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Abstract

The key challenge in multiagent learning is learning a best response to the behaviour
of other agents, which may be non-stationary: if the other agents adapt their strategy
as well, the learning target moves. Disparate streams of research have approached non-
stationarity from several angles, which make a variety of implicit assumptions that make
it hard to keep an overview of the state of the art and to validate the innovation and
significance of new works. This survey presents a coherent overview of work that addresses
opponent-induced non-stationarity with tools from game theory, reinforcement learning and
multi-armed bandits. Further, we reflect on the principle approaches how algorithms model
and cope with this non-stationarity, arriving at a new framework and five categories (in
increasing order of sophistication): ignore, forget, respond to target models, learn models,
and theory of mind. A wide range of state-of-the-art algorithms is classified into a taxonomy,
using these categories and key characteristics of the environment (e.g., observability) and
adaptation behaviour of the opponents (e.g., smooth, abrupt). To clarify even further we
present illustrative variations of one domain, contrasting the strengths and limitations of
each category. Finally, we discuss in which environments the different approaches yield
most merit, and point to promising avenues of future research.

Keywords: Multiagent learning, reinforcement learning, multi-armed bandits, game
theory

1. Introduction

There are many successful applications of multiagent systems (MAS) in the real world.
Examples are ubiquitous in energy applications, for example, to implement a network to
distribute electricity (Pipattanasomporn et al., 2009) or to coordinate the charging of elec-
tric vehicles (Valogianni et al., 2015), in security, to patrol the Los Angeles airport (Pita
et al., 2009) and in disaster management to assign a set of resources to tasks (Ramchurn
et al., 2010). Multiagent systems include a set of autonomous entities (agents) that share
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a common environment and where each agent can independently perceive the environment,
act according to its individual objectives and as a consequence, modify the environment.

How the environment changes as a consequence of an agent exerting an action is known
as the environment dynamics. In order to act optimally with respect to its objectives
these dynamics need to either be known (a priori) by the agent or otherwise be learned by
experience, i.e., by interacting many times with the environment. Once the environment
dynamics have been learned, the agent can then adapt its behaviour and act according to
its target objective. We know a lot about the single agent case, where only one agent is
learning and adapting its behaviour, but most of the results break apart when two or more
agents share an environment and they all learn and adapt their behaviour concurrently.

The problem with this concurrency is that the action executed by one agent affects the
goals and objectives of the rest, and vice-versa. To tackle this, each agent will need to
account for how the other agents are behaving and adapt according to the joint behaviour.
Needless to say, this joint behaviour needs to be learned by each agent, and due to the fact
that all agents are performing the same operations of learning and adapting concurrently,
the joint behaviour —and therefore the environment— is perceived by each agent as non-
stationary. This non-stationarity (sometimes referred to as the moving target problem,
see Tuyls and Weiss, 2012) sets multiagent learning apart from single-agent learning, for
which it suffices to converge to a fixed optimal strategy.

Most learning algorithms to date are not well suited to deal with non-stationary en-
vironments,1 and usually, such non-stationarity is caused by changes in the behaviour of
the participating agents. For example, a charging vehicle in the smart grid might change
its behavioural pattern (Marinescu et al., 2015); robot soccer teams may change between
pre-defined behaviours depending on the situation (MacAlpine et al., 2012); and attack-
ers change their behaviours to keep security guards guessing in domains involving frequent
adversary interactions, such as wildlife and fishery protection (Fang et al., 2015).

Previous works in reinforcement learning (RL), MAS and multi-armed bandits (to name
a few) have all acknowledged the fact that specialized targeted work is needed that explic-
itly addresses non-stationary environments (Sutton et al., 2007; Panait and Luke, 2005;
Garivier and Moulines, 2011; Matignon et al., 2012; Lakkaraju et al., 2017). Against this
background, this survey fills this gap with an extensive analysis of the state of the art.
Previous surveys have proposed different ways to categorise MAS algorithms (Panait and
Luke, 2005; Shoham et al., 2007; Busoniu et al., 2010), others have divided them by the
type of learning (Tuyls and Weiss, 2012; Bloembergen et al., 2015) and another group have
proposed properties that MAS algorithms should have (Bowling and Veloso, 2002; Powers
et al., 2007; Crandall and Goodrich, 2011). In contrast, we propose another view, which
has been mostly neglected, focused on how algorithms deal with non-stationarity, providing
an illustrative categorization with increasing order of sophistication where each algorithm
is analysed along with related characteristics (observability and opponent adaptation).

The questions addressed by the surveyed algorithms are illustrated by the following
simple scenario comprising two agents:

Predator. The agent under our control.

1. Environments, in which all counterpart agents are perceived as part of the environment.
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Prey. The opponent agent.2

Both agents engage in repeated rounds of interactions (possibly infinite), there is no com-
munication and the rewards received depend on the joint action. The prey has several
(possibly infinite) strategies at its disposal (ways to select its actions) and it can change
from one to another during the interaction. In this context we can raise several questions:

• Should the predator assume the prey will behave in a certain way (e.g., minimizing
the predator’s reward, enacting their part of the Nash Equilibrium or playing as a
teammate)?

• Should the predator learn to optimise against a single opponent strategy or should it
generalise by learning a more robust strategy against a class of possible strategies?

• Should the predator assume the prey is modelling the predator’s strategy?

• Should the predator assume the prey will use a stationary strategy? If not, will the
prey change its behaviour slowly or drastically?

Different research communities make different assumptions that give rise to distinct answers
to these questions. While there is some awareness within each community of the work
outside that community, it remains a challenge to keep up to date with the recent literature
due to this fragmentation, which impedes AI research in its entirety (Eaton et al., 2016).

For example, many game theory algorithms focus on finding equilibria in self-play. Multi-
armed bandits either assume a stochastic or adversarial setting and try to optimize against
that behaviour. Some basic approaches of reinforcement learning ignore other agents and
optimise a policy assuming a stationary environment, essentially treating non-stationary
aspects like stochastic fluctuations. Other approaches learn a model of the other agents
to predict their actions to remove the non-stationary behaviour. Finally, algorithms from
behavioural game theory and planning have proposed recursive modelling approaches that
assume opponents are capable of performing strategic reasoning and modelling of the rest
of the agents.

In this context, the main contributions of this survey are the following:

• Provide a coherent view of how state-of-the-art algorithms in reinforcement learning,
multi-armed bandits and game theory tackle the planning problem of long-term sum
of expected rewards in non-stationary environments.

• Propose a new framework for multiagent systems (see Section 3.2). This framework
allows to describe a categorisation with increasing order of sophistication with respect
to how non-stationarity is handled, arriving at five categories: ignore, forget, respond
to target opponents, learn opponent models and theory of mind (see Section 3.3).

• Describe the fundamental algorithms of each category using an illustrative example
highlighting their strengths and limitations (see Section 4).

2. In this work we use the word “opponent” when referring to another agent in the environment irrespective
of the domain, and irrespective of its adversarial or cooperative nature.

3



Hernandez-Leal, Kaisers, Baarslag and Munoz de Cote

• Categorise most significant learning algorithms while also describing their main char-
acteristics with respect to the environment and opponent assumptions (see Section 5).

• Provide a structured set of open questions with promising avenues of future research
in multiagent learning (see Section 6.5).

With its tailored scope, this survey aims to establish a structure to think clearly about
all the assumptions, characteristics and concepts related to the challenge of addressing
non-stationarity in multiagent learning.

1.1 Related work and demarcation

Multiagent learning has received a lot of attention in the past years and some previous sur-
veys have emerged with different motivations and outcomes. Shoham et al. (2007) presented
a general survey of multiagent learning providing some interesting foundational questions
and identifying five different agendas in this research community. Tuyls and Weiss (2012)
presented a bird’s eye view about the AI problem of multiagent learning, identifying the
milestones achieved by the community and mentioning the open challenges at the time.3

Panait and Luke (2005) presented an extensive analysis of cooperative multiagent learn-
ing algorithms, dividing them into two categories: single learner in a multiagent problem
(team learning) and multiple learners (concurrent learning). Matignon et al. (2012) fo-
cused on the evaluation of independent RL algorithms on cooperative stochastic games.
Busoniu et al. (2010) presented a thorough survey on multiagent RL where they identi-
fied a taxonomy and several properties for algorithms in multiagent reinforcement learning
(MARL). Crandall and Goodrich (2011) assessed the state of the art in two-player repeated
games with respect to three properties: security, cooperation and compromise, which they
propose as important to act in a variety of different games. Müller and Fischer (2014)
presented an application-oriented survey, highlighting applications that use or are based on
MAS. Weiss (2013) edited a book about multiagent systems; in particular there is a chapter
dedicated to multiagent learning where they present state-of-the-art algorithms dividing
them into joint action, gradient, Nash and other learners (see Weiss, 2013, chap. 10). A
recent survey analysed methods from evolutionary game theory and its relation with mul-
tiagent learning (Bloembergen et al., 2015). Finally, the recent area of multiagent deep
reinforcement learning gained a lot of interest with two recent surveys (Nguyen et al., 2018;
Hernandez-Leal et al., 2018). None of these survey articles provide an explicit treatment of
the non-stationarity approaches taken in various algorithms.

Our survey exceeds previous work in scope of different domains and coverage measured
by number of algorithms, and fills the gap of reflecting on non-stationarity. In contrast
to previous works, we provide a detailed analysis of algorithms from multi-armed bandits
(for stochastic and adversarial environments), single agent RL (model-based and model-free
approaches), multiagent RL and game theory (mainly for repeated and stochastic games) in
both competitive and cooperative scenarios. We provide a full taxonomy of how algorithms
cope with non-stationarity, and describe opponent and environment characteristics.

3. We reflect on the relation between those challenges and the promising avenues of future research in
Section 6.5.
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This survey does not cover work related to learning in dynamic environments that do
not have other active autonomous and automated agents, such as recommender systems of
news articles (Liu et al., 2010) or online supervised learning scenarios (see Section 6.4).

1.2 How to read this survey

Since different audiences are expected to read this survey, this section provides forward
references to key insights and sections for different target groups:

• For researchers seeking an introduction to multiagent learning we propose to
follow the current structure of the paper sequentially, progressing through each section
in order.

• For experienced researchers we recommend starting with the new framework pro-
posed in Section 3.2, followed by the high level vision of the categorisation of algo-
rithms depicted in Figure 4 in Section 4; to be followed by the extensive categorization
in Section 5; in particular given in Table 2 and Figure 5.

• We encourage researchers seeking guidance on promising research directions
to consult the discussion in Section 6, in particular to find common types of results
in Section 6.3 and interesting open problems in Section 6.5.

Finally, we encourage all readers to position their future work in this framework, as delin-
eated in Section 3, for ease of reference and navigation of related (future) work.

1.3 Paper overview

This paper aims to provide a general overview of how different algorithms cope with the
problem of learning in multiagent systems where it is necessary to deal with non-stationary
behaviour. In Section 2, we review formal models used in this context ; in particular we
review multi-armed bandits, reinforcement learning and game theory. Section 3 describes
the main challenge of non-stationarity in multiagent systems together with a new framework
that naturally models its key elements, and lastly presents the proposed categorization
of how algorithms deal with non-stationarity. Section 4 illustrate the categories using
a simple scenario. Section 5 presents an extensive list of works of multi-armed bandits,
RL and game theory categorised by the taxonomy proposed in this survey. Section 6
provides a discussion about the strengths and limitations of each category, describes the
common experimental settings, presents a summary of the theoretical results and pinpoints
interesting open problems highlighting promising lines of future research. Finally, Section 7
summarizes the conclusions and contributions of this survey.

2. Formal approaches from different domains that model non-stationarity

This section describes the formal models used in multi-armed bandits, reinforcement learn-
ing, and game theory, and contrasts how they capture non-stationarity. Each domain makes
different assumptions about a priori information about the interaction, as well as about
online observability of the environment and opponents during the interaction. This dis-
crimination forms the basis of the environment characteristics in the next section. In line
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with available information, the solution concept for finding good behaviour may be charac-
terized correspondingly by more a priori or more online reasoning, exhibiting characteristic
behaviour and the ability to cope with certain types of non-stationarity in opponent be-
haviour. In order to present our behavioural categorization, we here present a synopsis of
the different approaches from the literature.

Note that different areas provide different terminology. Therefore, we will use the terms
player and agent interchangeably; similarly for reward and payoff; and for rounds and steps.
Finally, we will refer to other agents in the environment as opponents irrespective of the
domain’s or agent’s cooperative or adversarial nature.

2.1 Multi-armed bandits

The simplest possible reinforcement-learning problem is known as the multi-armed bandit
problem (Robbins, 1985): the agent is in a room with multiple gambling machines (called
“one-armed bandits”). At each time-step the agent pulls the arm of one of the machines
and receives a reward. The agent is permitted a fixed number of pulls. The agent’s purpose
is to maximise its total reward over a sequence of trials. Usually each arm is assumed to
have a different distribution of rewards, therefore, the goal is to find the arm with the best
expected return as early as possible, and then to keep gambling using that arm.

A K−armed (stochastic) bandit can be formalised as a set of real distributions B =
{R1, R2, . . . , Rk}, with the set of arms I = {1, . . . ,K}, such that each arm yields a stochastic
reward ri following the distribution Ri. Let µ1, µ2, . . . , µk be the mean values associated
with these reward distributions. A policy, or allocation strategy, is an algorithm that chooses
the next machine to play based on the sequence of past plays and obtained rewards. The
policy selects one arm at each round and observes the reward, this process is repeated
for T rounds. This problem illustrates the fundamental trade-off between exploration and
exploitation: should the agent choose the arm with the highest average reward observed so
far (exploit), or should it choose another one for which it has less information, so as to find
out if it in fact exceeds the first one (explore)?

The regret ∆R is a common measure used to evaluate different algorithms in multi-
armed bandits. The regret is the difference (necessarily a loss) between the chosen policy
π and the optimal policy π∗. In the multi-armed bandit setting the optimal policy would
choose the arm i∗ with the highest expected reward at all times, i.e., ∀t : π∗t = i∗, while
πt = i(t) may vary over time. For an episode of T steps, the stochastic regret yields

∆R =
T∑
t=1

ri∗ −
T∑
t=1

ri(t).

With this concept in mind, some approaches guarantee low regret under certain conditions.
These policies work by associating a quantity called upper confidence index to each arm.
This index relies on the sequence of rewards obtained so far from a given arm and is used
by the policy as an estimate for the corresponding reward expectation (Auer et al., 2002a).
The UCB1 (Upper Confidence Bounds) algorithm achieves logarithmic regret assuming
bounded rewards, without further constraints on the reward distributions (Auer et al.,
2002a). UCB uses the principle of optimism in the face of uncertainty to select its actions,
i.e., the algorithm selects arms by an optimistic estimate on the expected rewards of certain
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arms to balance exploration and exploitation. The UCB1 algorithm is extremely simple, it
initially plays each arm once, and subsequently selects the arm i(t):

i(t) = arg max
j

(
r̄j +

√
2 ln t

nj

)

where r̄j is the average reward obtained from arm j, nj is the number of times arm j has
been played, and t is the total number of rounds so far.

