
J. Parallel Distrib. Comput. 72 (2012) 650–665
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Info-based approach in distributed mutual exclusion algorithms
Peyman Neamatollahi a,∗, Hoda Taheri a, Mahmoud Naghibzadeh b

a Department of Computer Engineering, Young Researchers Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
b Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

a r t i c l e i n f o

Article history:
Received 8 December 2010
Received in revised form
9 January 2012
Accepted 20 January 2012
Available online 1 February 2012

Keywords:
Mutual exclusion
Critical section
Distributed systems
Token-based algorithm
Message exchange
Concurrency

a b s t r a c t

In this paper, we propose a token-based fully distributed algorithm with token-asking method for
Distributed Mutual Exclusion (DME) in a computer network composed of N nodes that communicate by
message exchanges. The main goal is to introduce a new class of token-based DME algorithms called
info-based algorithms. In some previous algorithms, the request to enter a critical section is sent to
all nodes because the token-holding node is unknown, but in this info-based algorithm some nodes
know the token-holding node and lead critical section entering requests to it, directly. This algorithm
uses a logical structure in the form of a wraparound two-dimensional array which is imposed on the
interconnecting network. Usually, a request message for entering the critical section is sent vertically
down in the array, and eventually sent to the token-holding node with the assistant of an informed-
node (common node between the row consisting of the token-holding node and the column consisting
of the requester node). The nodes invoking the critical section can obtain the token with fewer message
exchanges in comparison with many other algorithms. Typically, the number of message exchanges is
4
√
N+1 under light demandwhich reduces to approximately 2message exchanges under heavy demand.

A correctness proof is provided.
© 2012 Elsevier Inc. All rights reserved.
1. Introduction

A Distributed System (DS) consists of a collection of distinct
processes which are spatially separated, and which communicate
with one another by exchanging messages. A single computer
can also be viewed as a DS in which the central control unit,
the memory units, and the input–output channels are separate
processes [9].

One of the most important purposes of the distributed systems
is to provide an efficient and convenient environment for sharing
resources [23]. Therefore, it is possible that more than one process
request a shared resource through their critical sections simulta-
neously. Each process has a code segment, called Critical Section
(CS), in which the process can access the shared resource. There
are many situations within operating systems, distributed shared
memories, distributed databases, etc., that a resource should be
given to only one process at a time. An important application of
distributed systems, which uses mutual exclusion and needs spe-
cial mention, is in the field of replicated databases. A replicated
database is a distributed database in which some data items are
stored redundantly at multiple sites. If a node is to perform up-
dates, it must ensure that no other node is doing this activity. All

∗ Corresponding author.
E-mail addresses: neamatollahi@ieee.org (P. Neamatollahi), h.taheri@ieee.org

(H. Taheri), naghibzadeh@um.ac.ir (M. Naghibzadeh).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.01.005
replica control protocols require that mutual exclusion must be
guaranteed between two write operations or a read and write op-
eration [23]. When a process has to read or update certain shared
data structures, it first enters a CS to achieve mutual exclusion and
ensure that no other process will use the shared data structures
at the same time [26]. Obtaining dedicated access to a resource is
a basic problem in DS. If a resource needs to be accessed exclu-
sively, Mutual Exclusion (ME), some controls are necessary for as-
suring that only one process can use a shared resource at any given
time. The algorithms designed to ensureME in distributed systems
are termed Distributed Mutual Exclusion (DME) algorithms. The
problem of DME has to be solved to prevent race condition and,
as a result, prevent the possibility of producing an incorrect re-
sult by a correct program [17]. In a DS any given node has only a
partial or incomplete view of the total system [27]. In DS none of
the shared variables, semaphores or local kernel methods can be
used for implementing the DME. So, DME problem has to be solved
by using message exchanges. The problem of ME has been fairly
well studied in distributed systems. The proposed solutions can
be classified in token-based and non-token-based algorithms. In
token-based DME algorithms, token is a unique entity in the entire
system which is used to grant a node to enter its CS from among
other nodes that are attempting to invoke their critical sections.

We attempt to propose a new token-based algorithm for solving
the DME problem. In our algorithm, the token moves from one
idle token-holding node (i.e. the node that has the token but

http://dx.doi.org/10.1016/j.jpdc.2012.01.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:neamatollahi@ieee.org
mailto:h.taheri@ieee.org
mailto:naghibzadeh@um.ac.ir
http://dx.doi.org/10.1016/j.jpdc.2012.01.005


P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665 651
is not interested in the CS) to the requesting node, based on
the arriving request from the requesting node. We used a wrap
around two-dimensional array logical topology to decrease the
number of message exchanges. Usually, a request message for
entering the CS is sent vertically down in the array. The role of the
common node between the row consisting of the token-holding
node and the column consisting of requester node is to send the
CS entry requests directly to the token-holding node. The nodes
which know the token-holding node are named informed-nodes.
Eventually, the request message for entering the CS is sent to the
token-holding node with the assistant of informed-nodes.

The rest of paper is organized as follows: Section 2 gives a
small survey of DME algorithms and splits these algorithms into
two families of algorithms (token-based and non-token-based
algorithms), Section 3 considers assumptions for the algorithm,
Section 4 considers the new algorithmby explaining themain idea,
control messages and data structures, and then the description
of algorithm (the pseudo-code of the algorithm is shown). This
section also describes details of the algorithm with a scenario,
Section 5 proves the correctness of the algorithm (safety and
liveness properties), Section 6 calculates the performance of
the algorithm and then compares it with performance of other
algorithms in a table, Section 7 presents the simulation results,
Section 8 discusses the logical topology and the conclusion is at
the end.

2. Related work

Solving the ME problem (which is first introduced by Dijkstra
[5]) has been one of the topics which has received the attentions of
many researchers. As there are not enough resources to fulfill the
requirements of all concurrent processes in multiprogramming,
multiprocessor, and distributed systems, resources are shared by
all processes. In spite of there being many algorithms in the DME
concept, only a few have been very innovative, presenting new
ideas or new algorithmic techniques. Two general approaches
for solving the DME problem, are centralized and distributed
approaches. In a centralized approach, one process is considered
as a coordinator process which is the controller for a shared
object. Whenever a process wants to access the shared object, it
sends a request message to the coordinator process and when
the shared object becomes available and the request’s turn pops
up, the coordinator process returns a reply message which means
that the shared object is free. Of course, this unique reply can be
implemented by a token which is managed by the coordinator
process. Hence, this approach can be the intersection point
between two concepts, token-based and permission-based; these
concepts will be explained later. But there are problems such
as the coordinator process becoming a bottleneck and having a
single point of failure. In a distributed approach, there are two
families of algorithms which are token-based and non-token-
based algorithms. The schema in Fig. 1 shows a more fine grained
classification of DME algorithms.

