present exact formulas for the
expected route length for all previously mentioned routing heuristics, i.e., return, S-Shape, largest-gap, and midpoint routing.
5. Problem formulation

We consider an order picking area as described in Section 2 with m aisles each with n locations. In line with literature on
storage assignment and warehouse configuration, we assume both sides of the aisle are merged into a single column for sim-
plicity of exposition (e.g., Le-Duc and De Koster, 2005; Parikh and Meller, 2010). This assumption is not limiting for our anal-
ysis, which will be addressed in the relevant sections. Define K to be the set of items that need to be assigned to storage
locations. Define for each k 2 K a random variable Xk 2 f0;1g with Xk ¼ 1 corresponding to the event that item k is
demanded on a given order, and Xk ¼ 0 otherwise. Since we assume demand for items to be independent, Xk are independent
Poisson trials with probability pk � PðXk ¼ 1Þ; 8k 2 K. The demand distribution is completely described by the set
fpk; k 2 Kg. In the context of storage location assignment this demand model is also used in, for example, Jarvis and
Mcdowell (1991) and Eisenstein (2008). Given a realization of the Xk’s, we define an order as O � fkjk 2 K;Xk ¼ 1g. We
assume all items can be stored in any storage location, as is common in literature (e.g., Le-Duc and De Koster, 2005;
Eisenstein, 2008; Pan et al., 2012). Let A be a m� n matrix denoting a storage location assignment, where aij gives the index
of the item assigned to location j in aisle i, and ai ¼ ðai1; . . . ; ainÞ denotes all assignments within an aisle i. For ease of notation
we define pij � PðXaij ¼ 1Þ, that is, if item k is assigned to location j in aisle i then pij ¼ pk. Note that we assume K has size
m� n. Often the set of items to be stored is less than m� n. In this case, dummy items with picking probability 0 can be
added to meet the assumption.
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The way the model is defined now does not exclude the possibility that an order contains no pick items (an empty order).
Therefore, we condition on the event that the order has at least one pick item. Similar to Eisenstein (2008), defineP to be the
probability that an order is non-empty:
P � PðjOj > 0Þ ¼ 1�
Y
k2K

ð1� pkÞ;
where jOj denotes the number of elements in O. We assume the capacity of the order picker is sufficient to fulfill any order, as
is common in literature (see, e.g., Jarvis and Mcdowell, 1991; Eisenstein, 2008).

We consider four routing methods, each of which is indicated by a single letter in the formulas:
rðreturn routingÞ; sðS shapeÞ; gðlargest gapÞ or mðmidpointÞ: We let q be a placeholder in formulas for the routing method
if results hold for all routing methods. Dq denotes the expected route length of an order for a given storage location assign-
ment A, after correcting for empty orders. Note that strictly speaking DqðAÞ would be a more correct way of notation, how-
ever, for ease of notation the evident dependency on A is omitted in the notation; this also applies to several other variables.
We let Lc and Lqi denote respectively the distance traveled in the two cross aisles and in aisle i for any order picking route and
a given storage location assignment A, before correcting for empty orders. Let EðLcÞ and EðLqi Þ denote their respective
expected values.

We let Pi denote the probability of having at least one pick item in aisle i, that is Pi ¼ 1�Qn
j¼1ð1� pijÞ. And let P‘

i be the

probability of no pick items in aisles iþ 1; . . . ;m (‘ of ‘‘last”) and P f
i the probability of no pick items occurring in aisles

1; . . . ; i� 1 (f of ‘‘first”). Thus P f
i ¼Qi�1

j¼1ð1� PjÞ and P‘
i ¼

Qm
j¼iþ1ð1� PjÞ.

Below we summarize the main variables and parameters as used in the remainder of this paper. As the expected route
length depends on the routing method chosen, in the next section we first derive exact analytical formulas for the objective
function for four routing methods. Following that, we present a method for finding storage location assignments.

For the layout, we have the following parameters (see also Fig. 1):
m
 Number of aisles

n
 Number of storage locations per aisle

wa
 Width of an aisle

wc
 Distance from middle of a cross aisle to the head of an aisle

f
 Distance between two adjacent storage locations

i
 2 f1; . . . ;mg. An index for the aisles

j
 2 f1; . . . ; ng. An index for the locations in an aisle
To describe the orders, we have the following parameters:
K
 The set of all items

k
 2 K. An index to indicate an item

pk
 Probability that item k is in an order

P
 Probability of having an order of positive length

Xk
 Binary variable indicating whether (Xk ¼ 1) or not (Xk ¼ 0) item k is on an order

O
 A specific order. Collection of all k for which Xk ¼ 1
For the route length calculations we have the variables:
EðLcÞ
 Expected distance traveled in the two cross aisles, not corrected for empty orders

EðLqi Þ
 Expected distance traveled in aisle i for routing method q, not corrected for empty orders

EðLqÞ
 Expected distance traveled in aisles 1; . . . ;m for routing method q, not corrected for empty orders

Dq
 Expected total route length of orders for routing method q

pij
 Probability of the item assigned to storage location j in aisle i being in an order

Pi
 Probability of having to enter aisle i

P‘
i
 Probability of having no pick items in aisles iþ 1; . . . ;m
P f
i
 Probability of having no pick items in aisles 1; . . . ; i� 1
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6. Exact formulas for average route length

In this section, we present the analytical formulas for the average route length for the four routing methods, return, S-
shape, midpoint and largest gap. First, we present formulas for the expected travel distances within one aisle for each routing
method, not conditioned on the absence of empty orders. After that, we present a formula for the travel distance in the cross
aisles, that holds for all four routing methods, as well as the total expected route length formula. We have chosen this orga-
nization since the dynamic program for storage assignment in Section 8 relies on the formulas for travel distance within the
individual aisles.

6.1. Return routing

We determine the distance for traveling in aisle i with the return routing method, empty orders not excluded. In Sec-
tion 6.5, we add the formula for distances traveled in the cross aisles and rule out the empty orders to create the total for-
mula for route length. The distance an order picker has to travel in an aisle for return routing is solely determined by whether
there is a pick item in that aisle and if so, which pick item is furthest from the front cross aisle.

For an arbitrary order, the distance traveled in aisle i; i ¼ 1; . . .m, equals:
Lri ¼
0 if no product has to be picked in aisle i;

2 wc þ jf � 1
2 f

� �
if the product located at j is the furthest product to be picked in aisle i:

(

This can be explained as follows. Starting in the middle of the front cross aisle, the picker travels to the head of the aisle

(wc). Then he passes along j� 1 locations, each of length f. He may stop at some of these locations to perform a pick. Sub-
sequently, the picker has reached the last location that must be visited, and travel to the middle of it 1

2 f
� �

. To return to the
front cross aisle, the same distance must be traveled again. The expected travel distance can be found by multiplying the
distance corresponding to location j by the probability of the product located at that location being the furthest product
to be picked, for all locations j and aisles i.