Algorithm 1: Multi-armed bandit: stochastic (s) or adversarial (a) (Bubeck and
Slivkins, 2012)

Input: K arms, T rounds (T ≥ K ≥ 2).
for t=1, . . . , T do

1 Algorithm chooses one arm i(t) ∈ {1, . . . ,K}
2-a Adversary selects rewards gt = (g1,t, . . . , gK,t) ∈ [0, 1]K

2-s Stochastic environment produces reward gi,t ∼ Ri (drawn independently)
3 Receive reward gi(t),t (does not observe the other arms)

The goal is to minimise the regret, defined by :
In the adversarial model, ∆r = maxj∈{1,...,K}

∑T
t=1 gj,t −

∑T
t=1 gi(t),t

In the stochastic model, ∆r =
∑T

t=1(maxj∈{1,...,K}µj − µi(t))

The stochastic bandit scenario is useful to model decision-making in stationary but
stochastic settings. A direct extension of this setting is the adversarial model, which as-
sumes that rewards of each arm are controlled by an adversary, i.e., the reward distribution
associated with each arm at every round is fixed in advance by an adversary before the game
starts (Auer et al., 2002b); see Algorithm 1 that juxtaposes both scenarios. However, when
relaxing the assumptions made in the problem definition even more by assuming online
adaptive adversaries, the standard definition of regret is no longer adequate (due to adap-
tivity of the adversary, the optimal action might change at different steps, see Arora et al.,
2012). Because of that, different variations of the regret measure have been proposed (Arora
et al., 2012; Crandall, 2014). It is worth mentioning that there are further extensions to the
bandit scenario (Pandey et al., 2007; Beygelzimer et al., 2011; Tran-Thanh et al., 2012),
which are beyond the scope of this survey. However, we refer the interested reader to the
discussion in related work (Bubeck and Cesa-Bianchi, 2012).

2.2 Reinforcement Learning

Reinforcement learning (RL) is one important area of machine learning that formalises the
interaction of an agent with its environment (Puterman, 1994). A Markov Decision Process
(MDP) can be seen as a model of an agent interacting with the world (see Figure 1), where
the agent takes the state s of the world as input and generates an action a as output that
affects the world. There is a transition function T that describes how an action affects the
environment in a given state. The component Z represents the agent’s perception function,
which is used to obtain an observation z from the state s. In an MDP it is assumed there
is no uncertainty in where the agent is. This implies that the agent has full and perfect
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T

Z

R

a
z
r

s

Agent

Environment

Figure 1: The agent interacts with the environment, performing an action a that affects the state
environment according to a function T , producing the state s. The agent perceives an
observation z about the environment (given by a function Z) and obtains a reward r
(given by a function R).

S2 S0

a1,1,10
S3 S1

a2,1,5

a2,0.2,1

a1,1,-100

a2,1,5
a2,0.8,1a1,1,5

Figure 2: A Markov decision process (MDP) with four states S0, S1, S2, S3 and two actions a1, a2.
The arrows denote the tuple: action, transition probability and reward.

perception capabilities and knows the true state of the environment (what it perceives is
the actual state, z = s). The component R is the reward function, the rewards give an
indication of the quality of which actions the agent needs to choose. However, the reward
function is not always simple to define (for example, it may be stochastic or delayed).
Formally,

Definition 1 (Markov decision process) An MDP is defined by the tuple 〈S,A,R, T 〉
where S represent the world divided up into a finite set of possible states. A represents
a finite set of available actions. The transition function T : S × A → ∆(S) maps each
state-action pair to a probability distribution over the possible successor states, where ∆(S)
denotes the set of all probability distributions over S. Thus, for each s, s′ ∈ S and a ∈ A, the
function T determines the probability of a transition from state s to state s′ after executing
action a. The reward function R : S × A × S → R defines the immediate and possibly
stochastic reward that an agent would receive for being in state s, executing action a and
transitioning to state s′.

An example of an MDP with 4 states and 2 actions is depicted in Figure 2, where
ovals represent states of the environment. Each arrow has a triplet an, p, r representing the
action, the transition probability and the reward, respectively.
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The key assumption in defining MDPs is that they are stationary, i.e., particularly the
transition probabilities and the reward distributions do not change in time.4 MDPs are
adequate models to obtain optimal decisions in environments with a single agent. Solving
an MDP will yield a policy π : S → A, which is a mapping from states to actions. An optimal
policy π∗ is the one that maximises the expected reward. There are different techniques for
solving MDPs assuming a complete description of all its elements. One of the most common
techniques is the value iteration algorithm (Bellman, 1957) which is based on the Bellman
equation:

V π(s) =
∑
a∈A

π(s, a)
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV π(s′)], (1)

with γ ∈ [0, 1]. This equation expresses the value of a state which can be used to obtain
the optimal policy π∗ = arg maxπ V

π(s), i.e., the one that maximises that value function,
and the optimal value function V ∗(s).

V ∗(s) = max
π

V π(s) ∀s ∈ S.

Finding the optimal policy for an MDP using value iteration requires the MDP to be
fully known, including a complete and accurate representation of states, actions, rewards and
transitions. However, this may be difficult if not impossible to obtain in many domains. For
this reason, RL algorithms have been devised that learn the optimal policy from experience
and without having a complete description of the MDP a priori.

An RL agent interacts with the environment in discrete time-steps. At each time, the
agent chooses an action from the set of actions available, which is subsequently executed in
the environment. The environment moves to a new state and the reward associated with
the transition is emitted (see Figure 1). The goal of a RL agent is to maximise the expected
reward. In this type of learning the learner is not told which actions to take, but instead
must discover which actions yield the best reward by trial and error.

Q-learning (Watkins, 1989) is one well known value-based algorithm for RL. It has been
devised for stationary, single-agent, fully observable environments with discrete actions. In
its general form, a Q-learning agent can be in any state s ∈ S and can choose an action
a ∈ A. It keeps a data structure Q̂(s, a) that represents the estimate of its expected payoff
starting in state s, taking action a. Each entry Q̂(s, a) is an estimate of the corresponding
optimal Q∗ function that maps state-action pairs to the discounted sum of future rewards
when starting with the given action and following the optimal policy thereafter. Each time
the agent makes a transition from a state s to a state s′ via action a receiving payoff r, the
Q table is updated as follows:

Q̂(s, a) = Q̂(s, a) + α[(r + γmax
b
Q̂(s′, b))− Q̂(s, a)] (2)

with the learning rate α and the discount factor γ ∈ [0, 1] being parameters of the algo-
rithm, with α typically decreasing over the course of many iterations. Q-learning is proved

4. Formally, an MDP assumes S,A,R and T to be stationary. These sets and function must be unchanged
over time, albeit that is compatible with making the action set A stochastic or dependent on the state.

9
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to converge towards Q∗ if each state-action pair is visited infinitely often under specific pa-
rameters (Watkins, 1989). Q-learning is said to be an off-policy method since it estimates
the sum of discounted rewards of the optimal policy (aka. target policy) while actually exe-
cuting an exploration policy (aka. behavior policy) distinct from it.5 In contrast, on-policy
methods refer to algorithms that estimation the value of the executed (exploration) pol-
icy. Since the exploration policy is commonly non-stationary, primarily due to the decrease
of exploration parameters over time, the target value Q∗ to approximate changes with it,
making it more intricate to provide convergence results.6 One classic on-policy algorithm is
SARSA (statet, actiont, rewardt, statet+1, actiont+1) (Sutton and Barto, 1998) which uses
a variation of Equation (2):

Q̂(s, a) = Q̂(s, a) + α[(r + γQ̂(s′, a′))− Q̂(s, a)]. (3)

By using Q-learning it is possible to learn an optimal policy without knowing T or R
beforehand, and even without learning these functions (Littman, 1996). For this reason,
this type of learning is known as model free RL. In contrast, model-based RL aims to learn
a model of its environment, specifically approximating T and R. Such models are then
used by the agent to predict the consequences of actions before they are taken, facilitating
planning ahead of time. One example of this type of algorithms is Dyna-Q (Sutton and
Barto, 1998).

Exploration vs exploitation Similar to multi-armed bandits, in RL one main concern
is to develop algorithms that balance exploration and exploitation well. However, in con-
trast to bandits where algorithms are evaluated in terms of regret, the RL community has
proposed different measures to determine efficient exploration. An important concept is
the sample complexity (Vapnik, 1998), which was first defined in the context of supervised
learning. Loosely speaking, sample complexity is the number of examples needed to bring
the estimate of a target function within a given error range. Kakade (2003) studied sample
complexity in a RL context. Consider an agent interacting in an environment. The steps
of the agent can be roughly classified into two categories: steps in which the agent acts
near-optimally as “exploitation” and steps in which the agent is not acting near optimally
as “exploration”. Subsequently, it is possible to see the number of times in which the agent
is not acting near-optimally as the sample complexity of exploration (Kakade, 2003) for
which some algorithms have guarantees (Brafman and Tennenholtz, 2003).

Before formalizing the problem of learning in multiagent environments (Section 3) we will
discuss game theory in the next section, as it is a classical area that addresses the interaction,
reasoning and decision-making of multiple agents in strategic conflicts of interest.

2.3 Game theory

Game theory studies decision problems when several agents interact (Fudenberg and Tirole,
1991). The terminology in this area is different, agents are usually called players, a single

5. The reason that the exploration policy is not the optimal policy is that 1. the optimal policy is not know
yet to the agent, and 2. that the action that is most informative is not necessarily the one leading to
the highest expected reward.

6. Convergence proofs for on-policy methods usually require more details to be specified than for off-policy
algorithms (Singh et al., 2000; Van Seijen et al., 2009).

10



A Survey of Learning in Multiagent Environments

Table 1: The normal-form representation of the prisoner’s dilemma game. Each cell represents the
utilities given to the players (left value for A and right one for O), rpd, tpd, spd, ppd ∈ R
where the following conditions must hold tpd > rpd > ppd > spd and 2rpd > ppd + spd.

Player O
cooperate defect

Player A cooperate rpd, rpd spd, tpd

defect tpd, spd ppd, ppd

interaction between players is represented as a game, and rewards obtained by the players
are called payoffs.

The most common way of presenting a game is by using a matrix that denote the utilities
obtained by each agent, this is the normal-form game.

Definition 2 (Normal-form game) A (finite, I-person) normal-form game Γ, is a tuple
〈N , A, u〉, where:

N is a finite set of I players, indexed by i;

A = A1 × · · · × AI , where Ai is a finite set of actions available to player i. Each vector
a = (a1, . . . , aI) ∈ A is called an action profile;

u = (u1, . . . , uI) where ui : A 7→ R is a real-valued utility or payoff function for player i.

For example, Table 1 shows a two-action two-player game, known as the Prisoner’s
Dilemma (PD). Each row corresponds to a possible action for player A and each column
corresponds to a possible action for player O. Player’s payoffs are provided in the corre-
sponding cells of the joint action, with player A’s utility listed first. In the example, each
player has two actions {cooperate, defect}. A strategy specifies a method for choosing an
action. One kind of strategy is to select a single action and play it, this is a pure strategy.
In general, a mixed strategy specifies a probability distribution over actions.

Definition 3 (Mixed strategy) Let (I, A, u) be a normal-form game, and for any set X,
let ∆(X) be the set of all probability distributions over X, then the set of mixed strategies
for player i is Si = ∆(Ai)

In this context, it is important to define what is a good strategy, i.e., the best response.

Definition 4 (Best response) Player i’s best response to the strategy profile s−i is a
mixed strategy s∗i ∈ Si such that ui(s

∗
i , s−i) ≥ ui(si, s−i) for all strategies si ∈ Si.

where s−i = s1, . . . , si−1, si+1, . . . , sn represents the strategies of all players except i. Thus,
a best response for an agent is the strategy (or strategies) that produce the most favourable
outcome for a player, taking other players’ strategies as given. Another common strategy
is the minimax strategy that ensures a security level for the player.

11
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Definition 5 (Minimax Strategy.) Strategy that maximizes its payoff assuming the op-
ponent will make this value as small as possible.

Definition 6 (Security level) The security level is the expected payoff a player can guar-
antee itself using a minimax strategy.

In single-agent decision theory, the notion of optimal strategy refers to the one that
maximises the agent’s expected payoff for a given environment. In multiagent settings the
situation is more complex, and the optimal strategy for a given agent may now vary, since
the best response strategy depends on the choices of others. In order to draw conclusions on
the joint behavior in games, game theory has identified certain subsets of outcomes, called
solution concepts, such as the Nash equilibrium (NE). Suppose that all players have a fixed
strategy profile in a given game, if no player can increase its utility by unilaterally changing
its strategy, then the strategies are in Nash equilibrium. Formally it is defined by:

Definition 7 (Nash equilibrium; Nash, 1950b) A set of strategies s = (s1, . . . , sn) is
a Nash equilibrium if, for all agents i, si is a best response to s−i.

Even when it is proved that in every game exists a Nash equilibrium, this solution
concept has limitations. One problem is that there may be multiple equilibria in a game,
and it is not an easy task to select one (Harsanyi and Selten, 1988). Also several experiments
involving humans have shown that that people usually do not follow the actions prescribed
by the theory (Kahneman and Tversky, 1979; Risse, 2000; Goeree and Holt, 2001; Camerer,
2003).

Extensive-form games Another common representation for games is the extensive-form
in which it is easier to describe the sequential structure of the decisions (for example, this is
useful to represent poker games). Commonly, the game is described as a tree where nodes
represent actions taken by the players. Extensive-form games can be finite or infinite-horizon
(regarding the length of the longest possible path), with observable or non-observable ac-
tions and with complete or incomplete information (observability of the opponent pay-
offs) (Fudenberg and Tirole, 1991). Most of the games represented in extensive form can
be converted into a normal-form representation, however, this generally results in a matrix
which is exponential in the size of the original game. For this reason, it is common to find
a solution in the original game tree.

Repeated and stochastic games Previous concepts (e.g., best response, Nash equilib-
rium) were defined for one-shot games (one single interaction), however, it could be the case
that more than one decision has to be made. For example, repeating the same game, or
having a set of possible games.

Definition 8 (Stochastic game) A stochastic game (also known as a Markov game) is
a tuple (S,N , A, T,R), where: S is a finite set of states, N is a finite set of I players,
A = A1× · · · ×AI where Ai is finite set of actions available to player i, T : S×A×S → R
is the transition probability function; T (s, a, ŝ) is the probability of transitioning from state
s to state ŝ after action profile a, and R = r1, . . . , rI where ri : S ×A→ R is a real valued
payoff function for player i.

12
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Figure 3: (a) The automata that describes the TFT strategy, depending of the opponent action (c
or d) it transitions between the two states C and D. (b) The automata describing Pavlov
strategy, it consists of four states formed by the last action of both agents (CC, CD, DC,
DD).

In a stochastic game, agents repeatedly play games (states) from a collection. The particular
game played at any given iteration depends probabilistically on the previous played game
(state), and on the actions taken by all agents in that game (Shoham and Leyton-Brown,
2008).

Definition 9 (Repeated game) A repeated game is a stochastic game in which there is
only one game (called stage game).

To exemplify a repeated game, recall the prisoner’s dilemma presented in Table 1. Re-
peating the game for a number of rounds results in the iterated prisoner’s dilemma (iPD),
which has been the subject of different experiments and for which there are diverse well-
known strategies. A successful strategy which won Axelrod’s tournament7 is called Tit-
for-Tat (TFT) (Axelrod and Hamilton, 1981); it starts by cooperating, and does whatever
the opponent did in the previous round: it will cooperate if the opponent cooperated, and
will defect if the opponent defected. Another important strategy is called Pavlov, which
cooperates if both players performed the same action and defect whenever they used dif-
ferent actions in the past round. The finite-state machines describing TFT and Pavlov are
depicted in Figure 3. It should be noticed that these strategies can be described in terms
of the past actions and therefore do not depend on the time index; they are stationary
strategies.