2.1. Token-based algorithms

In these algorithms a simple concept is used: as only one
process at a time can enter its CS (safety property), the right to
enter is materialized by a special object which is unique in the
whole system, namely a token. Processes requesting to enter their
critical sections are allowed to do so when they possess the token.
Therefore, the token gives a process the privilege of entering the CS.
At any given time, the tokenmust be possessed by only one process
at the most. The safety property is trivially ensured as the token is
unique. The only thing one has to manage is the movement of the
token from one process to another so that each request is granted
Fig. 1. A taxonomy of DME algorithms.

eventually (liveness property). At this point, two possibilities can
be considered for such a movement: the perpetual mobility of the
token and the token-asking method [20].

In the perpetual mobility, the token travels from one process
to another to give them the right to enter their critical sections
exclusively, without paying attention to whether that process
needs the token or not. Therefore, additional processing and
communication are imposed on the system as overhead, especially
in the light load situations in which very few numbers of processes
attempting to invoke their critical sections, simultaneously. But the
perpetual mobility of the token is very effective on the high load
situations. Token-ring algorithm [10] is one of these algorithms. In
this algorithm in order not to forget the request of some processes,
they are put on a directed logical ring and the token moves,
clockwise or counter clockwise, around the logical ring. If a process
receives the token and is not interested in its CS, it passes the
token to the next process along the ring. The perpetual mobility
on a unidirectional ring ensures the liveness. In addition to the
perpetual mobility of the token, the other problem of this method
is that it does not have the scalability property. The reason is that,
by increasing the number of processes, the average waiting time
for the process attempting to get the token increases.

In token-asking method, a process which is attempting to
invoke its CS, if it is not the token-holding process, requests to
receive the token and waits for the token arrival. After completing
the execution of its CS, the token-holding process chooses a
requesting process and sends it the token. If no process wants to
use the token, the token-holding process does not need to send the
token away. Using this method, Suzuki and Kasami [24] presented
an algorithm that process Pi which is attempting to invoke its CS,
broadcasts a requestmessage to all other processes,N−1message
exchanges are required, and the token is sent directly to process Pi
for which onemessage exchange is required. Hence, this algorithm
requiresN message exchanges per CS invocation, at themost. Some
of the algorithms of the token-asking method organize processes
in the logical tree structure. These structures are classified to
static and dynamic ones. For process Pi, define NEIGHBORi to be
the set of processes Pj such that there is an edge from process
Pi to process Pj or from process Pj to process Pi. In a dynamic
structure, NEIGHBORi changes from time to time for each process
Pi. On the other hand, in a static structure, NEIGHBORi is constant
for every process Pi in the system. Raymond [19] presented an
algorithm based on static logical unrooted tree structure. The
performance of this algorithm depends on the precise structure
of the network’s spanning tree used, but the average number of
message exchanges per CS invocation is O(logN) and 2(N − 1)
in the worst case. However, the worst case scenario usually does
not occur frequently. This algorithm uses a surrogate mechanism
in which a process Pi requests another process Pj to act on Pi’s
behalf. Therefore, CS entering requests are indirectly led to the
token-holding process and the token is also sent from the token-
holding process to the requesting process indirectly. This concept
is similar to info-based, but in our info-based algorithmCS entering



652 P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665
requests are directly led to the token-holding process and the
token is also sent from the token-holding process to the requesting
process directly. In the tree structure of Raymond’s algorithm, non-
leaf processes should tolerate more workload than leaf processes.
But in our algorithm, all processes receive approximately equal
workload. Naimi et al. [15] presented an algorithm based on
dynamic logical rooted tree structure which requires O(logN)
message exchanges per CS invocation in an average case and N
message exchanges in the worst case. In this algorithm CS entering
requests are also led to the token-holding process indirectly. The
superiority of the proposed algorithm over these two algorithms is
demonstrated in forthcoming sections.

Also, it is possible to combine the two mentioned techniques.
For instance, the authors in [25] presented a hybrid method. This
method applies the concept of perpetual mobility of the token in
columns and token-asking in rows of the torus logical topology.

Fair scheduling of the token among competing processes is the
major design issue of the token-based DME algorithms.

2.2. Non-token-based algorithms

Lamport [9] presented an algorithm that requires 3(N − 1)
message exchanges per CS invocation. A large classification of non-
token-based algorithms includes permission-based algorithms.
The idea is very simple: when a process attempts to invoke its CS,
it asks the other processes whether they allow it to enter its CS or
not, then it waits until all replies arrive. Of course, by this method
a priority should be considered between two processes which
have conflicting requests. Ricart and Agrawala [22] presented an
algorithm which requires 2(N − 1) message exchanges per CS
invocation. In the multi-token method, which is presented by
Abdur Razzaque and Seon Hong [21], if process Pi is attempting
to invoke its CS, it creates the token(SN i, i) and passes it to next
process in the proposed unidirectional logical ring and waits until
it receives that message again, then enters its CS (here, the tokens
act as permissions). If process Pj has already created a token,
token(SN j, j), with a higher priority than token(SN i, i), it means
SN j < SN i or if SN j = SN i then j < i, it avoids sending token(SN i, i)
to the next process in the unidirectional logical ring until executing
its CS. This algorithm requires N message exchanges per CS
invocation. Disadvantage of permission-based algorithms is the
high overhead in their communications in comparison with the
token-based algorithms.

To decrease the number of message exchanges, some algo-
rithms propose that the process attempting to invoke its CS, need
not get permission from all other processes, but rather from a sub-
set of processes. A part of these algorithms partition processes
into a collection of subsets, such that every pair of subsets has at
least one shared process i.e. the intersection of every pair of sub-
sets is not empty. These kinds of subsets and the corresponding
ME solver algorithms are named quorums and quorum-based al-
gorithms, respectively. Maekawa [12] presented the first quorum-
based algorithm: process Pi attempting to invoke its CS requires
blocking other processes in the same quorum from entering their
critical sections to use the same resource. However, it will unblock
these processes whenever it is finished with the resource. Consid-
ering even special messages used for preventing deadlock, this al-
gorithm dramatically reduces the number of message exchanges
to c(
√
N − 1), where c is an integer with 3 ≤ c ≤ 5. This new

thought helps us to choose a good topology for our proposed al-
gorithm. Many other algorithms (for example [1,3,4,7,8,13,18,14])
exist that use quorums in order to reduce themessage complexity.
Agrawal and Abbadi [1] presented an algorithm which uses a log-
ical tree topology for creating quorums. It decreases the number
of message exchanges to O(logN) in the average case, but requires
(N+1)/2message exchanges in theworst case. Cao and Singhal [3]
presented an algorithm which limits the number of message ex-
changes to 3k under light demand and 6k under heavy demand.
Here, k is

√
N if Maekawa’s quorum construction algorithm is used

and it is logN if Agrawal and Abbadi’s quorum construction algo-
rithm is used. Quorum-based algorithms, in comparisonwith other
permission-based algorithms, have lower number of message ex-
changes. However, the problem of recreating quorums and man-
aging them is the disadvantage of this type of algorithms.