Using conditioning, we obtain as expected value:
EðLri Þ ¼ 2
Xn
j¼1

wc þ jf � 1
2
f

� �
pij

Yn
h¼jþ1

ð1� pihÞ
 !

ð1Þ

¼ 2Piwc þ 2
Xn
j¼1

jf � 1
2
f

� �
pij

Yn
h¼jþ1

ð1� pihÞ
 !

:

The last equality follows from the property
Xn
j¼1

pij

Yn
h¼jþ1

ð1� pihÞ ¼ 1�
Yn
j¼1

ð1� pijÞ;
which can be proven by induction.

6.2. S-shape routing

For S-shape routing we present here, as with return routing, the formula for the distances traveled within the aisles, with-
out removing empty orders. We start by studying the last aisle that needs to be visited. If the number of aisles to visit is even,
then the total distance in all aisles is obtained simply by multiplying the expected number of visited aisles with the length of
an aisle. However, if the number of aisles to visit is odd then in the last aisle a turn must be made, which causes the travel
distance in the last aisle to be identical to return routing, see Fig. 2. First we introduce one additional variable, Pe

i , the prob-
ability that an even number of aisles must be visited before aisle i (i.e., in aisles 1; . . . ; i� 1). For Pe

i the following recursive
relation holds:
Pe
i ¼ Pe

i�1ð1� Pi�1Þ þ ð1� Pe
i�1ÞPi�1;
with Pe
1 � 1. The expected travel distance in aisle i for S-shape routing can now be written as:
EðLsi Þ ¼ ð1� Pe
i P

‘
i ÞPið2wc þ nf Þ þ Pe

i P
‘
iEðLri Þ:
The formula can be explained as follows. The term Pe
i P

‘
i gives the probability that in aisle i a turn must be made; that is,

the probability that the number of aisles visited before aisle i is even and no aisles need to be visited after aisle i. The distance
to be traveled in the aisle then equals the length of the return routing method, i.e., EðLri Þ. The probability of not having to
make a turn in aisle i is ð1� Pe

i P
‘
i Þ in which case the length of an aisle ð2wc þ nf Þ must be added if the aisle has pick items,

i.e., with probability Pi.
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6.3. Largest-gap routing

We first define Gi to be the expected largest gap in aisle i. We use a recursive approach to determine Gi. Let the largest gap
observed up to location j be g‘, conditioning on the realization of the picks in aisle i up to and including location j. Further-
more, let gc be the gap that is currently observed based on the realization of picks; this is the distance from the pick closest to
location j to location jþ 1. Finally, define Gijðgc; g‘Þ to be the expected largest gap in aisle i, given a gc and g‘ corresponding to
location j. Starting from the end of the aisle we recursively go over all locations in the aisle to determine Gijðgc; g‘Þ.

The expected largest gap can be found by solving the following set of recursive equations:
Gi � Gi0
1
2
f þwc;

1
2
f þwc

� �
Gi;nþ1ðgc; g‘Þ � g‘

Ginðgc; g‘Þ ¼ ð1� pinÞGi;nþ1 gc þ
1
2
f þwc;max g‘; gc þ

1
2
f þwc

� �� �
þ pinGi;nþ1

1
2
f þwc;max g‘;

1
2
f þwc

� �� �
Gijðgc; g‘Þ ¼ ð1� pijÞGi;jþ1ðgc þ f ;maxfg‘; gc þ fgÞ þ pijGi;jþ1ðf ;maxfg‘; fgÞ:
For further details see Appendix B. The expected travel length in aisle i for largest-gap routing can then be written as:
EðLg
i Þ ¼ P‘

i P
f
i EðLri Þ þ ðP‘

i þ P f
i � 2P‘

i P
f
i ÞPið2wc þ nf Þ þ ð1� P‘

i Þð1� P f
i Þ2ð2wc þ nf � GiÞ:
This formula can be explained as follows. The first term accounts for situations when aisle i is the only aisle with pick items,

which has a probability of P‘
i P

f
i and a travel distance identical to return routing in one aisle, EðLri Þ. The second term accounts

for situations in which aisle i is either the first or last aisle to visit (but not both), i.e., is traversed entirely with travel distance
2wc þ nf . The third term account for situations in which aisle i is neither the first nor the last aisle, and hence entered and left
from both sides with a distance equal to two times the aisle length minus two times the largest gap, 2ð2wc þ nf Þ � 2Gi.

6.4. Midpoint routing

The formula for the midpoint routing method is quite similar to that for the largest-gap routing. Only the turns in the
aisles are made such that the gap always crosses the middle of the aisle. Or put differently, the distance traveled in such
an aisle is comparable to performing return routing twice on both halves of the aisle. Letting ið1Þ and ið2Þ refer to the upper
and lower half of aisle i respectively, we obtain, similar to the distance estimate for return routing (Eq. (1)):
EðLmið1ÞÞ ¼ 2
Xn

j¼dn=2eþ1

wc þ ðn� jÞf þ 1
2
f

� �
pij

Yj�1

h¼dn=2eþ1

ð1� pihÞ
 !

EðLmið2ÞÞ ¼ 2
Xdn=2e
j¼1

wc þ jf � 1
2
f

� �
pij

Ydn=2e
h¼jþ1

ð1� pihÞ
 !
Very similar to the formula for largest-gap routing, we then have for the expected travel length in aisle i for midpoint
routing:
EðLmi Þ ¼ P‘
i P

f
i EðLri Þ þ ðP‘

i þ P f
i � 2P‘

i P
f
i ÞPið2wc þ nf Þ þ ð1� P‘

i Þð1� P f
i ÞðEðLmið1ÞÞ þ EðLmið2ÞÞÞ:
6.5. Cross aisle distances and total route length

As was already noted in Roodbergen and Vis (2006), cross aisle distances do not differ between the S-shape routing
method and the largest-gap routing method. The same reasoning applies to return routing and midpoint routing. Hence it
suffices to have one formula for the expected travel distance in the cross aisle.

The expected incremental value added to cross aisle distances by aisle i, is given by:
EðLci Þ ¼ 2waði� 1ÞPiP
‘
i :
That is, if we have to visit aisle i and none of the aisles iþ 1; . . . ;m, which has a probability PiP
‘
i of occurring, then we incur

a travel distance of 2waði� 1Þ. Total route length for routing method qð¼ r; s; g, or mÞ now can be obtained as:
Dq ¼ 1
P

Xm
i¼1

EðLqi Þ þ EðLci Þ
 !

;
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which is in this form also conditioned on the absence of empty orders. The formulas derived above remain valid for situa-
tions in the case the storage locations on both sides of an aisle are not merged into one column. Deriving the expected travel

distance in case two products k̂ and �k are stored opposite each other can be done by using a dummy product k with
pk ¼ 1� ð1� pk̂Þð1� p�kÞ. Additionally, in case of nonidentical storage space, using the appropriate distance function for loca-
tion j instead of the linear wc þ jf � 1

2 f will lead to the expected travel distance function. However, this may result in expo-
nential calculation times for largest-gap routing.