Having presented the formal models of multi-armed bandits, reinforcement learning and
game theory, the next Section highlights the challenge of non-stationarity in multiagent
systems, followed by a new framework for this setting. Moreover, we present our proposed
categorisation on how algorithms cope with non-stationary behaviour.

3. Learning in multiagent environments

The following subsection pinpoints where and how the main challenge of non-stationarity
arises in multiagent environments. This provides a crisp basis problem definition against
which the approaches of algorithms can be positioned. Next, we present a new abstract

7. Robert Axelrod held a tournament of various strategies for the iterated prisoner’s dilemma. Strategies
were run by computers. In the tournament, programs played games against each other and themselves
repeatedly.
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framework for multiagent learning algorithms that naturally models (and emphasizes) three
components of accounting for other reasoning agents. Finally, we present a taxonomy
of multiagent learning algorithms, aligned with assumptions they make in light of this
framework.

3.1 The problem

Learning in a multiagent environments is inherently more complex than in the single-agent
case, as agents interact at the same time with environment and potentially with each
other (Busoniu et al., 2008). Transferring single-agent algorithms to the multiagent set-
ting is a natural heuristic approach (see Section 3.3) – even if assumptions under which
these algorithms were derived are violated. In particular the Markov property, denoting a
stationary environment, does not hold, thus invalidating guarantees derived for the single-
agent case (Tuyls and Weiss, 2012). Since this approach of applying single-agent algorithms
ignores the multiagent nature of the setting entirely, it can fail when an opponent may adapt
its choice of actions based on the past history of the game (Shoham et al., 2007).

In order to expose why multiagent domains are non-stationary from agents’ local per-
spectives, consider a stochastic game (S,N , A, T,R). Given a learning agent i and using
the common shorthand notation −i = N \ {i} for the set of opponents, the value function
now depends on the joint action a = (ai,a−i), and the joint policy π(s,a) =

∏
j πj(s, aj):

V πi (s) =
∑
a∈A

π(s,a)
∑
s′∈S

T (s, ai,a−i, s
′)[R(s, ai,a−i, s

′) + γVi(s
′)]. (4)

Consequently, the optimal policy is a best response dependent on the other agents’ policies,

π∗i (s, ai,π−i) = BRi(π−i) = arg max
πi

V
(πi,π−i)
i (s)

= arg max
πi

∑
a∈A

πi(s, ai)π−i(s,a−i)
∑
s′∈S

T (s, ai,a−i, s
′)[R(s, ai,a−i, s

′) + γV
(πi,π−i)
i (s′)].

Specifically the opponents’ joint policy π−i(s,a−i) could be non-stationary, (for example
when opponents’ are learning) thus becoming the parameter of the best response function. If
the opponents’ are not learning, e.g., they are using a stochastic policy, then the environment
is Markovian and single-agent learning algorithms suffice.

Next, we propose a general framework for multiagent learning algorithms, separating
three steps of modelling opponents’ behaviour to tackle the problem of non-stationary op-
ponent policies.

3.2 A new framework for multiagent learning algorithms

Before going into the formal definitions of the abstract concepts, consider an intuitive de-
scription of the three components of our proposed framework:

• Policy generating functions τ ∈ T , describe how an opponent j obtains its policy πj .

• Belief βj , i.e., a probability distribution over τ , measures an agent’s belief about each
opponent’s reasoning.
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• Influence function θ partitions beliefs according to equivalent best responses.

Some definitions are required to describe each component in detail: let ht = (z0, z1, . . . , zt)
denote the observation history of t observations, and let Ht be the set of all possible histo-
ries of this length. Note that observations in the stochastic game are given by state, action
sequences, but this more general representation also subsumes models of partial observabil-
ity, such as POMDPs. While rewards are commonly treated separately in the literature,
they may simply be added as part of the observation history in our model. Some work
may presume or learn a model of reward functions, as in POMDPs for the agent (Kaelbling
et al., 1998) or the frame of I-POMDPs for opponents (Gmytrasiewicz and Doshi, 2005),
which is equally compatible with our model.

Definition 10 (Policy generating functions) A policy generation function (PGF) τ maps
the history of observations into a policy π,

τ : Ht → Π

On the one hand, this definition could be extended to the stochastic case τ : Ht → ∆(Π),
where ∆(·) indicates the simplex function, i.e., here denoting a probability distribution or
probability mass function over policies. However, this complexity appears unnecessary for
the exposition we aim for in this section. On the other hand, the composition of τ and π
could be chosen as an alternative definition, thus mapping histories directly to actions.

In contrast to alternative definitions, deterministic policy generating functions are a par-
ticularly relevant category since they capture memory-bounded models with hidden states,
while maintaining the structure of policies. This enables additional assumptions over the
rate of change in policies, or the set of policies that are (re-) visited by the algorithm.
Such models subsume learning algorithms, e.g., Q-learning (Watkins, 1989), weight matri-
ces describing neural networks (Bengio, 2009), and MDPs, e.g., mapping a sliding window
of the histories to an action or policy, as finite state automata over a predefined set of
policies (Banerjee and Peng, 2005; Chakraborty and Stone, 2013).

The PGFs capture the adaptation dynamics of agents, and research articles derive in-
sights related to learning algorithms within a scope delimited by an implicitly or explicitly
defined set of PGFs for any opponents. One of the more general assumptions is given by
the frame defined in I-POMDPs (Gmytrasiewicz and Doshi, 2005), which assumes further
structure on the PGFs, such as ascribing rewards and optimality criteria to opponents. Our
taxonomy below employs PGF assumptions as a main criterion for classifying algorithms.

The next step is to define how the agent uses those PGFs. Note that observations are
local to each agent, i.e., an agent i can only infer another agent’s local perceived observation
history hj by a probability distribution p(hj |hi) using its own observations hi together with
any available a priori knowledge, e.g., about the structure of the game. In stochastic games,
state, action sequences are joint observations,8 thus hj = hi if rewards are treated separately.

Definition 11 (Belief) A belief β ∈ B indicates for each opponent j the likelihood βj(τ |hj)
for each policy generating function τ given opponent experience hj.

8. Stochastic games usually assume that agents have complete information about the state of the game, a
more general model are partially observable stochastic games (POSGs) (Bernstein et al., 2004).
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Since hj is local information, it must be inferred from agent i’s observations, i.e., hj ∼
p(hj |hi). If the presumed set T gives rise to distinguishable policies, then the belief may
identify each opponent’s PGF in a crisp belief (assigning probability one to a specific τ
for each opponent). Even if unique identification is not possible, this poses a classification
task, and a unique assignment may be used as an approximation of the belief. On the other
hand, full belief representations over multiple τ for each opponent are common in Bayesian
reasoning (Ghavamzadeh et al., 2015).

The last step defines how the belief could be filtered (e.g., to reduce complexity) by
means of an influence function.

Definition 12 (Influence function for multiagent learning) The co-domain of the in-
fluence function θ over the belief is a k-dimensional influence space Θ:

θ : B → Θ.

Assumptions about the influence function may significantly alter the complexity of the algo-
rithm, and the validity of such assumptions differentiates whether resulting model insights
hold or reduce to heuristic approaches; below we provide some examples.

• In single-agent learning, the assumption is that θ maps onto a singleton set.

• On the opposite side of the spectrum, taking the identity function as θ is equivalent
to not modelling θ at all, thus also not limiting the validity at this step.

• However, imposing—or learning—a structure of θ would cluster equivalent best re-
sponses (Bard et al., 2015) and may lead to more sample efficient learning of best
response approximations. One example instantiation of the influence function may
encode abductive reasoning by mapping mixed beliefs to crisp classifications, as men-
tioned in the above discussion of beliefs.

• Furthermore, in symmetric games with distinguishable policies, θ may encode the
strategy histogram (counting players for each τ), as by definition the payoffs of a
player only depend on the strategies employed, and not on who is playing them. This
structure is used in heuristic payoff tables to compress utility representations and
corresponding best response mappings (Walsh et al., 2002).

Overall, an influence function typically reduces the complexity, either as a lossless compres-
sion or as a heuristic to reduce the set of best responses and the computational complexity
of deriving them.

Definition 13 (Best response in multiagent learning) A multiagent learning algorithm
computes the best response to the influence state of its belief, given an a priori assumed T :

BRi(θ̂) = π∗i (s, a, θ̂) = BRi (π−i|πj ∼ βj(τ |hj), hj ∼ p(hj |hi)) ,

for any β that satisfies θ(β) = θ̂.
This new framework maintains agent independence by mutual non-observability of in-

dividual policies, and inherently models agent autonomy by the independent choice of best
response policies.
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3.3 Taxonomic Categories: Environment, Opponent and Agent

Now, we present a taxonomy in terms of the environment (observability) and the oppo-
nent characteristics (learning capabilities). Then, we provide an overview of the proposed
categories of how algorithms deal with non-stationarity.

3.3.1 Environment: observability

One crucial aspect that provides information on how to tackle a learning problem is observ-
ability of actions and rewards, for both the learning agent and the opponent. Depending on
the restriction of the domain, there are four categories in increasing order of observability.

Local reward. The most basic information that an algorithm commonly observes are its
own immediate rewards.

Opponent actions. Most algorithms also assume that is possible to observe the opponent
actions (but not the their rewards).

Opponent actions and payoffs. Some algorithms assume to observe the action and also
the actual payoffs of the opponents (which may hold more naturally in cooperative
scenarios).

Complete a priori knowledge. Similar to the previous category algorithms observe re-
wards and actions, however, in this category the algorithms know from start the
complete reward function.

3.3.2 Opponent: adaptation capabilities

The capability of the opponent to adapt and change its behaviour provides another source of
important information to be used while learning. Roughly, we distinguish three categories:

No adaptation. ∀ht : τ(ht) = π These are opponents that follow a stationary strategy
during the complete period of interaction.

Slow adaptation. ∃ε << 1, ∀t : d
(
τ(ht+1), τ(ht)

)
< ε These opponents show non-stationary

behaviour. However, it is a limited adaptation, for example providing bounds to the
possible change in the current strategy between rounds. Candidate metrics are Man-
hattan distance d1 or the average Jensen-Shannon distance over all states, which with
base 2 logarithm is bound to [0, 1]: d

(
τ(ht+1), τ(ht)

)
=̂ 1
|S|
∑

s

√
JSD (τs(ht+1)||τs(ht)).

Drastic or abrupt adaptation. If the above assumptions are not in place, non-stationary
opponents may show abrupt changes in their behaviour, for example changing to a
different strategy (no limits) from one step to the next.

3.3.3 Agent: dealing with non-stationarity

Previous surveys have proposed different ways to categorise algorithms in multiagent sys-
tems such as: team vs concurrent learning (Panait and Luke, 2005); temporal difference,
game theory and direct policy search (Busoniu et al., 2010); model-based, model-free and re-
gret minimization (Shoham et al., 2007); and joint action, gradient, Nash and other learners
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(see Weiss, 2013, chap. 10). There are also some previous categories for the type of learn-
ing used: multiplied, divided and interactive (Tuyls and Weiss, 2012); and independent,
joint-action and gradient ascent (Bloembergen et al., 2015).

Another group of works have proposed properties that MAS algorithms should have: Bowl-
ing and Veloso (2002) propose rationality and convergence. The former needs the learning
algorithm to converge to a stationary policy that is a best-response to the other players
policies if the other players policies converge to stationary policies; the latter refers to the
need of the agent to necessarily converge to a stationary policy. Powers and Shoham (2004)
proposed: targeted optimality, compatibility and safety. The first one needs the agent to
achieve within ε of the expected value of the best response to the actual opponent. Compat-
ibility needs the algorithm to achieve at least within ε of the payoff of some Nash equilibrium
that is not Pareto dominated by another NE (during self-play), and safety needs the agent
to receive at least within ε of the security value for the game. Crandall and Goodrich (2011)
proposed: security, coordination and cooperation. Security refers to long-term average pay-
offs meet a minimum threshold, coordination refers to the ability to coordinate behaviour
when associates share common interests, and cooperation is the ability to make compro-
mises that approach or exceed the value of the Nash bargaining solution (Nash, 1950a) in
games of conflicting interest.

In contrast with previous works, we propose another view focused on how algorithms
deal with non-stationary behaviour. We propose five categories in increasing order of so-
phistication which we summarize as follows:

1. Ignore. The most basic approach which assumes a stationary environment.

2. Forget. These algorithms adapt to the changing environment by forgetting information
and at the same time updating with recent observations, usually they are model-free
approaches.

3. Respond to target opponents. Algorithms in this group have a clear and defined
target opponent in mind and optimize against that opponent strategy.

4. Learn opponent models. These are model-based approaches that learn how the op-
ponent is behaving and use that model to derive an acting policy. When the opponent
changes they need to update its model and policy.

5. Theory of mind. These algorithms model the opponent assuming the opponent is
modelling them, creating a recursive reasoning.

Note that this order is according to the sophistication in terms of complexity in assump-
tions and approach—it is throughout possible that the elegance of solutions does not follow
this ordering. Moreover, we acknowledge that some algorithms could fit in more than one
category. To better understand the high level behaviour of these categories, the next section
presents an illustrative example using a simple domain.
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(a) Ignore: A assumes an opponent which is station-
ary (S) for the complete interaction period. Examples
are Q-learning (Watkins and Dayan, 1992) and fictitious
play (Brown, 1951).
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(b) Forget: A learns an initial strategy (S1) which is
continually updated (S1′, S1′′, . . . ) with recent observa-
tions, one example is WoLF-PHC (Bowling and Veloso,
2002).
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(c) Respond to target opponents: One example is
Minimax-Q (Littman, 1994) where the learning agent
assumes the opponent tries to minimise the rewards.
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(d) Learn: A learns a model of the opponent strategy
(S?) and derives an acting policy; opponent changes are
infrequent, e.g., RL-CD (Da Silva et al., 2006).
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(e) Theory of mind: O reasons about how A might
act and obtains a best response against that behaviour,
BR(A). A repeats that process with the model of O,
BR(BR(A)) (Gmytrasiewicz and Durfee, 2000).

Figure 4: A learning agent A (outside the cloud) and how it models one opponent O (inside the
cloud) exemplifying the 5 categories of how to handle non-stationary behaviour.
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4. Illustrative Example - Iterated Prisoner’s Dilemma

In this section we exemplify each category and contrast them by using the same domain
(see Figure 4). Our example is presented in the context of the iterated prisoner’s dilemma
(see Section 2.3) where two agents A and O play the infinite-horizon version of this game.

Definition 14 Prisoner’s dilemma (PD) is a normal-form game 〈N , A, u〉, where:

The set of players N = {A,O} are the two agents.

The set of actions is the same for both agents, they have two possible actions A = {C,D}.
u = (uA, uO) where ui : A 7→ R the payoff function for player i as shown in Table 1,
satisfying: tpd > rpd > ppd > spd and 2rpd > ppd + spd.

In the PD game when both players cooperate they both obtain the reward rpd. If both
defect, they get a punishment reward ppd. If a player chooses to cooperate with someone who
defects receives the sucker’s payoff spd, whereas the defecting player gains the temptation
to defect, tpd.

We now present slight variations of the above scenario exemplifying the assumptions
made by algorithms in each category, pointing out where they are most useful and where
their main assumptions do not hold.