Also, there are algorithms that try to use a combination of
token-based and permission-based concepts. One kind of these
hybrid algorithms is presented by Paydar et al. [17]. They used
a two-dimensional array logical topology with quorum-based
concept. It is one of the token-based algorithms.With this method,
the number of message exchanges is 4

√
N , in the worst case.

3. Assumptions

What we will present in this paper solves the ME problem
in a DS composed of N nodes with no shared memory. These
nodes communicate through asynchronous message passing on a
communication network layer that is assumed to be error-free. At
first, without loss of generality, we assume that there is only one
process in each node. However, it is possible that more than one
process, which are interested in entering their critical sections,
could exist in every node. Therefore, we use process and node to
represent the same concept.We assume that for any two processes
Pi and Pj, the messages sent from process Pi to process Pj are
received in the same order as they are sent. Message propagation
delay is unpredictable but it is finite, it indicates that everymessage
will eventually be received. This assumption avoids introducing
message acknowledgement protocols.

The algorithmdoes not entail any specific physical interconnec-
tion topology. In otherwords, the physical topology of the network
is known (e.g. ring, star, mesh, etc.). Therefore, every process can
send messages to all other processes (complete communication
graph similar to [9,17,24,19,15,22,1]). Because the requests move
on a vertical ring in the down direction and on the other hand,
the informed-nodes locate on the horizontal ring, wraparound
two-dimensional array (i.e. 2-D torus) is selected for the logical
structure of the interconnecting network. This logical topology is
only a conceptual tool used to describe the algorithm (similar to
[17,25,4]). It is assumed that N = d2 where d is an integer and N
is the number of processes. Therefore, the logical interconnecting
array is composed of

√
N rows and

√
N columns.

Initially, a unique identification number between 1 to N is
randomly assigned to each process. Each process (say Pi) computes
its row and column numbers in the wraparound two-dimensional
array (for example Pi’s row is equal to ⌈i/d⌉). Besides, each node
knows other nodes located in its row (k = ⌈i/d⌉ , ∀j, (k − 1)d <
j ≤ kd) and also its down neighbor (see Fig. 2).

We assumed that processes operate correctly. A process has
the permission of dedicated access to the resource only when
executing its CS, but for a limited amount of time. While a process
requests its CS, it cannot create another request for the CS until the
first one is granted. We assumed that CS entering requests might
not be satisfied in the order of their construct, like algorithms
proposed in [27,5,20,10,24,19,15,22].

4. An info-based algorithm

The explanation of the algorithm is split into three parts:
first, the main idea is described, second, control messages and
data structures are introduced and third, the overall algorithm is
presented. At the end of this section, a scenario is declared.



P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665 653
Fig. 2. A proposed logical topology of 25 nodes.

Fig. 3. Orders and types of messages exchanged between the token-holding
process, Pk , and the requesting process, Pi .

4.1. The main idea

By info-based we mean that from total nodes in a DS, some
nodes know the current location of the token and forward CS entry
requests to the token-holding node, directly. Therefore, in our info-
based algorithm, CS entering requests are led to the token-holding
process directly through informed-nodes and the token is also sent
from the token-holding process to the requesting process directly.
As a result, knowing that some nodes have requests to enter their
critical sections and the current location of the token are very
important concepts in our info-based algorithm.

We assume that in the beginning of the algorithm, Pk is the
token-holding process (which is in row a and column b of the
wraparound topology) and it is executing its CS. To simplify,
assume there is only one non-token-holding process, say process
Pi in row m and column n, which is attempting to invoke its CS.
The given position of these two nodes and messages exchanged
between them in the following scenario is shown in Fig. 3. The
request message (ReqMsg) of process Pi for entering its CS is sent
to the node below Pi, suppose it is process Pj. If process Pj does not
know who the token-holding node is, it sends ReqMsg of process
Pi to the next node below. This action continues until ReqMsg
of process Pi eventually arrives at one of the informed-nodes, a
node in row a that knows process Pk is the token-holding node,
e.g. process Ph in Fig. 3. Now, ReqMsg of process Pi is sent directly
to process Pk. Therefore, up to this step of the algorithm, the request
message of process Pi for entering its CS has arrived at the token-
holding node. Process Pk, after releasing its CS, sends the token
directly to process Pi.
Process Pi, after receiving the token, informs all the nodes in its
row that Pi is the token-holding process by an InfoMsg message.
Hence, all nodes in row m know that Pi is the token-holding
process. In this case, process Pi through sending RelMsg message
to process Pk, asks process Pk to inform all nodes in Pk’s row that Pk
does not hold the token anymore.

To do this, process Pk after receiving the RelMsg message,
multicasts RowRel messages to all nodes in its row, except itself.
Process Pk waits until receiving Ackmessages from all these nodes.
By arriving each Ack message from any process (say process Pf ),
process Pk knows for certain that it has received all ReqMsgs sent
through process Pf already. When process Pk receives the Ack
messages from all these nodes (i.e. all nodes in Pk’s row know
that Pk is a non-token-holding process anymore), it sends Finished
message to process Pi. Therefore, the responsibility of process Pk in
managing the token and CS entering requests is finished.

Process Pi after receiving the Finished message, executes its CS
and after completing its CS becomes themanager of the tokenwith
the power to decide whether to remain the idle token-holding
process or send the token to another node.

In our algorithm, there is always only one row where all nodes
in it are the informed-nodes and these nodes remain informed-
nodes until another rowappears that includes the informed-nodes.
On the other hand, the request of each process is sent vertically in
the down direction until it arrives at one of the informed-nodes.

To decrease the number of message exchanges, we used two
interesting principles in the algorithm which have considerable
influence on the overall performance:

• PCL-1: when a process (say process Pi) is waiting to receive the
token, if it receives a request from another process (say process
Pj) in its column, it blocks that request. Whenever process Pi
receives the token and executes its CS, it inserts that request
into the token queue of not responded requests. Since process
Pi will eventually get the token and has the knowledge about
the request of process Pj, there is no need for that request
to continue its vertical path in order to arrive at one of the
informed-nodes.
• PCL-2: as mentioned earlier, we name a node that holds the

token the token-holding node. There are two types of token-
holding nodes: explicit and the implicit token-holding node. By
explicit wemean that the token-holding node informs all nodes
in its row that it has the token, before executing its CS. Therefore,
these nodes become the informed-nodes. In contrast to an
explicit token-holding node, an implicit token-holding node
executes its CS, without informing nodes in its row. Consider
the following conditions. (1) Process Pi has received the token
but has not entered its CS, yet. (2) Except the request of process
Pi, other not responded requests exist in the token queue of
not responded requests. Under the assuming two, process Pi
enters its CSwithout informing the nodes in its row that it is the
token-holding process now. Therefore, Pi is the implicit token-
holding process. The reason is that process Pi holds the token
temporarily and after its request is satisfied; it must pass the
token to the next requester node, immediately.