7. Optimality conditions

The mathematical model defined in the previous sections is non-linear and non-convex and hence is in general hard to
solve. In this section we prove some properties of optimal solutions that will aid later in our solution procedures.

We show that for any optimal storage location assignment under return routing, the items are stored in an ordering based
on their respective picking probabilities, both across aisles and inside the aisles.

Theorem 1. Given that pk < 1; 8k 2 K, a necessary condition for a solution to be optimal for the storage location assignment
problem under return routing is:
pi1 P pi2 P � � � P pin 8i 2 f1; . . . ;mg; ð2Þ
p1j P p2j P � � � P pmj 8j 2 f1; . . . ; ng: ð3Þ
Proof. See Appendix A. h

Theorem 1 extends results that have been found for one-dimensional settings, i.e., settings with only a single aisle
(Eisenstein, 2008; Chou et al., 2012). It is interesting to consider class-based storage for return routing in the context of The-
orem 1. Since, according to the theorem, the items have to be sorted both vertically (within the aisle) and horizontally (across
the aisles), it follows that the class boundaries must be non-increasing functions when plotting the highest location number
of each class as a function of the aisle number. For example, looking at Fig. 3, the storage location assignment on the left
complies with Theorem 1 and may therefore be optimal. The storage location assignment on the right, however, does not
comply with the theorem and is therefore known not to be optimal, without the need of calculating route length. This fact
can easily be seen in the figure when comparing the positions of the A-items in aisles 2 and 3. This insight drastically
decreases the number of solutions that need to be evaluated in an exhaustive search.

Under S-shape routing, there are only two options for visiting an aisle. The common way of visiting an aisle is to traverse
it completely. If, however, an odd number of aisles must be visited, a turn is made in the last aisle. This turn is identical to the
turn that would have been made under return routing. For this turn in the last aisle, we know Eq. (2) of Theorem 1 holds. And
since all other aisles are indifferent to the aisle’s storage location assignment (because we either do not traverse it or traverse
it entirely), it follows that Eq. (2) also holds for S-shape routing. This gives us Corollary 2.
Fig. 3. Class based storage with multiple classes. The left one might be optimal for return routing, the right cannot be optimal.
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Corollary 2. Given that pk < 1; 8k 2 K, a necessary condition for a solution to be optimal for the storage location assignment
problem under S-shape routing is:
pi1 P pi2 P � � � P pin 8i 2 f1; . . . ;mg:

A similar remark can be made for largest-gap and midpoint routing. When there is a pick item in aisle 1 or in aislem, then

we know that a route based on the largest-gap or midpoint routing methods traverses this aisle entirely, or, if this is the only
aisle to visit, a return is made. Thus, similar to S-shape routing it is either traversed completely or picked by a return route.
Hence, very similar to Corollary 2 for S-shape, we have the following.
Corollary 3. Given that pk < 1; 8k 2 K, a necessary condition for a solution to be optimal for the storage location assignment
problem under largest-gap and midpoint routing is:
pi1 P pi2 P � � � P pin i 2 f1;mg:
8. Solution method

The storage location assignment problem is a problem with a typically very large solution space and a complex objective
function. This may likely be the reason why only few articles on storage location assignment provide systematic procedures
for finding good or optimal solutions for the problem. In Section 6, we have presented new formulas for determining the
exact average route length that can be determined with low computational effort, which provides a first step in making
the problem more tractable. In Section 7, we derived some conditions that reduce the solution space that needs to be eval-
uated, which provides a second step in making the problem more tractable. In this Section, we give a structured solution
procedure, based on Dynamic Programming, that incorporates the results from Sections 6 and 7.

We first describe the dynamic program. Assume class-based storage with Q classes. Note that this does not exclude the
possibility for each item to be treated individually (i.e., Q ¼ jKjÞ, though it is unlikely that the presented approach would
then be tractable for realistically sized problems. Let the number of items in each class q be denoted by a parameter xq
and the probability of an item from class q to be in an order pq, for all q 2 Q . The parameter vector x is defined as

x ¼ ðx1; x2; . . . ; xQ Þ. States are described by means of the vector yi ¼ ðyi1; yi2; . . . ; yiQ Þ, which basically is a tally for the number
of items of each class that have been used so far. The set of feasible states at the stage corresponding to aisle i is given by

Yi ¼ yi
PQ

q¼1

��� yiq ¼ n� i; and yiq 6 xq for all q 2 Q
n o

. That is, from the available items, we must have selected exactly an

amount that fit into i aisles. The size of the state space of aisle i is polynomial in the size of the warehouse, as

jYij ¼ OððmnÞQ�1Þ. The forward dynamic program starts from state y0 � 0. The first transition adds aisle 1. We evaluate every
possible state y1 2 Y1. That is, we select a total of n items from all Q classes together, and since there is only one aisle under
consideration, assign these to aisle 1. We determine the best assignment to locations within aisle 1 for these items, and
determine the corresponding costs.

To make a transition from aisle i� 1 to aisle i, we evaluate every possible state yi 2 Yi: That is, we select a total of n� i
items from all Q classes together. Costs for state yi are obtained by finding a feasible cost minimizing combination of a state
yi�1; as previously determined in stage i� 1; an assignment zi � yi � yi�1 of items to aisle i, and an assignment of items to
specific locations in aisle i. Only states can be used for which zi P 0. Since zi is the allocation of products to a single aisle
and all aisles are identical, we have zi 2 Y1.

The last transition involves aisle m. For each state ym�1, as previously determined the stage corresponding to aisle m� 1,
we assign x� ym�1 items to aislem, find the best assignment of these items in aislem, and choose the best of these options as
our final solution.

Note that assigning a given set of m items to appropriate locations within an aisle may by itself already be a non-trivial
task. Furthermore, the above structure implies that the best way to assign items to locations in aisles 1; . . . ; i, does not
depend on later decisions for assigning items to locations in aisles iþ 1; . . . ;m. This is not always true, in which case the
dynamic program serves as a heuristic instead of an optimal algorithm. These specifics are discussed below, when introduc-
ing the transition costs cqi ðyi; ziÞ for the respective routing methods.

The value functions can now be written as:
ViðyiÞ ¼ min
zi2Y1

yi�yi�1¼zi

V i�1ðyi�1Þ þ cqi ðyi; ziÞ
� �

for i ¼ 1; . . . ;m

V0ðy0Þ ¼ 0:
8.1. Transition costs

For the transition costs in the dynamic program, we use:



48 A.S. Dijkstra, K.J. Roodbergen / Transportation Research Part E 102 (2017) 38–59
cqi ðyi; ziÞ ¼
1
P

EðLqi Þ þ EðLci Þ
� �

:

Note that EðLqi Þ and EðLci Þ can only be determined for a given storage location assignment ai ¼ ðai1; . . . ; ainÞ. In our dynamic
program, however, we only specify (through zi) which items are to be placed in aisle i but not at which locations within
the aisle. For each of the four routing methods, we discuss below the approach to obtain a specific storage location assign-
ment within the aisle for a given zi, and some other relevant considerations.