4.1 Ignore

In this category algorithms can be useful with simple opponents or by making probably
unrealistic assumptions, ignoring the non-stationary behaviour. For example, assume the
opponent uses a mixed (stationary) strategy, πm = (0.25, 0.75) with higher probability of se-
lecting defect. If the assumption is correct, the learning agent can use fictitious play (Brown,
1951) to learn an optimal policy against O. However, consider the case that after A has
learned the optimal policy, O decides to change to a Tit-for-Tat strategy πTFT , thus A’s
learned policy will no longer be optimal.

4.2 Forget

Now, consider a different set of assumptions where A is interested in converging to a station-
ary policy and O has the same interest. Thus, both agents need to adapt to the changing
(non-stationary) behaviour of the other (see Figure 4(b)). One algorithm that is especially
useful in this scenario is WoLF-PHC (Bowling and Veloso, 2002), the algorithm generalizes
Q-learning, but it was proposed to converge to a stationary policy in self-play. We can
view WOLF-PHC as continuously learning (and forgetting), adjusting its learning rate to
cope with the changing behaviour of the opponent. Note that, if we remove the assump-
tion of self-play (and we assume O uses a different behaviour), then WOLF-PHC loses its
convergence guarantees.

4.3 Respond to target opponents

If the learning agent knows (or assumes) the opponent will behave in specific ways, that
information can be used to target classes of opponents. For example, assume A knows
that the opponent will use the set of strategies {Tit-for-Tat, Pavlov, Bully} and change
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among them stochastically. In this case HM-MDPs (Choi et al., 1999) can target that type
of opponent since they assume the environment can be represented in different stationary
modes (MDPs) with stochastic transitions among themselves. Note that there are different
algorithms that target a variety of classes (see Section 5.3). However, if the assumptions
about the opponent do not hold (in this case, adding a new strategy to the initial set) these
algorithms provide restricted adaptability and therefore the policy will be suboptimal after
most opponent changes.

4.4 Learn opponent models

In this category, agent A learns a model of the opponent which is used to derive an optimal
acting policy. In this case, the learning agent starts without predefined opponent strategies
or policies (Da Silva et al., 2006; Hernandez-Leal et al., 2014a). Instead, A assumes the
opponent will use several stationary strategies with infrequent changes among them. For
example, in the iPD the opponent could start with Pavlov and later change to Tit-for-Tat.
Moreover, if the opponent returns to a previous learned strategy, A should be able to detect
and change its policy without relearning the model (Hernandez-Leal et al., 2016a). However,
one limitation of these algorithms is that they do not consider the strategic behaviour of O
(an opponent that reasons about the agent A).

4.5 Theory of mind

In the last category, the learning agent assumes an opponent that is performing strategic
reasoning. This is, in the lowest level O reasons about A, in an upper level A reasons
about O reasoning about A. Best responding to a reasoning level is the way to obtain
an acting policy. For example, assume the opponent thinks A uses a set of strategies to
act {Bully, random, Pavlov}, a distribution of those strategies represent the zero level
or reasoning, L0. With the previous information O can compute a best response (BR)
against L0, called level 1 strategy, L1 = BR(L0). Moreover, A can compute a best response
against a distribution of the previous two levels, to obtain an acting policy (level 2) L2 =
BR({L1, L0}). Note that this recursive reasoning could continue upwards and is the base
of many approaches (Camerer et al., 2004; Gmytrasiewicz and Doshi, 2005; Wunder et al.,
2009, 2012). A limitation is that the basic strategies need to be specified a priori and
computing optimal policies can be computationally expensive (Gmytrasiewicz and Doshi,
2005).

In the next section we present an extensive list of state-of-the-art algorithms in from
game theory, multi-armed bandits and RL and where they fall into each category of sophis-
tication along with their environment and opponent characteristics.

5. Algorithms

In this section we present an extensive list of algorithms categorised with respect to how they
deal with non-stationarity. Table 2 summarises this section by providing for each algorithm
its category and some related characteristics such as observability, opponent adaptation
and the environment it was designed for. Similarly, Figure 5 depicts a diagram highlighting
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Table 2: A categorisation of different algorithms in terms of how they handle non-stationarity and
with respect to related characteristics such as observability, opponent adaptation (de-
scribed in Section 3.3) and the domain they were designed for: one-shot games (OSG),
repeated games (RG), stochastic games (SG), extensive-form games (EG), sequential de-
cision tasks (SDT) and multi-armed bandit scenarios (MAB).

Category

Algorithm Observability Opp. adaptation Designed for

Ignore

Fictitious play (Brown, 1951) O. actions No RG

Q-learning (Watkins, 1989) Local reward No SDT

JAL (Claus and Boutilier, 1998) O. actions No RG

UCB (Auer et al., 2002a) Local reward No MAB

Exp3 and Exp4 (Auer et al., 2002b) Local reward No MAB

R-max (Brafman and Tennenholtz, 2003) O. actions and payoffs No SG

Forget

WOLF-IGA (Bowling and Veloso, 2002) O. actions and rewards Slow SG

WOLF-PHC (Bowling and Veloso, 2002) Local rewards Slow SG

GIGA-WOLF (Bowling, 2004) Local rewards Slow RG

COLF (Munoz de Cote et al., 2006) O. actions Slow RG

WPL (Abdallah and Lesser, 2008) Local reward Slow RG

WMD-UCB (Yu and Mannor, 2009a) Local rewards Drastic MAB

D-UCB (Garivier and Moulines, 2011) Local rewards Drastic MAB

SW-UCB (Garivier and Moulines, 2011) Local rewards Drastic MAB

FAQL / IQ (Kaisers and Tuyls, 2010) O. actions Slow RG

LFAQ (Bloembergen et al., 2010) O. actions Slow RG

Rexp3 (Besbes et al., 2014) Local rewards Both MAB

FAL-SG (Elidrisi et al., 2014) O. actions Drastic SG

R-max# (Hernandez-Leal et al., 2017b) O. actions Drastic RG

RUQ (Abdallah and Kaisers, 2013, 2016) O. actions Slow RG

UUB (Lakkaraju et al., 2017) Local rewards Slow MAB

Target

Minimax-Q (Littman, 1994) O. actions Drastic SG

Nash-Q (Hu and Wellman, 1998) O. actions and payoffs Slow SG

HM-MDPs (Choi et al., 1999) O. actions Drastic SDT

FF-Q Littman (2001) O. actions and payoffs Slow SG

EXORL (Suematsu and Hayashi, 2002) O. actions and payoffs Slow SG

Exp3.S (Auer, 2002) Local rewards Drastic MAB

Hyper-Q (Tesauro, 2003) O. actions Slow SG

Correlated-Q (Greenwald and Hall, 2003) O. actions and payoffs Slow SG

NSCP (Weinberg and Rosenschein, 2004) O. actions Slow SG

ReDVaLeR (Banerjee and Peng, 2004) O. actions Slow RG

MetaStrategy (Powers and Shoham, 2004) O. actions and payoffs Drastic RG

Manipulator (Powers and Shoham, 2005; Powers
et al., 2007)

O. actions and payoffs Drastic RG

AWESOME (Conitzer and Sandholm, 2006) Local rewards Slow RG

RNR and DBR (Johanson et al., 2007; Johanson and
Bowling, 2009)

O. actions Slow EG

ORDP (Yu and Mannor, 2009b) O. actions Drastic SDT

M-Qubed (Crandall and Goodrich, 2011) O. actions Slow RG

Pepper (Crandall, 2012) O. actions Slow SG

MDP-A and BPR (Mahmud and Ramamoorthy,
2013; Rosman et al., 2016)

O. actions Drastic SDT

HS3MDPs (Hadoux et al., 2014b) O. actions Drastic SDT

RSRS (Damer and Gini, 2017) O. actions Slow RG

OLSI (Hernandez-Leal and Kaisers, 2017a) O. actions Drastic SG

Learn

RL-CD (Da Silva et al., 2006; Hadoux et al., 2014a) O. actions Drastic SDT

ζ−R-MAX (Lopes et al., 2012) O. actions Slow SDT

CMLeS (Chakraborty and Stone, 2013) O. actions Slow RG

MDP-CL (Hernandez-Leal et al., 2014a) O. actions Drastic RG

Restless Markov bandits (Ortner et al., 2014) Local rewards Drastic MAB

DriftER (Hernandez-Leal et al., 2017a) O. actions Drastic RG

BPR+ (Hernandez-Leal et al., 2016a,b) O. actions Drastic RG

Theory of mind

RMM (Gmytrasiewicz and Durfee, 2000) O. actions and payoffs No SDT

s-EWA (Camerer et al., 2002) O. actions and payoffs Slow RG

Level-K (Costa Gomes et al., 2001) O. actions No OSG

Cognitive Hierarchy (Camerer et al., 2004) O. actions No OSG

I-POMDP (Gmytrasiewicz and Doshi, 2005) O. actions No SDT

PI-POMDP (Wunder et al., 2011, 2012) O. actions No RG

ToM/MToM (de Weerd et al., 2013; Van der Osten
et al., 2017)

O. actions Slow RG/SG
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Figure 5: Diagram of the algorithms (coloured boxes; each colour represent one experimental do-
main) analysed in this survey divided in 5 categories (dashed lines) on how they handle
non-stationarity. We present how they are connected to each other (arrows) and highlight
those algorithms that are representative of each category (double box).

the connections among the algorithms and showing the most representative ones of each
category.

5.1 Ignore

Game theory is the study of strategic interactions among several agents, with the central
concept of equilibrium among players denoting a mutual best response. While such rea-
soning does account for opponent strategies, classic algorithms typically do not account for
changes in opponent strategies. One early work for learning in repeated games is fictitious
play (Brown, 1951). The model maintains a count of the plays by the opponent in the
past. The opponent is assumed to be playing a stationary mixed strategy and the observed
frequencies are taken to represent the opponent’s mixed strategy. However, if the opponent
does not follow a stationary strategy the method will not compute a best response.
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Techniques from multi-armed bandits have been used to deal with the exploration-
exploitation trade-off. In the classical bandit setting some assumptions are made regarding
the rewards, e.g., the rewards are drawn independently from some fixed (stationary), but
unknown distributions. In this context, the UCB (upper confidence bounds) algo-
rithm (Auer et al., 2002a) guarantees low regret under certain conditions. UCB uses the
principle of optimism in the face of uncertainty to select its actions (assumes an optimistic
guess on the expected rewards). A different setting is the adversarial bandit setting where
no statistical assumptions are made about the generation of rewards (Auer et al., 2002b).
Instead, the reward associated with each arm at every round are fixed in advance by an ad-
versary before the game starts. Even in this complicated scenario, the exponential-weight
algorithm for exploration and exploitation (Exp3) provides theoretical bounds for
expected rewards (Auer et al., 2002b). Finally, a different algorithm based on Exp3 is
the exponential-weight algorithm for exploration and exploitation using expert
advice (Exp4) (Auer et al., 2002b). The scenario is different since now the algorithm
assumes a set of “experts” that provide a mechanism to select an action. Exp4 provides
bounds of expected utility to perform nearly as well as the best expert in hindsight. Note
that these bandit algorithms assume the setting is fixed in advance and does not account
for changes during the interaction (i.e., ignore).

In the context of RL, a model-based algorithm for acting optimally in adversarial en-
vironments is R-max (Brafman and Tennenholtz, 2003). The algorithm uses an MDP to
model the environment which is initialised optimistically assuming all actions return the
maximum possible reward, (r-max). After several experiences with the environment R-max
updates and fixes a part of the model (i.e., state-action pairs). The policy efficiently leads
the agent to less known state-action pairs or exploits known ones with high utility. R-max
promotes an efficient sample complexity of exploration (Kakade, 2003), this means that
R-max has theoretical guarantees for obtaining near-optimal expected rewards. However,
R-max alone will not work when the environment presents non-stationary behaviour (Lopes
et al., 2012) since it fails to adjust its model if the environment changes.

The classic model-free RL algorithm of Q-learning assumes a stationary environment.
However, it has been applied with some success in different multiagent scenarios (Tan, 1993;
Sen et al., 1994; Crites and Barto, 1998). The simple approach of using plain Q-learning,
i.e., ignoring other agents in the environment, is known as independent learners. In contrast,
joint-action learners (JALs) model the strategies of the opponents explicitly by taking
into account the joint-action of all the agents in the Q-learning update, which implies the
agent can observe the actions of others (Claus and Boutilier, 1998). However, even when
they have more information, convergence is not dramatically enhanced. Moreover, in JALs
it is required a considerable amount of contrary experience to be overcome some changing
behaviour (Claus and Boutilier, 1998).

5.2 Forget

Failing to update with current information is the main limitation of the algorithms in the
previous category. A solution is to forget old information and update with recent one, which
has been experimentally noted to improve learning algorithms in repeated games (Bouzy and
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Métivier, 2010). While this category could be more aptly described as adaptive discounting
of experiences, we chose the label forget as an intuitive concept and mnemonic.

Even though UCB has been empirically shown to not work well on non-stationary envi-
ronments (Hartland et al., 2006), it has inspired two algorithms that can adapt to sudden
changes, i.e., when the distributions of rewards changes abruptly (not depending on the
policy of the player or on the sequence of rewards). Garivier and Moulines (2011) proposed
two methods: the discounted UCB (D-UCB) whose policy averages past rewards with
a discount factor giving more weight to recent observations; and the sliding-window ap-
proach (SW-UCB) which relies on a local empirical information of the last τ plays (τ
being a parameter of the algorithm). Lakkaraju et al. (2017) proposed a variant of D-UCB
to solve an exploration problem where the expected utility of each arm is non-stationary.
However, instead of assuming arbitrary changes in the utility distribution (as D-UCB), their
setting has certain structure which is encoded in their proposed bandit for unknown
unknowns (UUB) algorithm. Yu and Mannor (2009a) tackle a specific non-stationary
bandit problem with two main characteristics: (i) the rewards are piecewise-stationary, i.e.,
the reward distribution changes arbitrarily and at arbitrary time instants, but it remains
stationary on intervals; (ii) the agent can observe some of the past outcomes of arms that
have not been picked. Yu and Mannor (2009a) propose the windowed mean-shift de-
tection (WMD)-UCB to cope with these scenarios. The algorithm works by detecting
changes in the environment using a statistical test on the most recent τ time-steps (i.e.,
sliding window), when this happens the algorithm resets. Note that discounting or using a
sliding window approach have the same effect, give more weight to recent observations and
forgetting the old one.

A different way to model non-stationarity in multi-armed bandit scenarios is to assume
the total variation in expected reward is bounded by a (known) variation budget. This
allows to model diverse reward changes, e.g., both slow and continuous or drastic jumps.
Besbes et al. (2014) proposed the Rexp3 algorithm (based on Exp3) for this setting and
their results highlight a trade-off that exists between retaining and forgetting information,
i.e., the fewer past observations to recall, the larger the associated error; the more past
observations, the higher the chances of these being biased towards outdated information.