4.2. Control messages and data structures

In this section, we describe the control messages and data
structures used in the algorithm through Fig. 4. The following local
data structures are used by process Pi:

• SN i: a counter that process Pi increases by one whenever it
attempts to invoke its CS, to indicate that there is a request from
this process which is not responded.
• Waiting i: a FIFO queue which is composed of not responded

ReqMsgs.



654 P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665
Fig. 4. Initialization of the algorithm.
• P_waiting i: a FIFO queue which is composed of ReqMsgs in
which some requests are responded and some are deferred.
• CL_tokeni: a variable to keep the node identifier of the cur-

rent explicit token-holding node (useful for informed-nodes).
Another use of this variable is that if Pi is the token-holding pro-
cess, it can enter its CS when CL_tokeni equals i.
• SL_tokeni: a variable that shows the beginning and the end of

the responsibility of the explicit/implicit token-holding process
about the token. The beginning is shown by SL_tokeni ← i and
the end by SL_tokeni ← 0.
• Right and Down: every node knows its right and down neigh-

bors which are represented by constant identifiers placed in
Right and Down variables, respectively.
• Q : a temporary FIFO queue of ReqMsgs which are probably

deferred.
• NumAck: the number of acknowledge messages that have been

received by process Pi.

ReqMsg, InfoMsg, RelMsg, RowRel, Ack and Finished are consid-
ered message types which are used in the algorithm and token is
a record which is sent by a message. The details of these messages
follow:

• token: this is a record composed of an array with N elements
named seqnum1 (similar to [24] for distinguishing responded
requests from not responded ones), a FIFO queue including not
yet responded requests named next, a FIFO queue including
requests which are probably deferred named testreq and two
variables named idexp and rowexp. The token.idexp and the
token.rowexp show identification number of the explicit token-
holding node and its row, respectively.
• ReqMsg(i, SN i): a message which is sent by process Pi to invoke

its CS. It is composed of the identification number of the
process, i, and its sequence number, SN i, which is shown by
ReqMsg(i, SN i).
• InfoMsg(i,Q ): this message informs the receiving node that

process Pi is the explicit token-holding node. On the other hand,
Q is a queue in which ReqMsgs are saved.
• RelMsg(i, sw): this message requests from its receiver node to

inform all nodes in its row that it is not the token-holding node,
any more. ‘‘sw’’ is a Boolean parameter and is set to true when
the sender and receiver of this message are in the same row,
otherwise it is false.
• RowRel(i, l): this message informs the receiver node that

process Pi is not the token-holding node any more. Parameter
‘‘l’’ is set to zero if the new and the old token-holding nodes are
not in the same row. Otherwise, it is set with the identification
number of the new token-holding node.

1 It is an array with N elements and seqnum[i] indicates howmany times process
Pi has entered its CS until now.
• Ack(i): this is an acknowledge message which is sent by pro-
cess Pi.
• Finished(Waiting i): thismessagemeans that the sender process,

process Pi, has finished its job. By this message,Waiting i is sent,
too.

For the following sectionwe assume that node k, k is a constant,
in row a (1 ≤ a ≤

√
N) and column b (1 ≤ b ≤

√
N) is the explicit

token-holding node, and all nodes in row a are informed-nodes.

4.3. The description of algorithm

We investigate the behavior of the algorithm in three cases
(1) process Pi requests entering its CS, (2) process Pi receives a
message from process Pj, and (3) process Pi leaves its CS.
Request the CS: process Pi, to execute its CS, first increases its
sequence number, SN i, by one. It then creates a request in the form
of ReqMsg(i, SN i) and inserts a copy of it in the tail of its Waiting
queue, Waiting i. Now if process Pi is not the token-holding node
but knows which node is the token-holding one (i.e., process Pi
is an informed-node), sends ReqMsg(i, SN i) to the explicit token-
holding node. Otherwise, if process Pi is neither a token-holding
node nor an informed-node, inserts a copy of ReqMsg(i, SN i)
in P_Waiting i and sends ReqMsg(i, SN i) to its Down. Therefore,
ReqMsg(i, SN i) starts its verticalmovement until it arrives to one of
the informed-nodes. Conditional statements mentioned above are
done atomically. Then, process Pi waits to receive the token. After
receiving, it waits until ReqMsg(i, SN i) comes to head(token.next)
andCL_tokeni is equal to i. Thismeans that all conditions for process
Pi are met to execute its CS. Process Pi, before entering its CS,
updates SL_tokeni with i and then begins executing its CS. For
details see Fig. 5.
Receive amessage:whenprocess Pi receives amessage fromprocess
Pj, depending on the type ofmessage received, seven situations are
possible:

(1) ReqMsg(j, SN j): this part of the algorithm must be done atom-
ically. By receiving ReqMsg(j, SN j), some cases may occur:
• If process Pi is a token-holding node, it inserts ReqMsg(j, SN j)

in theWaiting i.
• Otherwise, if Waiting i is not empty (i.e., ReqMsg(i, SN i) ex-

ist in theWaiting i and process Pi waits to receive the token),
ReqMsg(j, SN j) is inserted in Waiting i but there is no need
to send ReqMsg(j, SN j) to the next nodes in vertical path
(PCL-1).
• Otherwise, if process Pi is an informed-node, it sends

ReqMsg(j, SN j) to the explicit token-holding node.
• Otherwise, if ReqMsg(j, SN j) has not arrived at process

Pj itself, during its vertical movement, process Pi inserts
ReqMsg(j, SN j) in P_Waiting i and sends it to its Down. These



P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665 655
Fig. 5. Pseudo-code of REQUEST THE CS procedure of the algorithm in process Pi .
conditions force a request to move forward within the col-
umn where it either arrives to an informed-node or it vis-
its all the nodes in the corresponding column (see Case 1 in
Fig. 6).

(2) The token: in this case, at first, process Pi appendsWaiting i to to-
ken.next. Now, if there are any ReqMsgs except ReqMsg(i, SN i)
in token.next, Pi becomes the implicit token-holding process
(PCL-2). It means process Pi without informing nodes in its
row that it is the token-holding node, sets CL_tokeni to i and
enters its CS. This principle (PCL-2) causes a considerable de-
crease in the number ofmessage exchanges for this case. If only
ReqMsg(i, SN i) exists in token.next, it is necessary that process
Pi informsnodes in its row that it holds the tokenbefore execut-
ing its CS. Therefore, process Pi, in order to become an explicit
token-holding node, sets SL_tokeni to i, then creates a queue
named Q and appends P_Waiting i to the Q . After that, process
Pi creates InfoMsg(i,Q ) and sends it to its Right. The goal of pro-
cess Pi is that besides informing all nodes in its row about the
explicit token-holding node’s identification number, all possi-
ble pending ReqMsgs in P_waiting of the mentioned nodes can
be collected (see Case 2 in Fig. 6).