For return routing, due to Theorem 1, we can easily determine an optimal permutation pðziÞ of zi in aisle i. Therefore, tran-
sition costs for return routing can be determined quickly. This allows us to obtain optimal solutions in low calculation times.
The only remaining aspect that may need some attention in the calculation of cri ðyi; ziÞ is P‘

i , since this depends on the location
assignment in aisles that have not yet been evaluated by the dynamic program. However, note that an alternative way of
calculating P‘

i is given by:
P‘
i ¼

YT
t¼1

ð1� ptÞxt�yit :
For S-shape routing, we can for any given zi determine an optimal permutation pðziÞ, due to Corollary 2. However, a
requirement for the dynamic program in this setup to yield optimal solutions, is that all components of csi ðyi; ziÞ depend only
on yi and zi. This is not the case. It holds for all factors in the expression, except for Pe

i , which is the probability that an even

number of aisles must be visited before aisle i. To determine bPe
i , we need not only know yi, but also the exact division of items

among aisle 1; . . . ; i� 1. After all, different divisions lead to alterations in the probabilities of having to enter the aisles, which
are underlying in the calculation for determining the probability of visiting an even number of aisles. This information is not
retained in the setup of our dynamic program, and including this information would result in an intractably large state space.

This implies that we have no guarantee that the dynamic program produces optimal solutions with the presented tran-
sition cost formula for S-shape routing. However, we were unable to think of any systematic biases that may result. The main
driver for improving storage location assignment under S-shape routing is to minimize the number of aisles to visit, which
does not depend on Pe

i . By complete enumeration, we were able to obtain optimal solutions under S-shape routing, which
was feasible due to solution space restrictions following from the optimality conditions derived in Section 7. Comparisons
between optimal solutions and solutions from the dynamic program show that the difference is insignificant. These results
are presented in Section 9.

For largest-gap routing, we do not have any optimality conditions that allows us to easily convert zi into an optimal stor-
age location assignment within an aisle. We therefore limit the storage location assignment within aisles to two specific per-
mutations. Order z such that zð1Þ Pzð2Þ Pzð3Þ P � � � P zðnÞ. We consider the permutations ðzð1Þ; zð2Þ; . . . ; zðnÞÞ and
ðzð1Þ; zð3Þ; . . . ; zðn�1Þ; zðnÞ; . . . ; pð4Þ; pð2ÞÞ, which order the products from highest picking probability to lowest probability and
symmetric in the aisle respectively. We allow both permutations, and make the choice as integral part of the dynamic pro-
gram. Note that the combination of these two permutations is quite versatile, and can induce a wide variety of storage
shapes, including all a priori shapes from literature, such as diagonal storage, perimeter storage, within-aisle storage and
across-aisle storage. We use the same permutations for midpoint routing. As a consequence, solutions for storage location
assignment under largest-gap and midpoint routing need not be optimal, i.e., the dynamic program serves as a heuristic.

Finding the best assignment takes the evaluation of OðnQ�1Þ different assignments. The evaluation of an assignment of
items to an aisle, as described above, can make use of precomputed values for expected largest-gap distance as well as
expected return distance. This implies that the evaluation of an assignment of items to an aisle can be done in constant time.

The size of the state space is of order OððmnÞQ�1Þ for each aisle. Finally, the value functions need to be computed for m aisles.

Hence, computing the value functions of the DP has complexity OðmÞ � OðnQ�1Þ � OððmnÞQ�1Þ ¼ OðmQn2ðQ�1ÞÞ.
9. Numerical experiments

We have implemented the formulas for expected route length and the dynamic programming method in Julia. We study a
picking area with wa ¼ 2; wc ¼ 0:5; f ¼ 1; n ¼ 24 employing class-based storage with three classes (A, B, and C). The set-
tings we use in these experiments are composed as follows. The picking area has either 7 or 15 aisles. The probabilities
for items of each class to be in an order are set such that the average number of pick items per route is either 2, 10 or 20
and the probability of a pick item coming from classes A/B/C is either 80/15/5 percent or 50/30/20 percent. The classes A,
B, and C span respectively 20%, 30% and 50% of the available storage space. This results in 12 sets of probabilities
ðpA; pB; pCÞ for an item of a class to be in an order, namely 4
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routing method, we determine the average route length under four common storage location assignment rules: across-aisle
storage (AA), within-aisle storage (WA), diagonal storage (DI), and perimeter (PE) storage (cf. Petersen and Schmenner,
1999). We compare these to the storage location assignment obtained by our dynamic programming algorithm (DP). Calcu-
lation times are reported for a 3.30 GHz Intel i3-3220 CPU.



Table 1
Expected route lengths for a number of settings under return routing. Bold indicates the minimum value of the columns AA, WA, DI and PE.

Aisles Picks per route Pick percentage AA WA DI PE Our DP CPU (s)

7 2 80/15/5 35.88 44.77 34.69 53.98 34.30 4.69
7 2 50/30/20 49.83 57.80 49.58 63.75 49.14 4.67
7 10 80/15/5 89.97 106.70 91.30 121.49 89.56 4.69
7 10 50/30/20 134.94 156.94 137.64 167.06 134.89 4.71
7 20 80/15/5 128.08 145.77 128.24 163.30 127.34 4.70
7 20 50/30/20 195.37 219.54 198.04 234.57 195.37 4.71
15 2 80/15/5 57.12 63.49 50.75 91.13 49.92 58.87
15 2 50/30/20 71.96 78.51 70.04 92.92 68.79 59.00
15 10 80/15/5 130.03 172.01 140.02 225.77 128.40 59.14
15 10 50/30/20 184.28 227.56 198.72 249.77 183.89 59.87
15 20 80/15/5 190.91 242.84 205.88 334.23 190.29 62.19
15 20 50/30/20 283.03 342.33 304.58 380.78 282.91 59.82

Table 2
Expected route lengths for a number of settings under S-shape routing. Bold indicates the minimum value of the columns AA, WA, DI and PE.

Aisles Picks per route Pick percentage AA WA DI PE Our DP CPU (s)

7 2 80/15/5 58.19 46.42 51.28 54.72 45.89 9.06
7 2 50/30/20 62.00 58.06 59.46 63.17 57.76 11.14
7 10 80/15/5 155.25 93.18 129.59 105.51 92.82 7.50
7 10 50/30/20 156.67 136.34 150.29 143.99 136.28 7.47
7 20 80/15/5 185.60 119.77 159.93 135.45 119.69 7.50
7 20 50/30/20 192.03 172.08 185.78 182.56 172.01 7.60
15 2 80/15/5 82.17 61.37 64.63 90.28 60.88 115.07
15 2 50/30/20 86.27 77.50 78.15 92.13 77.14 104.23
15 10 80/15/5 232.59 144.39 180.27 207.70 144.33 94.66
15 10 50/30/20 233.65 206.11 217.30 230.17 206.11 94.42
15 20 80/15/5 336.67 191.44 246.32 288.65 191.44 94.24
15 20 50/30/20 334.62 287.45 306.76 322.85 287.45 94.64

Table 3
Expected route lengths for a number of settings under largest-gap routing. Bold indicates the minimum value of the columns AA, WA, DI and PE.