In the context of efficiently exploring adversarial environments one example of the for-
getting behaviour is the R-max# algorithm (Hernandez-Leal et al., 2017b). R-max#
proposes a drift exploration to detect changes that happened in the opponent, but that
may have not been noticed, which results in suboptimal behaviour. This effect is known
as shadowing (Fulda and Ventura, 2007) or observationally equivalent models (Doshi and
Gmytrasiewicz, 2006). To avoid this effect, the solution is to continually revisit states that
have not been visited recently (which is determined by a parameter). Therefore R-max#
proposes to reset (to r-max ) those state-action pairs and then update the model and policy
which will implicitly re-explore those parts of the environment. R-max# provides theoret-
ical results showing that under some assumptions it is guaranteed to learn a new model
within finite sample complexity. Note that, in contrast to the classic R-max which fixes
one part of its model and later is never allowed to update that same part; R-max# is con-
tinually updating its model (and policy) to keep up with the non-stationary environment.
However, the approach may not be easily scalable to scenarios with many agents.
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In the model-free context of RL there are two variants of Q-learning that achieve con-
vergence of self-play in specific games by updating action-value estimators equally fast, even
when one action is more frequently selected than another: The first has been studied under
the name frequency-adjusted Q-learning (FAQL) (Kaisers and Tuyls, 2010, 2011) and
individual Q-learning (IQ) (Leslie and Collins, 2005), and the second one is repeated up-
date Q-learning (RUQ) (Abdallah and Kaisers, 2013, 2016). Intuitively, the action that
receives fewer updates needs to make larger adjustments to keep up, which is implemented
with a learning rate modulation in FAQL/IQ (inversely proportional to the probability of
the action’s selection probability), and by repeated updates in RUQ. As a result, all actions
receive the same expected learning speed. Formally, these learning speed modulations make
it possible to prove the limit behaviour of the algorithms in self-play converges to Nash dis-
tributions in zero-sum games (Leslie and Collins, 2005), with convergence points shown to
approach Nash equilibria as the exploration temperature decreases in two-agent two-action
games (Kaisers and Tuyls, 2011; Kianercy and Galstyan, 2012). Bloembergen et al. (2010)
proposed lenient frequency adjusted Q-learning (LFAQ) for cooperative multi-agent
environments. This extension incorporates the concept of leniency (Panait et al., 2006)
to account for initial mis-coordination, which enables LFAQ to obtain high convergence to
Pareto optimal equilibria in cooperative games. Note that convergence results of this type
of algorithms require the assumption of infinite interactions and/or infinitesimal learning
rates. Effectively, the action-value estimates of frequently selected actions are expected to
be more recent and accurate, receiving only small updates based on each new observation.
In contrast, scarcely selected actions are likely to have older action-value estimates, which in
non-stationary environments may become less accurate with age, and therefore more weight
is put into the new observation–the value estimator is updated with a larger learning rate
towards the new observation. As a consequence, these algorithms can be said to implement
a dynamic strategy to forget outdated action-value estimates.

The win or learn fast (WoLF) principle was introduced to make an algorithm that (i) con-
verges to a stationary policy in multiagent systems and (ii) if other players’ policies converge
to stationary policies then the algorithm should converge to a best response (Bowling and
Veloso, 2002). The intuition of WoLF is to learn quickly when losing and cautiously when
winning. One proposed algorithm that uses this principle is WoLF-IGA (infinitesimal
gradient ascent). The algorithm at each interaction updates its strategy (in the direc-
tion of the gradient) to increase its expected payoffs with some fixed step size. WoLF-IGA
has been proved theoretically to converge in self-play in a two-person, two-action repeated
matrix games. However, WoLF-IGA assumes to know an equilibrium from the start which
can be complicated in many games. Generalized IGA (GIGA)-WoLF (Bowling, 2004)
improves on WoLF-IGA in two aspects. First, it does not need to known an equilibrium
strategy. Second, it also addresses the challenge of not being exploited by an opponent
by showing no-regret in the limit (Bowling, 2004). Finally, another practical variant of
the WoLF principle is WoLF policy-hill climbing (WoLF-PHC) (Bowling and Veloso,
2002), which is based on Q-learning and performs hill-climbing in the space of mixed poli-
cies. To cope with non-stationary behaviour WoLF-PHC changes between two learning
rates depending on how the algorithm sees the interaction is happening, i.e., by comparing
whether the current expected value is greater than the current expected value of the average
policy.
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In the context of cooperative game theory it is common to look for Pareto efficient solu-
tions. On one side, recall that WoLF algorithms aim converge to the Nash equilibrium, thus
they are not the best candidate for this different type of problems (Stimpson and Goodrich,
2003). On the other side, using simple Q-learning algorithms results in suboptimal solu-
tions due to the parallel learning process which makes the environment non-stationary. To
overcome this issue, CoLF (change of learn fast) (Munoz de Cote et al., 2006) is another
algorithm inspired by the WoLF principle, but with the objective of promoting cooperation
of self-interested agents to achieve a Pareto efficient solution in repeated games. CoLF pro-
poses to adjust the learning rate of the algorithm depending on the received rewards: slow
when unexpected or changing (i.e., non-stationary) and fast when they are stable, near-
stationary. Note that changing the learning rates is a common method to keep up with
non-stationary environments. In the end this adaptation results in updating information
and forgetting outdated estimates.

Weighted policy learner (WPL) (Abdallah and Lesser, 2008) is another algorithm
designed to converge to a Nash equilibrium. However, in contrast to previous algorithms
it can do so with limited knowledge observing only local rewards (the agent neither knows
the underlying game nor observes other agents actions). WPL share some similarities with
WoLF-IGA since it also has two modes for adjusting its learning rate, however there are
also some key differences: (i) WPL needs considerably less information and (ii) WPL uses
a continuous spectrum of learning rates (WOLF-IGA uses two fixed ones).

Fast adaptive learner (FAL) (Elidrisi et al., 2012) is designed to learn quickly in two-
player repeated games. The algorithm is based on two components: (i) to predict the next
action of the opponent the entropy learning pruned hypothesis space (ELPH) algorithm is
used, ELPH is an online learning algorithm that maintains a set of hypotheses according to
a fixed window of the history of observations (Jensen et al., 2005). The frequency count of
each hypothesis is used to obtain the entropy which is used as an indicator of the quality of
the prediction. (ii) To obtain a strategy against the opponent the authors use a modified
version of the Godfather strategy.9 An extension of FAL for stochastic games is FAL-SG
(Elidrisi et al., 2014). To deal with this different setting, FAL-SG abstracts the stochastic
game into a meta-game matrix via clustering, after which the original FAL approach can
be used.

5.3 Respond to target opponents

Previous approaches updated their behaviour according to the newest information avail-
able, in contrast, algorithms in this group have a pre-defined target of opponents. This is
the category with the largest number of algorithms. The reason is that easier to provide
guarantees against specific opponents than against general classes; to better understand the
different approaches we made subdivision for this category into model-free and model-based
approaches.

Model-free approaches

9. The Godfather strategy gives the opponent the opportunity to cooperate with an action that is beneficial
for both players. If the opponent does not accept the offer, Godfather will force the opponent to obtain
its security level (Littman and Stone, 2001).
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In the context of multi-armed bandits one extension of Exp3 is Exp3.S (Auer, 2002) which
targets a specific adversarial bandit scenario in which the bandits are allowed to shift S times
(a parameter of the algorithm). The algorithm keeps track of the alternative which gives
highest reward even if this best alternative changes over time. The algorithm guarantees
low regret assuming the number of shifts (S) and the number of rounds in the interaction
is known in advance.

In the traditional single-agent version of Q-learning the objective is to maximise the sum
of rewards in an environment. In contrast, Minimax-Q proposes to extend Q-learning to
zero-sum stochastic games, assuming an opponent which has a diametrically opposed ob-
jective to the agent. The algorithm uses the minimax operator to take into account the
opponent actions (Littman, 1994). This allows the agent to converge to a fixed strategy
that is guaranteed to be safe in that it does as well as possible against the worst possi-
ble opponent (the agent tries to maximize its rewards and the opponent aims to minimise
those). The algorithm is guaranteed to converge in self-play to a stationary policy. Never-
theless, there are cases when minimax-Q does not converge to the best response, i.e., is not
rational (Bowling and Veloso, 2002).

Hyper-Q (Tesauro, 2003) is another extension of Q-learning designed for multiagent
systems (specifically for stochastic games). The main difference that the Q function depends
on three parameters: the state, the estimated joint mixed strategy of all other agents, and
the current mixed strategy of the agent. Hyper-Q assumes that only the opponents’ actions
(not the payoffs) are observable. To obtain an approximation of the mixed strategies a
discretisation has to be performed and the Q-table could easily grow exponentially in the
number of discretisation points. Hyper-Q is guaranteed to converge to the optimal value
function against the following three groups of opponents: (i) stationary opponents, (ii)
non-stationary opponents that define its history-independent strategy depending only on
themselves and not on the Hyper-Q player (e.g., replicator dynamics model, see Börgers
and Sarin, 1997) and (iii) non-stationary opponents that accurately estimate the Hyper-Q
agent strategy and then adapt using a fixed history-independent rule.

M-Qubed (Max or Minimax Q-learning) (Crandall and Goodrich, 2011) is a RL
algorithm designed for two-player repeated games. The authors mention several compro-
mises which an algorithm needs to balance: bounding loses (safety), playing optimally (best
respond) and taking risks for ensuring cooperation and coordination. To achieve this, the
algorithm targets two groups of opponents and proposes different behaviours (best-response
and cautious) against each group. M-Qubed typically selects actions based on its Q-values
updated via SARSA (best-response), but triggers to a minimax strategy when its total loss
exceeds a pre-determine threshold (cautious).

Another targeted set of opponents consist of agents using non-stationary policies with a
limit (i.e., decreasing possibly infinite changes). The non-stationary converging poli-
cies (NSCP) algorithm (Weinberg and Rosenschein, 2004) it is based on Q-learning and
computes a best response to opponents in which the probability that the strategy would
be far away from the limit gets smaller as the rounds increase. For this, Weinberg and
Rosenschein (2004) define a distance between two stage game strategies as the distance
between the probability vectors of the strategies. An example of this type of opponent is
start with a uniform distribution over a set of actions and at each time-step the probability
slowly moves towards one action with probability 1 and the rest with 0.
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Previous algorithms aim to best-respond to target opponents, however, another common
approach is to respond with the aim of converging to a Nash equilibrium. Nash-Q (Hu and
Wellman, 1998, 2003) is a variation of Q-learning that needs to observe the opponent actions
and rewards to converge in some cases. The algorithm update Q-values over joint actions
rather than a single-agent Q function. Another main difference with respect to Q-learning is
that it updates with future payoffs assuming all agents will use a NE strategy. Friend-or-
foe Q-learning (FF-Q) (Littman, 2001) generalise Nash-Q and Minimax-Q algorithms.
FF-Q treat each opponent either as friend or foe and can converge in two cases: adversarial
(minimax) equilibrium or in coordination games with unique equilibrium. Furthermore,
a generalization of FF-Q is Correlated Q-learning (Greenwald and Hall, 2003) which
instead of converging to a Nash equilibrium, it looks for a correlated equilibrium10 which is
more general than a NE (Aumann, 1974). A common problem regarding NE is the selection
when there are multiple options, to deal with this issue Correlated-Q uses four equilibrium
selection functions which depending on the objective to maximise (e.g., each individual
reward, the sum of the players rewards). However, to compute any of those it needs to
observe opponents’ actions and rewards.

A limitation of previous approaches is that they target only one group (class) of op-
ponents. Therefore, some algorithms improve on that regard, one example is EXORL
(extended optimal response) (Suematsu and Hayashi, 2002) which has two main act-
ing behaviours: best response or Nash equilibrium. EXORL starts learning a best response
to the opponent (using on-policy learning), but if the opponent adapts (determined by a
parameter) then it will look for a Nash equilibrium. Replicator dynamics with a vari-
able learning rate (ReDVaLeR) (Banerjee and Peng, 2004) builds on the same ideas of
EXORL: best response against stationary opponents and NE against adaptive opponents.
Moreover, ReDVaLeR adds another characteristic, constant bounded expected regret at any
time against any number of opponents (Banerjee and Peng, 2004). This makes the algorithm
more robust since it is implicitly targeting opponents that are neither stationary nor using
the same learning algorithm. ReDVaLeR needs to observe opponent actions, if this is not
possible then AWESOME (adapt when everybody is stationary otherwise move
to equilibrium) (Conitzer and Sandholm, 2006) is designed for this case. AWESOME
converges to a Nash-equilibrium in self-play and when the opponents seem stationary it will
learn a best response and can do so with limited information (i.e., only local rewards).

We noted that algorithms basically target three main behaviours depending on the
opponents: convergence (against adaptive opponents), best response (against stationary
opponents) and bound the loss (against other types of opponents). In this regard, Powers
and Shoham (2004) formalised these three properties as compatibility, targeted optimality
and safety. Moreover, they proposed the MetaStrategy (Powers and Shoham, 2004) algo-
rithm that achieves those three properties by alternate among the strategies: fictitious play,
minimax and a modified Bully.11 A slightly different algorithm is Manipulator12 (Powers
and Shoham, 2005) which alternates among: best response, minimax and a modified God-
father strategy. Moreover, Manipulator has the same guarantees as MetaStrategy against

10. In these games it is assumed a public signal from the environment which is observed by all agents, a
real-world example is a traffic signal, the agents decide its strategy based on that signal.

11. Littman and Stone (2001) proposed the Bully strategy which is an example of a Stackelberg leader.
12. PCM(A) is an extension of Manipulator to multiplayer games (Powers et al., 2007).
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Figure 6: An example of an HM-MDP with 3 modes (large circles) and 4 states (smaller shaded
circles). The value Xmn represents a transition probability between modes m and n,
and ym(s, a, s′) represents a state transition probability in mode m.

a richer class of target opponents, memory-bounded opponents.13 These are defined as op-
ponents that play a conditional strategy where actions can only depend on recent periods,
this is its distribution over actions can only depend on the most recent k periods of past
history. We note that the approach of how MetaStrategy and Manipulator decide on which
strategy to use is the same: (i) first to explore (ii) to determine how the opponent reacts
and possibly act with a best response; (iii) otherwise the algorithms opt for a safe option
(minimax strategy).

Model-based approaches

Hidden-mode Markov decision processes (HM-MDPs) are a model-based technique
to deal with non-stationary environments (Choi et al., 1999). They assume the environment
can be represented in a small number of modes. Each mode is a stationary environment,
which has different dynamics and needs a different policy. It is assumed that at each
time-step there is only one active mode. The modes are hidden, which means that cannot
be directly observed, they are only estimated by past observations. Moreover, transitions
between modes are stochastic events. Each mode is modelled as an MDP. Different MDPs
along with its transition probabilities form an HM-MDP which can be seen as a special
case of a POMDP (Choi et al., 2001). Figure 6 depicts an example of an HM-MDP with 3
modes and 4 states. Each of the three large circles represent a mode, shaded circles inside
the modes represent states. Thick arrows indicate stochastic transitions between modes and
thinner arrows represent state-action-next state probabilities. A limitation of HM-MDPs is
that they need to fix the number of modes from the start and do not provide any form of
online learning.

13. In the same context of bounded memory adversaries, but in the bandit setting Arora et al. (2012)
showed that no bandit algorithm can guarantee a sublinear policy regret against an adaptive adversary
with unbounded memory. However, if the adversary’s memory is bounded, they propose a technique
which converts any bandit algorithm with sublinear regret bound into a sublinear policy regret bound.
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HM-MDPs assume the environment may change at every timestep, which may not
hold in many environments. Hidden-semi-Markov-mode Markov decision processes
(HS3MDPs) (Hadoux et al., 2014b) take inspiration from HM-MDPs to represent prob-
lems in non-stationary environments but their difference is that HS3MSPs assume these
changes evolve according to a semi-Markov chain (i.e., when the environment stochastically
changes to a new environment it stays in that environment during a stochastically drawn
duration). HS3MDPs are equivalent to HM-MDPs and form a subclass of POMDPs. To
solve large-sized HS3MDPs, Hadoux et al. proposed an adaptation of POMCP (Silver and
Veness, 2010).