(3) InfoMsg(j,Q ): in this case, process Pj in order to inform all
nodes in its row (one of these nodes is process Pi itself) that it is
an explicit token-holding node, sends InfoMsg(j,Q ) to its Right.
Any receiver node also sends InfoMsg(j,Q ) to its Right and this
procedure continues until InfoMsg(j,Q ) arrives at process Pi.
Now one of the following two states may occur:
• If process Pi does not hold the token, first it sets CL_tokeni to

j. So, process Pi knows that process Pj is the token-holding
node from now on and becomes an informed-node. Then
process Pi appends P_Waiting i to Q and sends InfoMsg(j,Q )
to its Right.
• If InfoMsg(j,Q ) has arrived back to its creator (i = j), there

are some ReqMsgs which are aggregated in Q . Now process
Pi appends Q to token.testreq, then releases the occupied
space of Q . Now, if the old explicit token-holding node is in
the same row of process Pi, process Pi sends RelMsg(j, true)
to that process. Otherwise, process Pi sends RelMsg(j, false)
to it.

For details see Case 3 in Fig. 6.
(4) RelMsg(j, sw): in this case, process Pi is the old explicit token-

holding node. By receiving this message, process Pi must in-
form all nodes in its row that it does not hold the token, any
more. On the other hand, it should collect all ReqMsgs received
by nodes in its row, up to this time. Therefore, if process Pi
and process Pj are in the same row (sw = true), process Pi
broadcasts RowRel(i, j) to all nodes in its row. Otherwise, it
broadcasts RowRel(i, 0) to all nodes in the row. Then it waits
until Acks from all nodes in its row arrive. After receiving these
acknowledges, process Pi updates CL_tokeni and SL_tokeni and
sends Finished in company with Waiting i to the new explicit
token-holding node (see Case 4 in Fig. 6).

(5) RowRel(j, l): process Pi by receiving this message, updates its
information about the token-holding node and then sends
Ack(i) to process Pj (see Case 5 in Fig. 6).

(6) Ack(j): receiving this message by process Pi means that, firstly,
the sender of themessage (process Pj) has updated its informa-
tion about the token-holding node. Secondly, process Pi is sure
to have received all ReqMsgs that are in the way from process
Pj to itself (because we mentioned in Section 3 that requests
are received in the order of their sent). Process Pi by receiving
thismessage increases the number of received Acks by one (see
Case 6 in Fig. 6).

(7) Finished(Waiting j): this messagemeans that process Pj has fin-
ished its work as the old explicit token-holding node. In this
case, process Pi first appends Waiting j to token.next. Then by
comparing the SN of each ReqMsg with the same element in
token.seqnum, recognizes all pending ReqMsgs and conveys
them from token.testreq to token.next. Then process Pi, after
updating token.rowexp and token.idexp, sets CL_tokeni to i and
enters its CS (see Case 7 in Fig. 6).

Release the CS: when process Pi finishes executing its CS, it sets
CL_tokeni to zero which means it no longer possesses the token.
Now, if any ReqMsg(i, SN i) exists in token.next orWaiting i queues,
it removes them. Process Pi updates token.seqnum to SN i. If process
Pi is the explicit token-holding node and there is no ReqMsg in
token.next, it must wait until receiving a ReqMsg. In the case that
a ReqMsg arrives at process Pi from another node or there was a
ReqMsg in token.next previously, process Pi must append Waiting i
to token.next before sending the token to the requester node. Then
process Pi can send the token to it. If process Pi is the implicit
token-holding node, it is sufficient to set SL_tokeni to zero, append
Waiting i to token.next, and send the token to the next requester
node (see Fig. 7).



656 P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665
Fig. 6. Pseudo-code of RECEIVE A MESSAGE procedure of the algorithm in process Pi .



P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665 657
Fig. 7. Pseudo-code of RELEASE THE CS procedure of the algorithm in process Pi .
4.4. A scenario

In addition to describing a pseudo-code for formal presentation
of the algorithm, we tried to consider a scenario for explaining the
details. As it is shown in Fig. 8(a), P16 is the explicit token-holding
process.

In time t1 while process P16 is executing its CS, process P19
attempts to invoke its CS, therefore increases variable SN19 by one
and inserts ReqMsg(19, SN19) in Waiting19, and after that, sends
ReqMsg(19, SN19) to process P16, directly, in Fig. 8(b). The reason
for sending themessage directly is that process P19 is an informed-
node. Process P16 after receiving ReqMsg(19, SN19), inserts it in
Waiting16. In Fig. 8(c), process P16 after releasing its CS, appends
Waiting16 to token.next and then sends the token to process P19. In
Fig. 8(d) as process P19 becomes the explicit token-holding node,
after receiving the token and before entering its CS, must inform all
nodes in its row by sending InfoMsg(19,Q ) in the horizontal path.

When InfoMsg(19,Q ) arrived at process P19 at the end of its
circular path, process P19 sends RelMsg(19, true) to process P16.
Process P19 waits until process P16 sends Finished(Waiting16) to it.
In Fig. 8(e), process P16 after receiving RelMsg(19, true), multicasts
RowRel(16,19) to all nodes in its row. In Fig. 8(f), process P16 waits
until all acknowledge messages from all nodes in its row arrive.
Then, in Fig. 8(g) process P16 declares that it has finishedmanaging
the token by sending Finished(Waiting16) to process P19. Process P19
enters its CS after receiving Finished(Waiting16) in Fig. 8(h).