Aisles Picks per route Pick percentage AA WA DI PE Our DP CPU (s)

7 2 80/15/5 55.12 45.16 49.44 53.43 45.07 29.40
7 2 50/30/20 58.70 54.92 56.22 59.41 54.58 26.47
7 10 80/15/5 110.69 83.71 103.04 85.74 79.98 26.35
7 10 50/30/20 124.95 116.74 122.94 109.68 108.49 26.53
7 20 80/15/5 138.60 108.79 129.08 98.32 98.32 26.37
7 20 50/30/20 166.02 157.69 164.12 140.47 140.47 26.30
15 2 80/15/5 77.36 58.38 61.94 82.78 58.35 170.09
15 2 50/30/20 81.40 72.58 73.48 84.68 72.10 171.67
15 10 80/15/5 152.01 130.06 141.90 128.42 118.44 172.75
15 10 50/30/20 170.80 167.09 168.73 156.37 151.43 172.52
15 20 80/15/5 203.34 180.87 193.78 152.24 152.01 183.98
15 20 50/30/20 242.18 241.05 242.96 209.27 209.25 187.35

Table 4
Expected route lengths for a number of settings under midpoint routing. Bold indicates the minimum value of the columns AA, WA, DI and PE.

Aisles Picks per route Pick percentage AA WA DI PE Our DP CPU (s)

7 2 80/15/5 55.12 45.18 49.46 53.43 45.10 12.64
7 2 50/30/20 58.73 54.98 56.28 59.42 54.63 12.60
7 10 80/15/5 111.03 84.55 104.19 85.82 80.21 12.67
7 10 50/30/20 126.85 119.41 125.67 110.64 109.40 12.74
7 20 80/15/5 139.77 111.50 132.49 98.62 98.62 12.67
7 20 50/30/20 171.84 164.93 172.08 143.57 143.57 12.66
15 2 80/15/5 77.37 58.48 61.99 82.78 58.43 152.85
15 2 50/30/20 81.43 72.64 73.53 84.69 72.15 156.18
15 10 80/15/5 152.22 134.19 144.51 128.48 118.57 158.70
15 10 50/30/20 172.07 170.45 171.47 157.02 152.07 158.51
15 20 80/15/5 204.17 189.64 201.87 152.46 152.46 157.14
15 20 50/30/20 246.89 251.05 252.18 211.64 211.63 151.32
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Fig. 4. Optimal storage location assignments under return routing for different expected order lengths and demand distributions.
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Fig. 5. Storage location assignments for S-shape routing produced by the DP for different expected order lengths and demand distributions.
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Fig. 6. Storage location assignments for largest-gap routing produced by the DP for different expected order lengths and demand distributions.
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Fig. 7. Storage location assignments for midpoint routing produced by the DP for different expected order lengths and demand distributions.
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From the results in Tables 1–4, it can be seen that the dynamic program consistently outperforms the common storage
location assignment rules. It must be noted that solutions of the dynamic program as presented in the table for return rout-
ing are optimal. For S-shape routing, solutions of the dynamic program may not be optimal. However, due to the limitations
on the solution space imposed by Corollary 2, we were able to determine optimal solutions through complete enumeration
for settings with 5 aisles under S-shape routing within an hour per instance. This allowed us to benchmark at least some of
these smaller instances. From a test set with 80 such instances with 5 aisles, only one instance was not solved to optimality
by the dynamic program, with a gap in route length of 0.02% (Appendix D).

The results in the four tables show that in most cases one of the four common storage location assignment rules has a
performance that is quite close to our dynamic program. However, which common rule is best, differs per setting. For an
implementation in practice, a choice to settle for simply checking all four common rules and subsequently choosing the best,
may provide acceptable performance. With our dynamic program, we are now able to determine or estimate the loss of effi-
ciency for this option. For S-shape routing the difference of this approach with our near-optimal results is minimal. For
return routing the deviation of this approach from our optimal results amounts to at most 1.82% in the 15 aisles, 2 picks,
80/15/5 pick percentage setting. Our (heuristic) solutions for largest-gap and midpoint both still improve over the best com-
mon storage location assignment rule by up to 8.4% (15 aisles, 10 picks, 50/30/20).

In Figs. 4–7 we have depicted the best storage patterns for the four routing methods under various conditions. Petersen
and Schmenner (1999) note that return routing works best with diagonal storage and across-aisle storage, which is con-
firmed by the optimal solutions in Fig. 4. Though it must be noted that most of the optimal solutions are not diagonal or
across-aisle, but rather some sort of interpolation between the two.

Jarvis and Mcdowell (1991) showed that the optimal storage location assignment is the within-aisle storage for S-shape
routing. However, they approximate the length of the turn in the last aisle. Under our exact formulation from Section 6, we
find slightly different results. In Fig. 5(a) and (b), we can see that the B-items in aisles 8 and 9 are not located according to
within-aisle storage. Similarly, in Fig. 5(a), the A-items in aisles 2 and 3 are not stored according to within-aisle storage. In a
larger set of experiments we found differences between the solution of the dynamic program and the within-aisle configu-
ration of up to 2%. This difference comes mostly from situations where there is a high probability on orders that contain only
1 item, which pushes the preferred storage location assignment a little towards configurations that work well with return
routing.

The solution shapes for largest-gap routing and midpoint routing are quite similar, as can be seen in Figs. 6 and 7. The
largest differences can be observed when the demand distribution is 80=15=5; the solutions for midpoint routing appear
to mix the different classes more. Petersen and Schmenner (1999) note that within-aisle and perimeter storage work best
with largest gap routing. This appears consistent with the results in Fig. 6. However, this is not entirely true. In standard
perimeter storage the A-items are located at the perimeter of the area. The solutions of the dynamic program show many
solutions where the C-items are in the right-most aisles, and a perimeter-style distribution is used only in some of the aisles
on the left. Apparently, the probability of having any C-item in an order in these settings is small enough to store an entire
aisle of A-items in the middle of the warehouse and risk having to enter it twice.

Finally, the performance of the routing methods for our instances can be compared in Table 5. Midpoint routing is a
restricted version of largest-gap routing. Hence, the expected route length of largest-gap routing dominates the expected
route length of midpoint routing, which is confirmed by our results. Return routing is the best routing method for instances
with a small expected order length, whereas largest-gap routing is better when the expected order length is larger. For ran-
dom storage, Hall (1993) reports largest-gap routing to be better than S-shape routing when the number of picks per aisle is
less than 3.8. The expected number of picks in each aisle in our instances is substantially lower than 3.8. Even though we
evaluate storage assignments designed specifically for the routing method employed, we feel this adequately explains
why S-shape routing never has the shortest expected route length in our instances.
Table 5
Expected route length for the DP solutions for the different routing methods. Minimum per row in bold.