Learning an opponent model is usually a way to obtain an acting policy (see Section 5.4).
However, some algorithms assume to start with a set of policies to act and the problem now
becomes which policy to select in an non-stationary environment. For example, Mahmud
and Ramamoorthy (2013) propose a scenario in which a latent variable changes rarely, but
when it happens it modifies the optimal policy. Thus, the agent at the beginning of each
round selects one policy from a known (and predefined) set Π. The goal of the agent is thus
to select policies to minimise the total regret incurred in the limited task duration with
respect to the performance of the best alternative from Π in hindsight. MDP-A (Mahmud
and Ramamoorthy, 2013) was designed for single agent scenarios with a set of tasks in
which an agent needs to perform similar tasks (the same state and action space), but with
different policies for each task. MDP-A uses a transfer learning approach in which given
a collection of source behaviour policies, eliminates the policies that do not apply in the
new task using a statistical test in an online fashion. Similarly, Bayesian policy reuse
(BPR) (Rosman et al., 2016) is another approach that draws inspiration from MDP-A
since they work under the same scenario. However, BPR computes a belief distribution
over the tasks and with every step of interaction it receives a signal which is used to update
that belief using the Bayes rule. A limitation of BPR is the assumption of knowing a
priori “performance models” (probability distributions) describing how policies behave on
different tasks.

A similar problem has been studied in the context of repeated games. Hernandez-Leal
et al. (2014b) analysed a scenario where the opponent has a set of stationary strategies and
changes among them during the interaction. Moreover, they assumed to know those strate-
gies (represented as MDPs, see Banerjee and Peng, 2005) before the interaction. A priori
MDP-CL is an algorithm designed to quickly detect the strategy used by a non-stationary
opponent (Hernandez-Leal et al., 2014b). A priori MDP-CL explores with different actions
for a period of rounds to learn an opponent model in the form of an MDP which is com-
pared to the initially known strategies. If the learned model matches one of the prior known
opponent strategies then the exploration phase finishes and the agent can solve the MDP
(that represent the opponent) to obtain an policy against it.

Inspired by the paradigm of optimism in face of uncertainty (Brafman and Tennenholtz,
2003), Crandall (2012) proposed the potential exploration with pseudo stationary
restarts (Pepper) algorithm to learn in repeated stochastic games. Pepper creates a
family of new algorithms when plugged together with learning algorithms for repeated
matrix games (e.g., M-Qubed, see Crandall and Goodrich, 2011; fictitious play, see Brown,
1951). Hernandez-Leal and Kaisers (2017a) proposed a variation of repeated stochastic
games in which the opponent may change constantly and its identity is unknown to the
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learning agent. Their opponent learning in sequential interactions (OLSI) algorithm
is generalization of Pepper to learn from different opponents by keeping a belief over a
hypothesised opponent set.

Note that most approaches respond optimally only to targeted opponents, but remain
silent to what happen against other opponents. Against this background, Johanson et al.
(2007) analysed how robust are counter strategies (learned to act against a single opponent)
across different opponents in a poker domain. They performed this analysis using the mod-
elling technique called frequentist best response (FBR). Their analysis showed that FBR
is very successful at exploiting the opponent it was designed to exploit. However, when
FBR strategies play against other opponents their performance is poor. To solve this issue,
the authors propose the restricted Nash response (RNR) algorithm to generate robust
strategies against a specific opponent, but at the same time they assume the opponent may
slightly change (Johanson et al., 2007). The strategy obtained by RNR is based on defining
a probability p for the opponent to act as the learned model and with probability 1−p it will
act different than the model. RNR requires a large number of observations and sometimes
can over fit the opponent model. Later, data biased response (DBR) (Johanson and
Bowling, 2009) which extends from RNR was proposed to overcome those problems. Re-
cently, restricted Stackelberg response with safety (RSRS) (Damer and Gini, 2017)
was proposed to find a robust response against an opponent in normal-form games. As
RNR, RSRS uses the confidence in its prediction over the opponent, however, RSRS adds
a safety margin which reflects the level of risk it is willing to tolerate, which results in a
trade-off between best-responding to the prediction and providing a guarantee of worst-case
performance.

Another algorithm which put emphasis on robustness is the online robust dynamic
programming (ORDP). Yu and Mannor (2009b) presented ORDP for an extreme case
of non-stationary behaviour; instead of assuming a adversary with a fixed objective ORDP
assumes the opponent may play an arbitrary sequence of actions. This translates into arbi-
trary variations in the reward function and arbitrary, but bounded, variations in the tran-
sition probabilities. Since solving this problem is computationally expensive, ORDP has
another (lazy) version which provides a trade-off between performance and computational
complexity (Yu and Mannor, 2009b).

5.4 Learn opponent models

Algorithms in the previous category share as deficiency that they target a specific opponent,
but with limited adaptability if the opponent does not follow their assumptions. To cope
with this problem algorithms in this category learn an opponent model and use it to derived
an acting policy. Updating that model (and therefore the policy) is the way to keep up with
against a non-stationary opponent.

Recall the scenario where the environment changes (infrequently) among several station-
ary modes and the agent needs to update its policy accordingly. In this scenario, Da Silva
et al. (2006) proposed the the reinforcement learning with context detection (RL-
CD) algorithm where the stationary environments are called contexts for which a partial
model is learned (for example, using Dyna-Q; Sutton and Barto, 1998). At each time-step
RL-CD decides which partial model to use according to a quality measure and when all par-
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tial models seem far then it starts learning a new model. Hadoux et al. (2014a) proposed
an adaptation of RL-CD, replacing the quality measure by statistical tests for change-point
detection, yielding RL-CD with sequential change-point detection. In a similar vein,
Banerjee et al. (2017) proposed the quickest change detection (QCD) approach based
on a two-threshold strategy to detect model changes in MDPs (with changes in transition
and/or rewards).

Previously we presented the adversarial bandit scenario (see Section 5.1). Later, we
presented algorithms that use either a forget mechanism (see Section 5.2) or target a specific
bandit switching scenario (see Section 5.3). Lastly, restless Markov bandits (Ortner
et al., 2014) are another specific bandit scenario in which the stochastic process governing
each arm does not depend on the actions of the learner, instead it depends on a Markov
chain which transitions independently whether the learner pulls that arm or not. Note that
in this case the problem becomes a partially observable setting (Ortner et al., 2014). Also
one main characteristic of the setting is that the optimal policy cannot always be expressed
in terms of arm indexes. Ortner et al. (2014) proposed to treat this problem as learning an
MDP, in particular they use a modification of the URCL2 algorithm (Jaksch et al., 2010)
for which they provide regret bounds.

In the context of efficient adversarial exploration, the ζ-R-max algorithm (Lopes et al.,
2012) extends from the classical R-max. Recall that R-max fixes a state-action pair after
sufficient visitations. This has the drawback of not consider the actual empirical prediction
performance or learning rate of the learner w.r.t. the data seen so far (Lopes et al., 2012). In
contrast, ζ-R-max estimate the learning progress in terms of the loss over the training data
used for model learning. The idea is to compute a ζ function which is based on the leave-
one-out cross validation error. ζ-R-max handles changes in the environment better than
R-max while also having a PAC-MDP efficient guarantee. A limitation of this approach
is the computational cost of computing ζ, since it depends on the number of states and
actions at every iteration.

Memory-bounded opponents have been of interest in the MAL community (see Sec-
tion 5.3; Powers and Shoham, 2005; Powers et al., 2007). However, previous approaches
dot not actively seek to learn an opponent model. In contrast, Banerjee and Peng (2005)
proposed to learn a model of those opponents whose policy is a (fixed) function of some
historical window of past joint-actions by all the agents. The adversary induced MDP
(AIM) (Banerjee and Peng, 2005) is a technique for repeated games which induces an MDP
that implicitly has modelled the opponent (stationary) strategy. The learning agent, by
knowing the MDP that the opponent induces, can compute an optimal policy π∗. These
types of players can be thought of as a finite automata that take the most recent actions of
the opponent and use this history to compute their policy (Munoz de Cote and Jennings,
2010). These AIM models have been used as basis to derive other learning algorithms. One
of those is the convergence with model learning and safety (CMLeS) (Chakraborty
and Stone, 2013). CMLeS achieves three results: (i) convergence to following a Nash equi-
librium joint-policy in self-play; (ii) targeted optimality (close to best response) against
memory-bounded agents whose memory size is upper bounded by a known value; and (iii)
safety (ensures an individual return that is very close to its security value).

Another approach that uses AIMs to model opponents is the MDP-CL (continuous
learning) algorithm (Hernandez-Leal et al., 2014a). The algorithm was proposed to act
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optimally against non-stationary opponents that switch among several stationary strategies.
MDP-CL starts without prior models or polices and uses an exploratory phase (random
actions) for a determined number of rounds. After this phase, it computes a model of the
opponent in the form of an MDP which yields an optimal policy. In this point it starts
learning another model (which will be used to detect changes) and after some rounds (de-
fined by a parameter) the MDP-CL agent make comparisons between the learned models to
evaluate their similarity. If the distance between models is greater than a given threshold,
it is determined that the opponent has changed strategy and the modelling agent must
restart the learning phase, resetting both models and starting from scratch with a random
exploratory strategy. Otherwise, it means that the opponent has not switched strategies
and the optimal policy is being used. DriftER (drift based on error rate) (Hernandez-
Leal et al., 2017a) is another algorithm designed for acting against switching non-stationary
opponents. DriftER uses R-max as exploratory policy instead of a random exploration
and to detect switches it draws inspiration from concept drift (Widmer and Kubat, 1996).
DriftER uses the learned MDP to predict the opponent actions and to keep track of their
model quality. Moreover, DriftER provides guarantees of switch detection with high prob-
ability (Hernandez-Leal et al., 2017a). A limitation of both DriftER and MDP-CL is that
they assume a period of rounds where the opponent will remain stationary in which the
model learning take place.

Finally, it is worth mentioning a scenario where a switching opponent either can use a
new strategy (unknown to the other agent) or a return to a previously used one, in this cases
it will be useful only to learn the unknown strategy and quickly detect when it is a known
strategy. BPR+ (Hernandez-Leal et al., 2016a,b) which is extension of BPR (Rosman
et al., 2016) is designed for these scenarios. BPR+ assumes a non-stationary opponent that
switches among stationary strategies. The algorithm starts without prior models or policies,
therefore during the interaction it learns an opponent model and when the opponent changes
(detected by low performance) it is stored it its memory which might be eventually useful
if the opponent returns to that same strategy.

5.5 Theory of mind

Approaches in the previous category learned models of other agents in the environment in
order to derive an acting policy. In this last category of sophistication we present algorithms
that do not only model opponents’ behaviour, but also assume a strategic reasoning about
the opponent, which represents a nested (or recursive) reasoning.

In this category we distinguish algorithms which either are inspired by two main areas
behavioural game theory and planning (see Section 6.4). In the former category we found
the level-k and cognitive hierarchy models which have been used to model human in-
teractions (Camerer et al., 2004; Stahl and Wilson, 1995; Costa Gomes et al., 2001). These
are also known as iterative reasoning models, which refers to approach they take to make
decisions. The general concept involves an initial set of zero level strategies, this is with-
out strategic behaviour (for example, randomizing across all actions). Computing a best
response against the lower level forms the base of the next level. However, most of these
approaches have been studied only in the context of one-shot games. One exception is
the work by Wunder et al. (2009) in which they a model populations consisting of agents
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with different reasoning levels in the iterated prisoner’s dilemma. The way to act optimally
against the population was obtained by best responding using a cognitive hierarchy model
(Camerer et al., 2004) which was modelled as a POMDP (Littman, 1996).

Sophisticated experience-weighted attraction (s-EWA) (Camerer et al., 2002)
is another behavioural game theory algorithm inspired by fictitious play. It assumes two
types of opponents, (simple) adaptive opponents (using the EWA, see Camerer and Ho,
1999) and sophisticated opponents that rationally best-responds to her forecasts of all other
behaviours (they use the s-EWA algorithm). A limitations is that it has been only studied
in the context of short repeated games (less than 10 rounds).

In the planning category, one of the earliest approaches proposed by Gmytrasiewicz and
Durfee (2000) is the recursive modelling method (RMM). They propose a specialized
knowledge representation in the form of reward matrices that allows using a recursive rea-
soning to obtain the best coordinated action in a MAS system. An approach inspired in
RMM, but with a formal decision theoretic background are the interactive POMDPs
(I-POMDPs) (Gmytrasiewicz and Doshi, 2005). They are called interactive because the
model considers what an agent knows and believes about what another agent knows and
believes (Aumann, 1999). This means that an agent will have a model of how it believes an-
other agent reasons. I-POMDPs extend POMDPs incorporating models of other agents into
the regular state space. The main limitation of these models is its inherent complexity, since
solving one I-POMDP with M number of models considered in each level, with ` maximum
reasoning levels, is equivalent to solving O(M `) POMDPs (Seuken and Zilberstein, 2008).
Despite these issues, there are recent algorithms for online learning (Ng et al., 2012). Also
there are works using I-POMDPs with more than a thousand of agents (Sonu et al., 2015)
and even in experiments with humans (Doshi et al., 2010). Parametrized I-POMDPs
(PI-POMDPs) (Wunder et al., 2011, 2012) are an approach which combines I-POMDPs
with the iterative reasoning models. The idea is to compute a policy that maximizes the
score against either a distribution over previous levels, or a selection of agents from those
levels, by solving the POMDP formed by them. While computationally expensive it pro-
vides a clear formalism to work showing good results in highly adaptive domains, such as
the lemonade stand game (Zinkevich et al., 2011). However, further work is needed to show
the applicability to other domains.

Lastly, another theory of mind model was proposed by de Weerd et al. (2013). Here,
the zero-level is composed of beliefs indicating the likelihood of the opponent taking any
action at any state, higher order models are generated based on the information from lower
levels. Additionally, they use a confidence value which helps the agent to adapt to different
opponents (with different levels of reasoning). Recently, an extension to more than one
opponent, multiagent ToM (MToM), was proposed by Van der Osten et al. (2017). To
cope with this challenge the authors propose a stereotyping mechanism (clustering), which
segments the agent population into sub-groups of agents with similar behaviour; these
groups are then treated as single agents.

We have presented the five categories of how algorithms deal with non-stationary and
classified state of the art algorithms with different characteristics. The next section presents
the strengths and limitations of each category, related areas to multiagent learning, and
pinpoints open avenues for future research.
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6. Discussion

We have presented five categories of how learning algorithms deal with non-stationary be-
haviour. In this section we start by discussing their strengths and limitations (see Sec-
tion 6.1). Then, we mention the most common experimental domains that have been used
(see Section 6.2), we outline the current theoretical results (see Section 6.3), and we describe
related areas of research (see Section 6.4). We conclude with exploring promising avenues
of future research (see Section 6.5).

6.1 Strengths and limitations of each category

We briefly mention some advantages and limitations for each category and provide pointers
for when each category is especially useful.