In time t2, t2 > t1, processes P15, P3, P8 and P22 attempt
to invoke their critical sections simultaneously. In Fig. 8(h)
these nodes send their ReqMsgs vertically in the down direction.
ReqMsgs of processes P15 and P8, after arriving at informed-
nodes, are directly sent to process P19 (Fig. 8(i)). Suppose ReqMsgs
of processes P15 and P8 arrived at process P19, respectively,
before process P19 released its CS. Because process P8 has
attempted to invoke its CS before arriving ReqMsg(3, SN3) to
process P8, ReqMsg(3, SN3) is inserted in Waiting8 and will not
be transferred to other nodes (PCL-1). Process P19 after releasing
its CS, has two unresponded requests from processes P15 and P8
in Waiting19. Process P19 appends Waiting19 to token.next. Then
process P19 extracts existing ReqMsg in head(token.next) which is
ReqMsg(15, SN15) and directly sends the token to process P15 in
Fig. 8(j). Process P15 after receiving the token, becomes the implicit
token-holding process (PCL-2) and enters its CS (Fig. 8(k)). Process
P15 after releasing its CS, appends Waiting15 to token.next and
passes the token to process P8 in Fig. 8(l). Note that Waiting15 is
empty in this scenario. In Fig. 8(m) process P8 after receiving the
token becomes the implicit token-holding process. Therefore, it
appends Waiting8 to token.next, which is ReqMsg(3, SN3) in this
scenario. It then enters its CS. In Fig. 8(n) process P8, after releasing
its CS, sends the token to process P3 because ReqMsg(3, SN3) is in
the head(token.next).
In Fig. 8(o) process P3, before entering its CS, must inform
nodes in its row that it is the explicit token-holding process. To
inform, process P3 sends InfoMsg(3,Q ) to its Right and waits until
receives this message again. On the other hand, before sending
InfoMsg(3,Q ) by process P3, ReqMsg(22, SN22) which is sent
vertically in the down direction by process P22, has passed from
process P2 in row 1 and column 2. ReqMsg(22, SN22) is inserted in
P_waiting of all nodes in rows 5, 1, 2 and 3 which are in column
2, i.e. ReqMsg(22, SN22) has not arrived at the informed-nodes
until now. ReqMsg(22, SN22) (which is in P_waiting2) through
InfoMsg(3,Q ) arrives at process P3. Process P3, after appending
Q to token.testreq, sends RelMsg(3,false) to process P19. Process P3
waits until Finished(Waiting19) arrives at it from process P19.

Then, in Fig. 8(p), process P19 multicasts RowRel(19,0) to
all nodes in its row. In Fig. 8(q) process P19, after receiving
Acks from all nodes in its row, sends Finished(Waiting19) to
process P3. Process P3 by receiving Finished(Waiting19), appends
Waiting19 to token.next. Then by checking all the existing ReqMsgs
in token.testreq one at a time, and comparing SN of each one
with the corresponding element in token.seqnum, recognizes all
unresponded ReqMsgs that are deferred and appends them to
token.next. Therefore, ReqMsg(22, SN22) is inserted in the rear
of token.next. In Fig. 8(r) process P3 enters its CS and then
releases it. Because ReqMsg(22, SN22) is in the head(token.next),
process P3 sends the token to process P22 in Fig. 8(s). On the
other hand, ReqMsg(22, SN22), after passing from other nodes in
Column 2 arrives to process P22, again. Process P22 does not send
ReqMsg(22, SN22) in the down direction, the reason being to avoid
the extra movement of ReqMsg(22, SN22) along Column 2. Process
P22, after receiving the token, continues the algorithm as explained.

With the assistance of this scenario, we tried to describe all
aspects of the algorithm.

5. Proof of correctness

To ensure the correctness of the algorithm it is sufficient to
assure safety and liveness. Therefore, we must prove separately
that these two basic needs are assured.

5.1. Safety is assured

Safety or ME is assured if no more than one node executes its
CS simultaneously. For each pair of nodes, one node must release
its CS before the other node enters its CS. At first, there is only one
token-holding node in our token-based algorithm, this node may
remain the token-holding node to continue executing its CS ormay
release the token and become a non-token-holding node. Because
only the token-holding node can enter its CS, it is sufficient to show
that just one token-holding node exists in any given time. Only



658 P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665
Fig. 8. The scenario.



P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665 659
. Fig. 8. (continued)
the token-holding node can send the token to just one other node,
after which it becomes a non-token-holding node. The token is
transferred to the receiverwithin a limited time.On the other hand,
a token cannot be produced and sent by any non-token-holding
node.

Theorem 1 (Safety). The algorithm confers safety property.

Proof. We use ‘‘reduction to the absurd’’ for proving safety
assurance. Thus we state safety is not assured. As a result, two
or more nodes can execute their critical sections, simultaneously.
Because in our algorithm only the token-holding node can enter its
CS, thus the systemmust be amulti token one. These tokens existed
in the system to begin with, or some nodes have produced the
tokens or somenon-token-holding nodes have sent tokenmessages
to other nodes, or the token-holding node can has sent the token
to more than one node. Considering the mentioned explanation,
these assumptions are impossible. Hence, there is a contradiction.
This contradiction then shows that the assumption that more
than one node can enter their critical sections simultaneously is
incorrect. In the end, safety is assured. �

5.2. Liveness is assured

Liveness is assured if every request for entering the CS is
eventually granted. Liveness implies freedom of deadlock and
starvation.

Theorem 2 (Liveness). The algorithm confers liveness property.

Proof. We prove this by contradiction, too. Therefore, suppose
that our algorithm does not assure liveness. This assumption can
be the result of the following situations:
1. None of the nodes is the token-holding node; therefore the

token cannot be transferred to other nodes: this assumption is
incorrect because in the beginning of the algorithm, Pk is the
token-holding process and this token will eventually be sent to
another node (based on the assumptions of the algorithm).



660 P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665
2. The token-holdingnodedoes not eventually get the information
about other nodes’ requests: the requested message of process
Pi has either directly arrived at the token-holding node or it
has arrived at the node which has attempted to invoke its CS,
but has not obtained the token yet (PCL-1), or it is arrived
at one of the informed-nodes (the token-holding node is one
of the informed-nodes) when ReqMsg(i, SN i) is sent in the
down direction. In the first case, the token-holding node gets
ReqMsg(i, SN i), immediately. In the second case, the previous
requester node which has blocked ReqMsg(i, SN i) eventually
becomes the implicit token-holding node and then inserts
ReqMsg(i, SN i) in token.next. In the last case, through informed-
nodes, ReqMsg(i, SN i) is inserted in token.next. There is a
special situation in which ReqMsg(i, SN i), without reaching an
informed node, on its moving route is inserted in P_waiting of
its column nodes. However, eventually one of the nodes in this
column becomes an informed-node. Therefore, ReqMsg(i, SN i),
after inserting in token.testreq, if it was not already inserted
in token.next, is inserted in this queue. Therefore, the first
assumption is incorrect and the token-holding node knows
which nodes attempt to invoke their critical sections.

3. The token-holding node keeps the token forever: the token-
holding node finishes executing its CS in a limited amount of
time. It then, releases the CS and removes its ReqMsg from
either head(token.next) or the head of its Waiting. If the token-
holding node is neither interested in entering its CS nor does
its request appear in head(token.next), appends its Waiting
to token.next. If token.next is not empty, the token-holding
node extracts existing ReqMsg in head(token.next), which we
assume is ReqMsg(f , SN f ), and sends the token to process Pf .
If token.next is empty, then the token-holding node waits until
receiving a ReqMsg. After that, similar to what is mentioned
before, it sends the token to process Pf . This contradiction then
shows that the anti-liveness assumption cannot be true.

4. Messages do not arrive at the destination node: based on
assumptions in the algorithm, the network is error-free and
nodes act correctly, thus this statement is incorrect too.