Aisles Picks per route Pick percentage Return S-shape Largest gap Midpoint

7 2 80/15/5 34.30 45.89 45.07 45.10
7 2 50/30/20 49.14 57.76 54.58 54.63
7 10 80/15/5 89.56 92.82 79.98 80.21
7 10 50/30/20 134.89 136.28 108.49 109.40
7 20 80/15/5 127.34 119.69 98.32 98.62
7 20 50/30/20 195.37 172.01 140.47 143.57
15 2 80/15/5 49.92 60.88 58.35 58.43
15 2 50/30/20 68.79 77.14 72.10 72.15
15 10 80/15/5 128.40 144.33 118.44 118.57
15 10 50/30/20 183.89 206.11 151.43 152.07
15 20 80/15/5 190.29 191.44 152.01 152.46
15 20 50/30/20 282.91 287.45 209.25 211.63
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10. Concluding remarks

In this paper we have presented formulas that give the exact average route length for multi-aisle multi-item picking in
warehouses under the return, S-shape, largest-gap and midpoint routing methods. Our formulas work for any storage loca-
tion assignment. Previous research provided formulas that were either approximations for average route length, were appli-
cable only for a limited set of storage location patterns, or both. The exactness of the calculations for average route length is
important, since we have been aiming towards proven optimal solutions. To enable fast calculations, we have derived a num-
ber of optimality conditions.

We presented a dynamic programming algorithm for determining solutions to the storage location assignment problem,
which uses the optimality conditions for limiting the considered solution space and uses the exact average route length for-
mulas as objective function. The dynamic programming algorithm is shown to provide optimal solutions under the return
routing method, and near-optimal solutions under the S-shape routing method. Deviations found for solutions under S-
shape routing are all less than 0.02% from optimal. The same dynamic programming algorithm is used for determining stor-
age location assignments for largest-gap and midpoint routing. The solutions found by the dynamic program under these
two routing methods, outperform common storage location assignment configurations on every considered instance. Storage
location assignment patterns found by the dynamic program deviate from previously considered patterns in several ways.
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Appendix A. Proof of Theorem 1

Proof. First observe that the allocation of products within an aisle does not affect the cross-aisle distance. Then Eq. (2) is
equivalent to Theorem 5.1 of Eisenstein (2008). To prove Eq. (3) we will first introduce some notation. Let FiðjÞ be the
expected travel distance in aisle i, conditioned on the fact that no location after location j is visited. Then we can describe FiðjÞ
by the recurrence relation:
FiðjÞ ¼
2 wc þ 1

2 f
� �

pi1 if j ¼ 1
2 wc þ j� 1

2

� �
f

� �
pij þ ð1� pijÞFiðj� 1Þ if 1 < j 6 n:

(

Note that FiðnÞ ¼ EðLr
iÞ. Suppose there is an optimal solution A� such that Eq. (3) does not hold. That is, there exist aisles h and

i such that h < i and p�
hk < p�

ik for some k 2 f1; . . . ;ng in this optimal solution. Now construct a new solution A0 by ordering the
products from aisles h and i by location, that is p0

hj ¼ maxfp�
hj; p

�
ijg and p0

ij ¼ minfp�
hj; p

�
ijg for all j. Let F�

i ðjÞ and F 0
iðjÞ be the cor-

responding expected travel distances. We now show by mathematical induction that:
DðjÞ � F�
hðjÞ þ F�

i ðjÞ � F 0
hðjÞ � F 0

iðjÞ P 0 8j 2 f1; . . . ;ng: ðA:1Þ

Consider j = 1:
Dð1Þ ¼ wc þ 1
2
f

� �
p�
h1 þ p�

i1 �minðp�
h1;p

�
i1Þ �maxðp�

h1;p
�
i1Þ

� � ¼ 0
Hence Eq. (A.1) hold for j ¼ 1. Now, as induction hypothesis, assume Eq. (A.1) holds for j ¼ ĵ, we then have for j ¼ ĵþ 1
Dð̂jþ 1Þ ¼ ð1� p�
h;̂jþ1

ÞF�
hð̂jÞ þ ð1� p�

i;̂jþ1
ÞF�

i ð̂jÞ � ð1� p0
h;̂jþ1

ÞF 0
hð̂jÞ � ð1� p0

i;̂jþ1
ÞF 0

i ð̂jÞ:
Consider two cases.

Case 1: p0
h;̂jþ1

¼ p�
h;̂jþ1

and p0
i;̂jþ1

¼ p�
i;̂jþ1

. Then some rearrangement of terms yields
Dð̂jþ 1Þ ¼ ð1� p�
h;̂jþ1

ÞðF�
hð̂jÞ þ F�

i ð̂jÞ � F 0
h ð̂jÞ � F 0

i ð̂jÞÞ þ ðp�
h;̂jþ1

� p�
i;̂jþ1

ÞðF�
i ð̂jÞ � F 0

i ð̂jÞÞ P 0:
The inequality follows from the induction hypothesis, from p�
h;̂jþ1

P p�
i;̂jþ1

and from F�
i ð̂jÞ P F 0

i ð̂jÞ, which in turn follows directly

from p�
ij P p0

ij 8j 2 f1; . . . ;ng.
Case 2: p0

h;̂jþ1
¼ p�

i;̂jþ1
and p0

i;̂jþ1
¼ p�

h;̂jþ1
. Then similar to case 1 we have
Dð̂jþ 1Þ ¼ ð1� p�
i;̂jþ1

ÞðF�
h ð̂jÞ þ F�

i ð̂jÞ � F 0
hð̂jÞ � F 0

i ð̂jÞÞ þ ðp�
i;̂jþ1

� p�
h;̂jþ1

ÞðF�
hð̂jÞ � F 0

i ð̂jÞÞ P 0;
since p�
hj P p0

ij 8j 2 f1; . . . ;ng implies F�
hð̂jÞ P F 0

i ð̂jÞ. Hence, we can conclude that Eq. (A.1) is true. This implies that

the expected in-aisle travel distance for A0 is less than or equal to that of A�. Additionally A0 will have a lower expected
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cross-aisle travel than A�, as is shown in the proof of Theorem 2 in Jarvis and Mcdowell (1991). This contradicts that A� is
optimal and completes the proof. h
Appendix B. Determining expected largest gap

The expected largest gap can be determined using a Dynamic Program. Before going into the specifics of the DP, we first
focus on the task of determining the largest gap in aisle i for a given (deterministic) order by means of a step-wise procedure.
The DP will then later calculate the expected largest gap, given that the step-wise procedure is in a certain state. The
expected largest gap in the aisle is then obtained by calculating the expected largest gap given the start state of the step-
wise procedure.