Ignore. These algorithms are widely known in the community and most of them do not
need to known extra information from the opponent (opponents payoffs). However,
a large drawback is that most of them lose their theoretical guarantees when used
in non-stationary environments (e.g., Q-learning). We advise to use this algorithms
where no extra information can be obtained from the environment.

Forget. One advantage of these algorithms, in contrast to the previous category, is that
they do take into account the non-stationarity of a multiagent system. In general,
these algorithms are model-free approaches with the limitation that they might take
longer periods to converge to a solution (Suematsu and Hayashi, 2002). These algo-
rithms could be used when no a priori information is known about the opponent and
there are no constraints in the learning time.

Respond to target opponents. If the opponent is restricted to a single class (i.e., worst
case opponent, see Littman, 1994; stochastically changing among models, see Choi
et al., 1999; converging to a Nash equilibrium, see Hu and Wellman, 1998) then
algorithms in this category offer an efficient solution. A limitation is the constrained
adaptability of these algorithms. For example, if we expect the opponent to use a
wider set of strategies then the solution is to directly learn a model of the opponent.

Learn opponent models. A main advantage of these algorithms is that the learned model
of the opponent can be reused if the opponent returns to the same strategy (Da Silva
et al., 2006; Hernandez-Leal et al., 2016a). Since these algorithms are model-based,
they usually learn faster than other approaches. One limitation is that they need the
opponent to remain stationary for a long enough period to model them, which can be
unrealistic in some scenarios.

Theory of mind. An interesting feature of algorithms in this category is that they are
readily available to model populations (more than 2 agents) since that is the intrinsic
way they obtain an acting policy (Camerer et al., 2004; Wunder et al., 2009, 2012).
Another characteristic of these algorithms is that they perform a complex strategic
reasoning process, which necessitates high computational costs to solve them (e.g.,
I-POMDPs, see Seuken and Zilberstein, 2008). Also, these approaches have been

36



A Survey of Learning in Multiagent Environments

studied mostly for predicting behaviour in unrepeated games (Wright and Leyton-
Brown, 2014).

6.2 Experimental domains and applications

Most testing scenarios for multiagent interactions use the formal models of game theory,
from extensive-form games, repeated games to stochastic games. However, there is also
another category of specific applications, such as negotiation, smart grids, and routing
problems.

Extensive-form games The classic game of poker has different variations ranging from
simple to complex (in terms of the state space and action space) which have been used to
evaluate different opponents. Kuhn poker is a tiny, toy variant of poker. The game involves
two players, two actions and a three card deck. This game has been studied previously
since the two players strategies can be summarized in two or three parameters (Hoehn
et al., 2005; Bard and Bowling, 2007). Leduc hold’em Poker is a larger version than Khun
Poker in which the deck consists of six cards (Bard et al., 2015). Heads-up limit Texas
hold’em is more complex variation, where the game tree consists of approximately 9.17×1017

states (Johanson et al., 2007). Given the size of the domain, algorithms have focused on
dealing with this problem (Bard et al., 2013).

Repeated games It is common to use repeated games as a setting with non-stationary
opponents (Suematsu and Hayashi, 2002; Bowling and Veloso, 2002; Tesauro, 2003; Wein-
berg and Rosenschein, 2004; Powers and Shoham, 2005; Conitzer and Sandholm, 2006; Ab-
dallah and Lesser, 2008; Crandall and Goodrich, 2011; Elidrisi et al., 2012; Hernandez-Leal
et al., 2013, 2014a, 2016a; Damer and Gini, 2017). The most simple games have two players
and two actions (2x2); a 3x3 example is rock-scissors-paper. Also, it is common to eval-
uate learning algorithms in randomly generated games according to certain specifications
such as zero-sum games or, constant-sum games (Nudelman et al., 2004). Previous works
have performed experimental comparisons among different multiagent learning algorithms
in repeated games (Bouzy and Métivier, 2010).

One interesting competition which can be represented as a repeated game is the lemon-
ade stand game (Zinkevich et al., 2011). Here, three agents (vendors) interact by choosing
a position (12 different actions) on an “island” in order to sell lemonade to the island’s
population. The rewards depend on the actions of all the agents and several interesting al-
gorithms were developed in this context where fast adaptation was needed (Wunder et al.,
2010; Munoz de Cote et al., 2010; Sykulski et al., 2010; Wunder et al., 2011).

Stochastic games This type of games generally poses a more difficult challenge than
repeated games since there are different states (games) with probabilistic transitions (see
Section 2.3). Many stochastic games represent grid-worlds, where agents need to take
strategic decisions. For example, a mini-version of the sports game soccer was proposed as
a stochastic game played on a 4x5 grid with five actions and two players, an attacker and the
goal keeper (Littman, 1994). In this game, agents must use a probabilistic policy to obtain
higher rewards (Littman, 1994; Bowling and Veloso, 2002). Other interesting games are
stochastic versions of well-known games such as PD, coordination, and chicken (Munoz de
Cote and Littman, 2008; Elidrisi et al., 2014).
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Other domains Lastly, many algorithms have been evaluated in specific applications
ranging from aerospace to security and surveillance; for a complete survey about the impact
of MAS applications refer to Müller and Fischer (2014).

A typical situation where non-stationary multi-agent learning plays an important role
is automated negotiation and e-negotiation systems (Jennings et al., 2001; Kraus, 2001).
Recent examples include the setting of e-commerce (He et al., 2003; Kowalczyk et al., 2003),
virtual agents (DeVault et al., 2015; Gratch et al., 2015) and games such as diplomacy (Fab-
regues et al., 2010) and coloured trails (Gal et al., 2005; Lin and Kraus, 2010). As with
human negotiations, automated negotiation between agents is a non-stationary game with
incomplete information, where the agents initially do not know their opponents prefer-
ences and where strategies can change over time (for a survey on learning in negotiation,
see Baarslag et al., 2016). As a result, they need to derive information from the exchange
of offers with each other.

Although rarely framed in the context of non-stationary learning, many automated
negotiation strategies have been formulated that take advantage of non-stationary learning
mechanisms. An important category is preference learning, in which agents aim to learn
aspects of the opponent’s preference profile by engaging in online opponent model learning
in an effort to reach Pareto optimal (win-win) outcomes (e.g., Coehoorn and Jennings, 2004;
Hindriks et al., 2009; Baarslag et al., 2013b; Zhang et al., 2015). Learning the opponent’s
negotiation strategy is another important aspect, which boils down to determining counter-
offers in subsequent negotiation states. The agents face the challenge of a wide diversity
of possible negotiation strategies and the fact that the opponent can change behaviour
dynamically according to the offers received (Hou, 2004; Baarslag et al., 2011). That is,
learning the opponent’s strategy is a moving target problem, where the agent simultaneously
seeks to acquire new knowledge about the opponent while the agent needs to optimize its
negotiation actions based on the current model. In the negotiation literature, responding to
target opponents is a opponent model classification problem, where the type of the opponent
needs to be determined from a range of possibilities given its negotiation behaviour (Lin
et al., 2008). There also exist simple ignore and forget strategies that either assume a
stationary environment or only employ recent data, for example negotiation tactics that take
into account elapsed time only (Faratin et al., 1998). More recently, automated negotiators
have even been endowed with (second-order) theory of mind, so that agents can reason about
what the opponent believes about their beliefs (de Weerd et al., 2015; Pynadath et al., 2013).
An important negotiation domain involves smart energy grids and their trading markets
used to buy and sell energy. The Power TAC simulator (Ketter et al., 2013) models a
complex a dynamic energy system in this context, where different brokers can take actions
in three markets. One of those is the wholesale market, which is a particular type of auction.
The non-stationary behaviour appears when there are brokers that switch among different
strategies through time (Hernandez-Leal et al., 2015). Another example is the problem of
predicting the energy demand of users, which involves randomness and changes in behaviour
(Marinescu et al., 2014, 2015).

Routing problems have been also treated as a domain with non-stationary behaviour.
In domain routing, an ISP operator has the opportunity to increase its revenue by charging
external domains for the traffic transiting on its links. Moreover, agents must be able to
deal with a non-stationary environment when the optimal price setting varies according to
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other ISPs’ strategies and the network load (Vrancx et al., 2015). In the context of smart-
cities, there are different routing problems that model non-stationary behaviour, such as
traffic networks. In this case, the world is represented as a grid, with traffic lights on each
junction and patterns of traffic representing different stationary environments (Choi et al.,
1999; Da Silva et al., 2006).

This section presented experimental domains commonly used in non-stationary environ-
ments while the next section focuses on theoretical results.

6.3 Theoretical results

In this section we outline different theoretical results presented in the context of learning
in non-stationary environments.

Regret bounds. Multi-armed bandits algorithms, usually provide regret bounds for dif-
ferent algorithms and different types of scenarios (adversarial, stochastic, Markov chain;
see Auer et al., 2002a; Auer, 2002; Auer et al., 2002b; Yu and Mannor, 2009a; Garivier and
Moulines, 2011; Ortner et al., 2014; Besbes et al., 2014). Few algorithms provide regret
bounds for sequential decision problems (Yu and Mannor, 2009b) or multiagent scenar-
ios (Bowling, 2004).

Efficient exploration guarantees. Another category of theoretical results comprises
those algorithms which provide efficient exploration guarantees (for example, using sample
complexity results; see Kakade, 2003) in adversarial stationary environments (Brafman and
Tennenholtz, 2003) and non-stationary ones (Lopes et al., 2012; Hernandez-Leal et al.,
2017b).

Convergence to Nash equilibrium. A large group of algorithms has provided guaran-
tees to converge to a NE under slightly different conditions: only local rewards (Abdallah
and Lesser, 2008), partial observations (Conitzer and Sandholm, 2006), complete informa-
tion settings (Bowling and Veloso, 2002; Hu and Wellman, 1998; Littman, 2001; Suematsu
and Hayashi, 2002). Most of these algorithms assume NE only in self-play (Hu and Well-
man, 1998; Bowling and Veloso, 2002; Banerjee and Peng, 2004; Chakraborty and Stone,
2013) or variations of self-play (Bowling, 2004).

Best response. Q-learning loses its guarantees (convergence to an optimal policy) in
non-stationary environments. Because of that, most algorithms try to improve on that re-
gard. For example, by still having guarantees in stationary environments, but also better
suited for non-stationary environments (Abdallah and Kaisers, 2016). Other address di-
rectly non-stationary opponents and prove that will learn a best response policy (Tesauro,
2003; Weinberg and Rosenschein, 2004; Chakraborty and Stone, 2013).

Robustness guarantees. Another common result is to assess the robustness of an algo-
rithms by providing guarantees of safety, security or no-exploitability in the form of expected
rewards (Littman, 1994; Johanson et al., 2007; Johanson and Bowling, 2009; Powers et al.,
2007; Crandall and Goodrich, 2011; Chakraborty and Stone, 2013; Elidrisi et al., 2014;
Damer and Gini, 2017) or regret bounds (Yu and Mannor, 2009b; Besbes et al., 2014). A
different class of results is to provide switch detection guarantees against non-stationary
opponents (Hernandez-Leal et al., 2017a) which makes the method robust.
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Figure 7: Types of concept drift that change over time (Gama et al., 2014): (i) sudden, (ii) incre-
mental, (iii) outliers, (iv) gradual and (v) recurrent.

Next, we introduce different areas and paradigms that share a connection with learning
in the presence of non-stationary behaviour. Later, we present open avenues of future
research.

6.4 Related areas

This section presents concepts and areas that might be useful to take into consideration
when developing new algorithms.

Supervised learning and concept drift. The machine learning community has devel-
oped an area related to non-stationary environments and online learning which is called
concept drift (Widmer and Kubat, 1996). The approach is similar to a supervised learn-
ing scenario where the relation between the input data and the target variable changes
over time. Gama et al. (2014) presented an survey of this problem where different types
of concept drift where categorized as depicted in Figure 7 (using a one-dimensional data
where changes happen in the data mean). (i) A change may happen suddenly/abruptly
(from one time-step to the next). (ii) Incrementally, where there is a window of time where
intermediate concepts appear. (iii) Outliers or noise, which refers to random deviation or
anomaly, in which case no adaptation is needed. (iv) Gradually, where the concepts al-
ternate one to another until finally converging to a different one. (v) Recurring, where
previously seen concepts may reappear after some time. Concept drift scenarios are related
to non-stationary environments, however they need to be adapted to a multiagent setting
where there is a need for exploration in the form of action selection and uncertainty due
to opponent’s actions. However, some work in multiagent learning have drawn inspiration
from concept drift (Hernandez-Leal et al., 2017a).

Transfer learning. RL has been shown successful in many domains when a single agent
is performing a single task (with the appropriate learning time). However, when having
different tasks the basic approach is to learn a completely new model. To reduce this time
consuming process, transfer learning algorithms use the experience gained in learning to
perform one task to improve learning performance in a related, but different, task (Taylor
and Stone, 2009). This is especially important in some types of non-stationary environ-
ments. For example, in case of recurring changes (see Figure 7), previous information
(for example, in the form of models or policies) will be useful to quickly have an acting
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policy. These ideas (e.g., reusing past policies) have inspired recent works on multiagent
systems (Hernandez-Leal et al., 2016a; Hernandez-Leal and Kaisers, 2017b).

Multiagent interaction without prior coordination. Stone et al. (2010) presented
the challenge of ad-hoc teamworks, this is, to create an autonomous agent that is able to effi-
ciently and robustly collaborate with previously unknown teammates on tasks to which they
are all individually capable of contributing as team members. Similarly, ad-hoc coordination
is the problem of designing an agent that is able to be flexible and efficient in a multiagent
system that admits no prior coordination among the agents (Albrecht and Ramamoorthy,
2013). This active line of research (Barrett and Stone, 2014; Melo and Sardinha, 2016;
Albrecht et al., 2016b; Liemhetcharat and Veloso, 2017; Chakraborty et al., 2017) is related
since the agents involved can be of different types (heterogeneous agents) and they can
have different adaptation behaviours which posses a problem since prior coordination is
restricted.

Partial observability and planning MDPs are the main model used by RL algorithms.
However, there are other related models which are particularly relevant to the multiagent
community. When cooperative teams of agents are planning in uncertain domains, they
must coordinate to maximise their (joint) team value, in this scenario the multiagent Markov
decision processes (MMDPs) (Boutilier, 1996) are useful. This model is a n−person stochas-
tic game where the payoff function is the same for all agents. Currently there is undergoing
research for reducing the costs related to computing these models (Scharpff et al., 2016).
POMDPs, partially observable MDPs (Kaelbling et al., 1998) are models where it is no
longer the case that the agent has full perception capabilities. Instead, there is probability
distribution over observations. In this way, it is possible to model problems in a more real-
istic way, the downside is that solving a POMDP is computationally more expensive than
an MDP (Papadimitriou and Tsitsiklis, 1987). Note that a particular case of a POMDP
is the HM-MDP (see Section 5.3). A generalization of POMDPs to a multiagent scenario
with cooperative agents (since they need to share they utility function) are decentralized
POMDPs (Seuken and Zilberstein, 2008). One limitation is its complexity which is NEXP-
complete (Seuken and Zilberstein, 2008). Recent works have proposed different methods to
overcome this limitation, for example by searching in the influence space (i.e., the space that
represents probabilistic effects that agent policies may exert on one another, see Witwicki
et al., 2012; Oliehoek et al., 2015).