5. Nodes’ requests for entering their critical sections in token.next
are not responded to: token.next is a FIFO queue without prior-
ity. Therefore, a node whose ReqMsg is inserted in token.next,
eventually receives the token. Therefore, this assumption can-
not be true, either.

In the end, liveness is assured. �

6. Performance analysis

In some definitions, a system is called distributed if message
transmission delay is not negligible compared to the time between
consecutive events in a single process [9]. Therefore, the execution
time of instructions in the algorithm is assumed to be negligible,
compared to the message transmission times. Hence, we focus
on the number of messages exchanged per request for a CS
(Message Complexity) to evaluate the algorithm performance. The
performance of a ME algorithm is often studied under two special
loading conditions, i.e., light load and heavy load. We compare
the behavior of our algorithm mainly based on the number of
message exchanges with some famous algorithms and summarize
the results in Table 1, under these two kinds of loads.

Concerning message exchanges, the worst case behavior of the
algorithm coincides with what is mentioned in the Main Idea
(Section 4.1). This is under the assumption that the requesting
process, Pi, and informed-nodes are in the furthest possible
distance in the proposed communication network. For example,
process Pi is placed in row one and the informed-nodes are located
in row

√
N . Thus, the request of process Pi arrives at one of
the informed-nodes with
√
N − 1 message exchanges, and that

informed-node sends ReqMsg(i, SN i) to the token-holding node,
e.g. process Pj, with at the most one message exchange. Therefore,
up to this step,

√
N message exchanges are required for arriving

ReqMsg(i, SN i) to the process Pj. When process Pj releases its CS, it
sends the token to process Pi by onemessage exchange, and process
Pi, after receiving the token, must inform all nodes in its row that
it is the explicit token-holding node. This requires

√
N message

exchanges. Then, process Pi sends RelMsg(i, false) to process Pj by
one message exchange and, upon receiving, process Pj multicasts
RowRel(j, 0) to all nodes in its row. The latter send requires

√
N−1

message exchanges and for receiving the Acks from all these nodes
another

√
N − 1 message exchanges are required. Finally, process

Pj sends the Finished(Waiting j) to process Pi by one message
exchange and process Pi after receiving this message, can enter its
CSwithout any furthermessage exchanges. Therefore, in theworst
case (very light load conditions), our algorithm requires 4

√
N + 1

message exchangeswhich are fewer thanwhat is neededby similar
algorithms (for example [9,10,24,19,15,22,21,12,1]). However, the
worst case scenario does not occur frequently.

Suppose W message exchanges are required for arriving
ReqMsg(i, SN i) to one of the informed-nodes. Sometimes it is
possible that ReqMsg(i, SN i), on its transfer path in the down
direction, is inserted in the Waiting of a node which had already
requested to enter its CS (PCL-1); which requires

√
N − 2 message

exchanges at the most. There are V message exchanges required
for sending ReqMsg(i, SN i) from the informed-node to process Pj,
where process Pj is the token-holding node, 0 ≤ W ≤

√
N − 1

and V equals zero or one.W is zero if the requesting node is one of
the informed-nodes and V is zero if the mentioned informed-node
is the token-holding node. If the requesting node is not the token-
holding node, one message exchange is required for sending the
token to it. The best case occurs when before process Pi enters its
CS some other ReqMsgs except ReqMsg(i, SN i) exist in token.next
(PCL-2). If the requesting node is not the token-holding node, the
number of overall message exchanges in this case is between 2 and
√
N + 1, which is also better than many similar algorithms.

6.1. Performance under heavy demand

Consider a heavy load situation in which, in time t1, all nodes
attempt to invoke their critical sections, simultaneously. Besides,
each node after releasing its CS, attempts to immediately invoke
its CS again. On the other hand, suppose process Pj (in row x and
column y) is the explicit token-holding process. Assume that at
first process Pj is executing its CS. Suppose in time t2 (t2 > t1),
before process Pj releases its CS, ReqMsgs of all nodes in row x have
arrived at process Pj and ReqMsgs of all nodes in row r(∀r, 1 ≤
r ≤

√
N and r ≠ x) arrive at nodes in the next row (i.e. row

(r mod
√
N) + 1) on their transfer path in the down direction

(see Fig. 9(a)). These ReqMsgs will not be passed to their next row
(i.e. row ((r + 1) mod

√
N) + 1) because all nodes in their next

row had attempted to invoke their critical sections in time t1 (PCL-
1). Up to this step, (N − 1) messages are exchanged. From now
on, ReqMsgs do not move and only the token will be transferred
fromone node to another. Process Pj, after releasing its CS, appends
Waiting j (consists of ReqMsgs of all nodes in its row) to token.next,
extracts head(token.next), which is assumed to be ReqMsg(f , SN f ),
and sends the token to process Pf . It is possible for the token to be
transferred to other nodes with respect to head(token.next) which
is shown in Fig. 9(b). Process Pf , after receiving the token, becomes
the implicit token-holding process. It, first, appends Waiting f to
token.next and then enters its CS. Note that, only one ReqMsg which
belongs to the previous node of process Pf in the Pf ’s column



P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665 661
Ta
bl
e
1

Ev
al
ua

tin
g
of

pr
es
en

te
d
al
go

ri
th
m
s.

Al
go

ri
th
m

Br
oa

dc
as
t-

ba
se
d/
lo
gi
ca
l

st
ru

ct
ur

e-
ba

se
da

To
ke

n-
ba

se
d/
no

n-
to
ke

n-
ba

se
d

N
et
w
or
k
lo
gi
ca
l

to
po

lo
gy

Re
qu

ir
es

fu
lly

co
nn

ec
te
d

to
po

lo
gy

Eq
ua

lo
rd

er
of

se
nd

in
g

an
d
re
ce

iv
in
g

m
es
sa
ge

sb

Eq
ua

lo
rd

er
of co

ns
tr
uc

tin
g

an
d
sa
tis

fy
in
g

CS
re
qu

es
ts

c

M
es
sa
ge

co
m
pl
ex

ity

W
or
st

ca
se

Av
er
ag

e
ca
se

Be
st

ca
se

d
H
ea

vy
de

m
an

d
Li
gh

td
em

an
d

To
ke

n-
ri
ng

[1
0]

Lo
gi
ca
l

st
ru

ct
ur

e-
ba

se
d

Pe
rp

et
ua

l
m
ob

ili
ty

of
th
e

to
ke

n

Ri
ng

×
×

×
N

N
/
2

1
1

O(
N

)

Su
zu

ki
–K

as
am

i[
24

]
Br

oa
dc

as
t-
ba

se
d

To
ke

n
as
ki
ng

Fu
lly

co
nn

ec
te
d

✓
×

×
N

N
N

N
N

Ra
ym

on
d
[1
9]

Lo
gi
ca
l

st
ru

ct
ur

e-
ba

se
d

To
ke

n
as
ki
ng

St
at
ic

tr
ee

✓
×

×
2(

N
−

1)
O(

lo
g
N

)
2

4
O(

lo
g
N

)