The idea of the procedure is to go through the aisle, keeping track of both the current gap and the largest gap found so far,
updating the latter only if it is exceeded by the current gap. A key aspect is that we condition on whether there is a pick at a
location or not, this enables us to expand the procedure to the stochastic case. We start our calculation in the front cross aisle
and define the length of the current gap, gcð0Þ, to be gcð0Þ ¼ 1

2 f þwc , and the length of the longest gap found so far, g‘ð0Þ, to
be g‘ð0Þ ¼ 1

2 f þwc . That is, being in the front cross aisle, we know we can at least move to the first location in the aisle before
encountering a pick item, which is a distance of 1

2 f þwc. Next we observe whether a pick item is to be made at location 1. If a
pick item is at location 1, then gcð1Þ ¼ f and g‘ð1Þ ¼ maxfg‘ð0Þ; fg. That is, the current gap gcð1Þ ranges from location 1 until
at least location 2, and the largest observed gap g‘ð1Þ is either between the front cross aisle and location 1, or between loca-
tions 1 and 2. If there is no pick item at location 1, then we calculate gcð1Þ ¼ gcð0Þ þ f and g‘ð1Þ ¼ g‘ð0Þ þ f . That is, we know
the current gap ranges from the front cross aisle at least until location 2. Generally, moving from location j� 1 to location j,
for j ¼ 1; . . . ;n� 1 we update
gcðjÞ ¼
f if there is a pick item at location j

gcðj� 1Þ þ f if there is no pick item at location j;

�

and
g‘ðjÞ ¼
maxfg‘ðj� 1Þ; fg if there is a pick item at location j
maxfg‘ðj� 1Þ; gcðj� 1Þ þ fg if there is no pick item at location j:

�

For the last location n we have:
gcðnÞ ¼
1
2 f þwc if there is a pick item at location n

gcðn� 1Þ þ 1
2 f þwc if there is no pick item at location n;

(

and
g‘ðnÞ ¼
max g‘ðn� 1Þ; 12 f þwc

	 

if there is a pick item at location n

max g‘ðn� 1Þ; gcðn� 1Þ þ 1
2 f þwc

	 

if there is no pick item at location n:

(

The largest gap in this aisle for a deterministically given set of pick items is then given by g‘ðnÞ. Next, we add probabilities
and perform backward stochastic dynamic programming on the described structure to obtain the expected largest gap. We
define states ðgc; glÞ for all possible combinations of gap lengths. Note that since states are invariant, we omit the indexing ðjÞ,
we used above. Even though we start with a large number of states, this amount decreases in each step, which ensures the
process to be fast to calculate. Let the expected largest gap in aisle i, given that the state at location j of the step-wise pro-
cedure formulated above is ðgc; g‘Þ, be denoted Gijðgc; g‘Þ.

Example 1. Consider the aisle in Fig. B.8. The aisle has 8 picks, the distances are wc ¼ 3 and f ¼ 1. One can see directly from
the picture that the gaps in the aisle are 4:5 at the beginning, 3 in the middle and 6:5 at the end, leading to a largest gap of
6:5. As an illustration, the values of the step-wise procedure are given in Table D.6. Below, the step-wise procedure is
executed step by step for all locations.
Fig. B.8. Aisle Example 1.



Table D.6
Current and largest gap for aisle Example 1.

Step 0 1 2 3 4 5 6 7 8

gc 3.5 4.5 1 2 3 1 2 3 6.5
g‘ 3.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 6.5
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0. Starting before the first pick at the front of the aisle we have a gap of wc þ 0:5f ¼ 3:5, hence gcð0Þ ¼ 3:5 and g‘ð0Þ ¼ 3:5.
1. At location 1 we have no pick, increasing the current gap by 1 to gcð1Þ ¼ 4:5. Moreover, for the largest gap we have

g‘ð1Þ ¼ maxfg‘ð0Þ; gcð0Þ þ 1g ¼ 4:5.
2. There is a pick at location 2, resetting the current gap to gcð2Þ ¼ 1. Furthermore, g‘ð2Þ ¼ maxfg‘ð1Þ;1g ¼ 4:5.
3. No pick at location 3, hence gcð3Þ ¼ gcð2Þ þ 1 ¼ 2 and g‘ð3Þ ¼ maxfg‘ð2Þ; gcð2Þ þ 1g ¼ 4:5.
4. No pick at location 4, hence gcð4Þ ¼ gcð3Þ þ 1 ¼ 3 and g‘ð4Þ ¼ maxfg‘ð3Þ; gcð3Þ þ 1g ¼ 4:5.
5. A pick at location 5, hence gcð5Þ ¼ 1, and g‘ð5Þ ¼ maxfg‘ð4Þ;1g ¼ 4:5.
6. No pick at location 6, hence gcð6Þ ¼ gcð5Þ þ 1 ¼ 2 and g‘ð6Þ ¼ maxfg‘ð5Þ; gcð5Þ þ 1g ¼ 4:5.
7. No pick at location 7, hence gcð7Þ ¼ gcð6Þ þ 1 ¼ 3 and g‘ð7Þ ¼ maxfg‘ð6Þ; gcð6Þ þ 1g ¼ 4:5.
8. No pick at location 8 ¼ n, hence gcð8Þ ¼ gcð7Þ þ 1

2 f þwc ¼ 6:5. Moreover, g‘ð8Þ ¼ maxfg‘ð7Þ; gcð7Þ þ 3:5g ¼ 6:5.

Finally, the largest gap in the aisle is obtained as g‘ð8Þ ¼ 6:5.

Step 1: As is common with dynamic programming we start in a trivial stage, i.e., beyond the last location in location ‘‘n + 1”.
Available states ðgc; g‘Þ are such that gc; g‘ 2 1

2 f þwc;1 1
2 f þwc; . . . ; n� 1

2

� �
f þwc;nf þ 2wc

	 
 [ ff ;2f ;3f ; . . . ; ðn� 1Þfg,
with gc 6 g‘. The expected largest gap Gi;nþ1 for each state is set by definition equal to the state’s value for the largest
gap g‘, i.e., Gi;nþ1ðgc; g‘Þ � g‘.