Evolutionary game theory. The application of game theoretic reasoning to the study of
populations, initially to understand biological processes such as evolution, has received its
own designation as evolutionary game theory (Weibull, 1995). Initial work bringing this field
towards multi-agent learning algorithms has established the formal link between the simple
reinforcement learning algorithm cross learning and the replicator dynamics, a central con-
cept in evolutionary game theory (Börgers and Sarin, 1997). This has inspired a stream of
follow-up work that links stochastic multi-agent reinforcement learning algorithms to vari-
eties of deterministic dynamical systems, as summarized in a related survey (Bloembergen
et al., 2015). The principle methodology is taking the limit of infinitesimal learning rates,
and studying the resulting dynamical system to gain insight into the emergent behaviour
of the multi-agent system, such as its convergence, stability and resilience. Additional in-
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terest is given to each equilibrium’s basin of attraction and resulting welfare, providing an
assessment of the anticipated joint interaction outcome.

Behavioural game theory. Many models proposed from a game theoretic approach do
not accurately predict human-behaviour in many experiments (Kahneman and Tversky,
1979; Goeree and Holt, 2001). New models that take into account human characteristics
(e.g., fairness, reciprocity, deception) were grouped under the name of behavioural game
theory (Camerer et al., 2004). Even when these models tend to obtain good results in
one-shot games with human populations (Wright and Leyton-Brown, 2010) these models
are still not well studied in repeated games or sequential decisions problems.

Having mentioned closely related areas, we now present some interesting avenues for
future research.

6.5 Open questions and promising avenues of future research

Although learning in multiagent systems has been an active research area in the past years
there are still many open questions. In this section, we present four promising lines of
research and we give example research questions that fall within each line.

In a previous survey, Tuyls and Weiss (2012) presented three main challenges in MAS.
We pinpoint some connections between those challenges and our proposed lines of research.
In particular, for the “extending the scope of MAL” challenge, we propose ideas in the
context of diversity in opponents (see Line 1), dynamic interactions (see Line 2) and ap-
plications (see Line 4). Similarly, for the “classification limitations” challenge (a lack of
classifications of what is missing in MAL), we proposed two ideas related to learning objec-
tives (see Line 3).

Line 1: Diversity in opponents

• Heterogeneous learning agents. In real settings, one might encounter several agents
with different learning characteristics, objectives, actuators, and representation of the
world (including sensors). This heterogeneity is one of the most (if not the most)
important complicating factors in acting optimally. One way to cope with such rich
and complex environments is to characterise them (i.e., the set of learning opponents)
across different labels, like diversity (i.e., how many types of learning agents), type
distribution (i.e., the density distribution function) and set of learning techniques; e.g.,
if the learning agents are mostly using regret minimization or reinforcement learning or
Bayesian non-parametrics, to name a few examples. This is an important strategy that
has been used in the negotiation literature where agents can establish optimal bidding
strategies against specific types of opponents encountered in the environment (Matos
et al., 1998; Baarslag et al., 2013a). In this way, one can constrain solutions to some
well-defined subset of multiagent environments. We encourage new algorithms to
frame their work in the context of our proposed framework (see Section 3.2) which
naturally accounts for heterogeneous opponents.

• Modelling populations. There are many complications when interacting with many
agents, and for this reason, most algorithms use few agents in the environment. How-
ever, using those same algorithms could become intractable in large multiagent do-
mains. To obtain efficient and scalable algorithms one would need to sacrifice detail
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by generalising the system to a population level, in a way to best respond to classes of
populations rather than individuals (Wunder et al., 2011; Bard et al., 2015; Hernandez-
Leal and Kaisers, 2017a; Van der Osten et al., 2017). A different approach is to deter-
mine the degree of interaction among agents, this could help in defining whether to
interact with an agent or ignore it and take it as part of the environment (De Hauwere
et al., 2010; Yu et al., 2015).

• Unknown world knowledge by opponents. Algorithms in the learn category assume
the agent is aware of the knowledge of all opponents, i.e., attributes or features that
correctly describe the opponents’ observations of the world. However, in most real
situations this information is not really accessible (Chakraborty et al., 2013). To re-
lax this assumption, the agent needs to learn the model and at the same time the
correct knowledge representation (Maillard et al., 2013). A possibility to learn with-
out putting effort into designing the correct representation is to use deep learning
techniques (Deng and Yu, 2013; Mnih et al., 2015). Another option to dealing with
uncertain world representations by the opponents is to keep a set of known represen-
tations, as in (Hernandez-Leal et al., 2016a), and infer the correct one by maintaining
(and updating) a probability distribution over the set. This can be naturally modelled
in the proposed framework (see Section 3.2) where beliefs over opponent behaviors are
two main components.

Line 2: Dynamic interactions

• Learning in multiple concurrent interactions. Many multiagent learning algorithms
assume interactions occur synchronously and among all agents. However, in real-world
scenarios this is not always the case where interactions are usually asynchronous with
different agents taking different response times. This holds especially true in large
multi-agent coordination and negotiation systems where multiple, concurrent threads
have to be coordinated. Communication protocols for committing and decommitting
to deals have only been studied recently (Ito et al., 2009; Williams et al., 2012). It
is still an open questions whether current learning algorithms will work under these
slightly different conditions.

• Intelligent reuse of information to reduce learning times. Learning a model of the
other agents in the environment is a way to solve the non-stationarity problem. How-
ever, this learning process usually requires a large period of repeated interactions,
which is unreasonable in many scenarios. To alleviate this problem, information from
previous interactions can be reused. For example, by generating a “portfolio” of the
possible opponents (in an offline phase) and during the interaction estimate which is
the most similar and act with a respective policy (Bard et al., 2013; Barrett et al.,
2013; Albrecht et al., 2016a; Hernandez-Leal et al., 2016a), please refer to our pro-
posed framework which naturally models this approach (see Section 3.2). Similarly,
areas derived from transfer learning (Taylor and Stone, 2009) could be extrapolated
to multiagent scenarios such as curriculum learning (Svetlik et al., 2016; Narvekar
et al., 2017) where existing techniques work for a single agents (independently) and
therefore an open question is to reuse information from different agents. Giving advice
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to agents (Torrey and Taylor, 2013; Zhan et al., 2016) is another example in which
multiagent algorithms are still in an early stage of development (da Silva et al., 2017).

• Interaction against a dynamic number of opponents. In multiagent systems, the num-
ber of agents in the environment is usually fixed before the interaction and remains
constant during the interaction. However, it is possible to consider the opponents
may come and go during the interaction (e.g., dynamic coalition formation) which
will affect the environment and most probably the acting policy. One idea on how
to model these type of scenarios is to model each (dis)appearance of the opponents
as a switch in the environment and use algorithms designed for these cases (Da Silva
et al., 2006; Hernandez-Leal et al., 2016a, 2017a).

• Exploratory learning noise. The assumption to not explicitly model other agents
and just consider them as part of the environment presents different problems. One
of those happens when many learning agents explore at the same time creating
noise to the rest, this is called exploratory action noise (HolmesParker et al., 2014;
Munoz de Cote et al., 2006). To alleviate this problem different methods have been
proposed (Tumer and Agogino, 2007; HolmesParker et al., 2014). Recently, the same
problem appeared in a deep multiagent RL setting (Foerster et al., 2017a) and the
proposed solution was based on previous work in the area (Tumer and Agogino, 2007).
However, this problem is more complicated to solve in scenarios where no coordination
or cooperation is possible.

Line 3: Learning objectives

• Tracking vs convergent algorithms — transient performance. One way to categorise
learning algorithms is to divide those that aim to converge to the best result (to
an optimal policy) and those that only track the payoff of different solutions (no
convergence guarantees). An analysis of these two approaches in a stationary task
found that in certain cases a tracking algorithm obtains better results than one that
converges to the optimal policy (Sutton et al., 2007). This is especially important
when dealing with non-stationary environments. When a change in the environment
occurs a converging algorithm may take longer to overcome this issue (Claus and
Boutilier, 1998) and one that is only tracking will be able to adapt faster. This relates
to the transient performance, where usually algorithms are more concerned with the
results of learning than with the ongoing process of learning (Sutton et al., 2007).

• Tolerated and induced non-stationarity. There are different types of theoretical re-
sults in multiagent learning (e.g., convergence, optimality, non-exploitability; see Sec-
tion 6.3). However, more general convergence results are needed and we propose two
concepts that are worth analysing in MAS: tolerated non-stationarity, this is, how
much non-stationarity does an algorithm accepts without sacrificing optimality; and
induced non-stationarity, this is, how much non-stationarity an algorithm induces in
the system.
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Line 4: Applications

• Negotiation and MAS. As described in Section 6.2, negotiation is an interesting and
real-world scenario to model multiagent interactions. However, generic negotiation
using reinforcement learning seems an understudied subject with few works in the
intersection (e.g., Lazaric et al., 2007), as most research in this area seems to have
focused on Q-learning for trading agents in competitive market places so far (Hsu and
Soo, 2001; Tesauro and Kephart, 2002). It would be interesting to employ a number
of techniques mentioned in this survey (e.g., Johanson et al., 2007; Crandall and
Goodrich, 2011; Babes et al., 2009; Hernandez-Leal et al., 2016b) in order to improve
generic preference learning and strategy estimation in automated negotiation, both
in bilateral and multilateral settings. This remains an unsolved challenge in a non-
stationary setting in which preference evolution can occur, for example with regard
to risk tolerance or fairness attitudes (Baarslag et al., 2017).

• Deep RL and MAS. Deep learning (Bengio, 2009) has shown outstanding results when
combined with reinforcement learning (Mnih et al., 2015; Silver et al., 2016). Even
though most works assume a single-agent setting, problems with non-stationarity
have already appeared, proposing extensions of existing algorithms that handle non-
stationary environments in the deep learning setting. In particular, since deep learning
approaches require large numbers of samples, common techniques such as experience
replay have been adapted to handle non-stationarity (Foerster et al., 2017b; Cas-
taneda, 2016). Moreover, deep multi-agent RL works are on the rise (He et al., 2016;
Foerster et al., 2016, 2017a; Leibo et al., 2017; Gupta et al., 2017; Tampuu et al.,
2017) with the obvious challenge of handling non-stationary environments (i.e., multi-
ple learning agents). While these initial works have transferred a number of individual
techniques to the deep setting, it remains an open challenge to provide a conceptual
framework for deep multi-agent learning.

Above, we have presented relevant open problems with potential impact on the multiagent
community. The next section presents the conclusions drawn from this survey.

7. Conclusions

Non-stationary environments in sequential decision making tasks have received attention
from research in the domains of game theory, reinforcement learning and multi-armed ban-
dits. This survey has reviewed a wide range of algorithms from these fields, and contributes
a structure to think clearly about otherwise often implicit assumptions, characteristics and
concepts related to the challenges of multiagent learning (see Section 3). First, we pro-
posed a new framework for reasoning about multiagent systems (see Section 3.2). Then, we
identified several principled approaches that algorithms take to deal with non-stationarity:
ignore, forget, respond to target opponents, learn opponent models and theory of mind (see
Section 3.3). For each category we provide an illustrative example (see Section 4) and later
we present an extensive list of state-of-the-art algorithms classified into these categories
(see Section 5). Moreover, we identified the strengths and limitations of each category and
provide guideline scenarios when they should be applied (see Section 6.1).
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We observed that most experimental results are formalised in terms of repeated games
and stochastic games (see Section 6.2). Theoretical results are diverse and include: guaran-
tees to learn optimal policies, non-exploitability guarantees and convergence to equilibria,
to name a few (see Section 6.3). Following the coherent review of the state of the art,
this survey pinpoints the remaining open questions and presents them clustered into four
open avenues for promising future research: diversity in opponents, dynamic interactions,
learning objectives and applications (see Section 6.5).

While much progress has been achieved over the last decades, further fundamental
research is required for the breakthrough guarantees and demonstration of algorithmic per-
formance in non-stationary environments. This survey seeks to facilitate this future work by
highlighting current gaps in the literature and providing the guideline taxonomy to position
future work within it.
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Peter Auer, Nicolò Cesa-Bianchi, Y Freund, and Robert E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002b.

Robert J. Aumann. Subjectivity and correlation in randomized strategies. Journal of
Mathematical Economics, 1(1):67–96, March 1974.

Robert J. Aumann. Interactive epistemology I: knowledge. International Journal of Game
Theory, 28(3):263–300, 1999.

Robert Axelrod and William D. Hamilton. The evolution of cooperation. Science, 211(27):
1390–1396, 1981.

Tim Baarslag, Koen V. Hindriks, and Catholijn M. Jonker. Towards a quantitative
concession-based classification method of negotiation strategies. In David Kinny, Jane
Yung-jen Hsu, Guido Governatori, and Aditya K. Ghose, editors, Agents in Principle,
Agents in Practice, volume 7047 of Lecture Notes in Computer Science, pages 143–158,
Berlin, Heidelberg, 2011.

Tim Baarslag, Katsuhide Fujita, Enrico H. Gerding, Koen V. Hindriks, Takayuki Ito,
Nicholas R. Jennings, Catholijn M. Jonker, Sarit Kraus, Raz Lin, Valentin Robu, and
Colin R. Williams. Evaluating practical negotiating agents: Results and analysis of the
2011 international competition. Artificial Intelligence, 198:73 – 103, May 2013a.

Tim Baarslag, Mark J.C. Hendrikx, Koen V. Hindriks, and Catholijn M. Jonker. Predicting
the performance of opponent models in automated negotiation. In International Joint
Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013
IEEE/WIC/ACM, volume 2, pages 59–66, Nov 2013b.

Tim Baarslag, Mark J.C. Hendrikx, Koen V. Hindriks, and Catholijn M. Jonker. Learning
about the opponent in automated bilateral negotiation: a comprehensive survey of oppo-
nent modeling techniques. Autonomous Agents and Multi-Agent Systems, 30(5):849–898,
2016.

Tim Baarslag, Michael Kaisers, Enrico H. Gerding, Catholijn M. Jonker, and Jonathan
Gratch. When will negotiation agents be able to represent us? the challenges and op-
portunities for autonomous negotiators. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, 2017.

47



Hernandez-Leal, Kaisers, Baarslag and Munoz de Cote

Monica Babes, Michael Wunder, and Michael L. Littman. Q-learning in two-player two-
action games. In Proceedings of the 8th International Conference on Autonomous Agents
and Multiagent Systems, Budapest, Hungary, 2009.

Bikramjit Banerjee and Jing Peng. Performance bounded reinforcement learning in strategic
interactions. In Proceedings of the 19th Conference on Artificial Intelligence, pages 2–7,
San Jose, CA, USA, 2004.

Bikramjit Banerjee and Jing Peng. Efficient learning of multi-step best response. In Proceed-
ings of the 4th International Conference on Autonomous Agents and Multiagent Systems,
pages 60–66, Utretch, Netherlands, 2005.

Taposh Banerjee, Miao Liu, and Jonathan P How. Quickest Change Detection Approach
to Optimal Control in Markov Decision Processes with Model Changes. In Proceedings
of American Control Conference, 2017.

Nolan Bard and Michael Bowling. Particle filtering for dynamic agent modelling in simplified
poker. In Proceedings of the 22nd Conference on Artificial Intelligence, pages 515–521,
Vancouver, Canada, 2007.

Nolan Bard, Michael Johanson, Neil Burch, and Michael Bowling. Online implicit agent
modelling. In Proceedings of the 12th International Conference on Autonomous Agents
and Multiagent Systems, pages 255–262, Saint Paul, MN, USA, May 2013.
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