Step 2: Now we consider location n. We observe the probability pin for location n and determine Ginðgc; g‘Þ for all possible
states ðgc; g‘Þ with gc; g‘ 2 1

2 f þwc;1 1
2 f þwc; . . . ; n� 1

2

� �
f þwc

	 
 [ ff ;2f ;3f ; . . . ; ðn� 1Þfg and gc 6 g‘ as:
Ginðgc; g‘Þ ¼ ð1� pinÞGi;nþ1 gc þ
1
2
f þwc;max g‘; gc þ

1
2
f þwc

� �� �
þ pinGi;nþ1

1
2
f þwc;max g‘;

1
2
f þwc

� �� �
:

Step 3: For locations j ¼ 1; . . . ;n� 1, we determine Gijðgc; g‘Þ for all possible states ðgc; g‘Þ with
gc; g‘ 2 1

2 f þwc;1 1
2 f þwc; . . . ; j� 1

2

� �
f þwc

	 
 [ ff ;2f ;3f ; . . . ; ðj� 1Þfg and gc 6 g‘ as:
Gijðgc; g‘Þ ¼ ð1� pijÞGi;jþ1ðgc þ f ;maxfg‘; gc þ fgÞ þ pijGi;jþ1ðf ;maxfg‘; fgÞ: ðB:1Þ

Step 4: Finally, to obtain the expected largest gap Gi for aisle i note that
Gi � Gi0
1
2
f þwc;

1
2
f þwc

� �
Appendix C. Storage assignments

In this section we explain how to generalize pre-defined storage assignments for class-based storage to full-turnover stor-
age. Not only does this offer guidance when storing individual products based on full turnover, but it also helps when the
storage classes do not ‘fit’ in the shape some storage assignments assume, e.g., the number of products in a class is not a
multiple of the number of products in an aisle. First, the products are ordered based on their picking probability. In the case
of class-based storage all products in a class have the same picking probability and are sorted randomly within their class.
Secondly, the locations in the warehouse are ordered on preference. This preference depends on the storage assignment
method used. Below we will specify preference functions uw for within-aisle (WA), ua for across-aisle (AA), ud for diagonal
(DI), and uP for perimeter (PE) storage. Finally, products are assigned to locations according to the two orders.

Within-aisle storage confines storage classes to entire aisles. Aisles closer to the depot are more desirable and contain the
classes with higher demands. Thus, the preference of a storage location ði; jÞ is based primarily on the aisle index i. The sec-
ondary condition determining the preference is the location index j. Hence, when locations share the same aisle, the loca-
tions closest to the front cross-aisle are preferred. Letting � > 0 be some small number, the following preference function
reflects these properties:
uwði; jÞ ¼ �i� �j: ðC:1Þ

Across-aisle storage is the opposite of with-in aisle storage. Now the primary condition on which the preference of a stor-

age location is based is the location index j, whereas the aisle i is the secondary condition. Hence we obtain similarly



Table D
Objecti

n

16
16
16
16
16
16
16
16
16
16
24
24
24
24
24
24
24
24
24
24
16
16
16
16
16
16
16
16
16
16
24
24
24
24
24
24
24
24
24
24
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uaði; jÞ ¼ ��i� j: ðC:2Þ

Diagonal storage is based on the distance to the depot. Locations closer to the depot are preferred over locations further

away. Recall that the distance from the depot for a location ði; jÞ is given by waði� 1Þ þwc þ f j� 1
2

� �
. Simplifying the distance

function by removing constants, we obtain the following preference function
udði; jÞ ¼ �wai� fj: ðC:3Þ

Finally, for perimeter storage locations closer to the perimeter are preferred over locations further away. Therefore, aisles

1 andm are preferred over all other aisles, where aisle 1 is preferred over aislem. Due to Corollary 3 we order the locations in
these aisle by their distance from the front cross-aisle. For other aisles, the distance to the cross-aisles is the primary con-
dition on which locations are ordered. The aisle number is the secondary condition. Finally, the distance to the front cross-
aisle is used as a third condition when both the primary and secondary condition are the same for two locations. Let M be
some large number. Then the following preference function represents the preferences described above.
upði; jÞ ¼ ��j� i if i ¼ 1; i ¼ m

�M �minf�2 þ nþ 1� j; jg � �i if 1 < i < m:

�
ðC:4Þ
Appendix D. Optimal solutions S-shape routing

See Table D.7.
.7
ve value of the optimal solution and our DP for instances with 5 aisles and S-shape routing.

xA xB xC pA pB pC Our DP Optimal Difference (%)

16 24 40 0.05000 0.00625 0.00125 20.801 20.797 0.019
16 24 40 0.03125 0.01250 0.00500 27.876 27.876 0.000
16 24 40 0.10000 0.01250 0.00250 34.642 34.642 0.000
16 24 40 0.06250 0.02500 0.01000 49.115 49.115 0.000
16 24 40 0.25000 0.03125 0.00625 56.586 56.586 0.000
16 24 40 0.15625 0.06250 0.02500 87.131 87.131 0.000
16 24 40 0.50000 0.06250 0.01250 75.506 75.506 0.000
16 24 40 0.31250 0.12500 0.05000 116.978 116.978 0.000
16 24 40 1.00000 0.12500 0.02500 99.033 99.033 0.000
16 24 40 0.62500 0.25000 0.10000 141.333 141.333 0.000
24 36 60 0.03333 0.00417 0.00083 26.597 26.597 0.000
24 36 60 0.02083 0.00833 0.00333 34.434 34.434 0.000
24 36 60 0.06667 0.00833 0.00167 44.985 44.985 0.000
24 36 60 0.04167 0.01667 0.00667 61.321 61.321 0.000
24 36 60 0.16667 0.02083 0.00417 72.493 72.493 0.000
24 36 60 0.10417 0.04167 0.01667 108.949 108.949 0.000
24 36 60 0.33333 0.04167 0.00833 95.436 95.436 0.000
24 36 60 0.20833 0.08333 0.03333 146.894 146.894 0.000
24 36 60 0.66667 0.08333 0.01667 124.513 124.513 0.000
24 36 60 0.41667 0.16667 0.06667 178.580 178.580 0.000
24 24 32 0.03333 0.00625 0.00156 24.025 24.025 0.000
24 24 32 0.02083 0.01250 0.00625 30.658 30.658 0.000
24 24 32 0.06667 0.01250 0.00313 41.881 41.881 0.000
24 24 32 0.04167 0.02500 0.01250 53.894 53.894 0.000
24 24 32 0.16667 0.03125 0.00781 71.464 71.464 0.000
24 24 32 0.10417 0.06250 0.03125 96.183 96.183 0.000
24 24 32 0.33333 0.06250 0.01563 92.589 92.589 0.000
24 24 32 0.20833 0.12500 0.06250 126.752 126.752 0.000
24 24 32 0.66667 0.12500 0.03125 112.812 112.812 0.000
24 24 32 0.41667 0.25000 0.12500 147.433 147.433 0.000
36 36 48 0.02222 0.00417 0.00104 30.291 30.291 0.000
36 36 48 0.01389 0.00833 0.00417 37.563 37.563 0.000
36 36 48 0.04444 0.00833 0.00208 53.034 53.034 0.000
36 36 48 0.02778 0.01667 0.00833 66.639 66.639 0.000
36 36 48 0.11111 0.02083 0.00521 90.206 90.206 0.000
36 36 48 0.06944 0.04167 0.02083 120.202 120.202 0.000
36 36 48 0.22222 0.04167 0.01042 117.260 117.260 0.000
36 36 48 0.13889 0.08333 0.04167 159.532 159.532 0.000
36 36 48 0.44444 0.08333 0.02083 142.829 142.829 0.000
36 36 48 0.27778 0.16667 0.08333 186.833 186.833 0.000
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