N
ai
m
i–
Tr
eh

el
[1
5]

Lo
gi
ca
l

st
ru

ct
ur

e-
ba

se
d

To
ke

n
as
ki
ng

D
yn

am
ic

tr
ee

✓
×

×
N

O(
lo
g
N

)
2

–
O(

lo
g
N

)

In
fo
-b
as
ed

Al
go

ri
th
m

Lo
gi
ca
l

st
ru

ct
ur

e-
ba

se
d

In
fo
-b
as
ed

W
TD

Ae
✓

✓
×

4√
N
+

1
–

2
2

O(
√
N

)

La
m
po

rt
[9
]

Br
oa

dc
as
t-
ba

se
d

N
on

-t
ok

en
-

ba
se
d

Fu
lly

co
nn

ec
te
d

✓
✓

✓
3(

N
−

1)
3(

N
−

1)
3(

N
−

1)
3(

N
−

1)
3(

N
−

1)

Ri
ca
rt
–A

gr
aw

al
a[

22
]

Br
oa

dc
as
t-
ba

se
d

Pe
rm

is
si
on

-
ba

se
d

Fu
lly

co
nn

ec
te
d

✓
×

×
2(

N
−

1)
2(

N
−

1)
2(

N
−

1)
2(

N
−

1)
2(

N
−

1)

M
ul
ti
to
ke

n
[2
1]

Lo
gi
ca
l

st
ru

ct
ur

e-
ba

se
d

Pe
rm

is
si
on

-
ba

se
d

Ri
ng

×
×

×
N

N
N

N
N

M
ae

ka
w
a
[1
2]

Lo
gi
ca
l

st
ru

ct
ur

e-
ba

se
d

Q
uo

ru
m
-b
as
ed

Sp
ec

ia
ls
tr
uc

tu
re

×
×

×
5(
√
N
−

1)
–

3(
√
N
−

1)
5(
√
N
−

1)
3(
√
N
−

1)

Ag
ra
w
al
–A

bb
ad

i[
1]

Lo
gi
ca
l

st
ru

ct
ur

e-
ba

se
d

Q
uo

ru
m
-b
as
ed

St
at
ic

tr
ee

✓
✓

×
(N
+

1)
/
2

O(
lo
g
N

)
O(

lo
g
N

)
O(

lo
g
N

)
O(

lo
g
N

)

Pa
yd

ar
et

al
.[
17

]
Lo

gi
ca
l

st
ru

ct
ur

e-
ba

se
d

H
yb

ri
d

W
TD

Ae
✓

×
×

4√
N

–
1

–
4√

N

H
yb

ri
d
[2
5]

Lo
gi
ca
l

st
ru

ct
ur

e-
ba

se
d

H
yb

ri
d

to
ke

n-
ba

se
d

W
TD

Ae
×

×
×

2√
N

–
√
N

√
N

O(
√
N

)

a
In

lo
gi
ca
ls
tr
uc

tu
re
-b
as
ed

al
go

ri
th
m
s,
th
e
si
te
si
n
th
e
sy
st
em

ar
e
as
su

m
ed

to
be

ar
ra
ng

ed
in

a
lo
gi
ca
lc

on
fig

ur
at
io
n
lik

e
tr
ee

,r
in
g,

et
c.
,a
nd

m
es
sa
ge

sa
re

pa
ss
ed

fr
om

on
e
si
te

to
an

ot
he

ra
lo
ng

th
e
ed

ge
so

ft
he

lo
gi
ca
ls
tr
uc

tu
re

im
po

se
d.

In
th
e
ca
se

of
br
oa

dc
as
t-
ba

se
d
al
go

ri
th
m
s,
no

su
ch

st
ru

ct
ur

e
is
as
su

m
ed

an
d
th
e
re
qu

es
tin

g
si
te

se
nd

s
m
es
sa
ge

s
to

ot
he

rs
ite

s
in

pa
ra
lle

l,
i.e

.,
th
e
m
es
sa
ge

is
br
oa

dc
as
te
d
[2
3]
.

b
Al
go

ri
th
m

re
qu

ir
es

th
at

fo
ra

ny
tw

o
pr

oc
es
se
s
P i

an
d
P j
,t
he

se
nd

in
g
m
es
sa
ge

s
fr
om

pr
oc

es
s
P i

to
pr

oc
es
s
P j

ar
e
re
ce

iv
ed

in
th
e
sa
m
e
or
de

ra
s
th
ey

ar
e
se
nt
.

c
In

th
e
al
go

ri
th
m

CS
en

te
ri
ng

re
qu

es
ts

ar
e
sa
tis

fie
d
in

th
e
or
de

ro
ft
he

ir
co

ns
tr
uc

t.
d
W

ith
ou

tc
on

si
de

ri
ng

th
e
si
tu
at
io
n
in

w
hi
ch

th
e
re
qu

es
tin

g
no

de
fo
re

nt
er
in
g
th
e
CS

ho
ld
s
th
e
to
ke

n
in

to
ke

n-
ba

se
d
al
go

ri
th
m
s.

e
W

ra
pa

ro
un

d
tw

o-
di
m
en

si
on

al
ar
ra
y.



662 P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665
a b

Fig. 9. A heavy load situation: (a) All processes request to enter the CS, (b) The explicit token-holding process, Pj , passes the token to a requesting process.
Table 2
Simulation parameters.

N-the number of processes: 4, 9, 16,. . . , 100
Dmsg -message delay: 0.01 (fixed)
Tcs-duration in CS: 0.1 (fixed)
Tidle-duration in non-CS: 10−5, 10−4, . . . , 10+5 (expected value under exponential
distribution)
exists in Waiting f . Process Pf , after releasing its CS, continues the
algorithm. Hence, the token transfers between nodes that are not
satisfied. Generally, (N − 1) messages for the token movement
must be exchanged to satisfy (N − 1) requesting nodes. The last
node, say process Pz , which is not satisfied yet and is located in row
((xmod

√
N)+ 1), requires 4

√
N + 1 message exchanges to enter

its CS because it is the explicit token-holding process (similar to the
scenario in Fig. 3). Therefore, a total of 2(N−1)+4

√
N+1messages

are exchanged among theN nodeswhen the system is under heavy
load. As a result, the number of messages per CS entry is:

(2N + 4
√
N − 1)/N = 2+ 4/

√
N − 1/N.

So, for the higher number of nodes the number of message
exchanges is lower with the minimum of two. If the number of
nodes is more than four, then algorithm performs better than
Raymond’s algorithm, in the heavy demand situations.

7. Simulation results

Because of a lack of required facilities we are unable to set
up a reasonably size distributed system. Therefore, we carried
out a simulation (similar to [21,1,2,6]) to evaluate the average
message complexity of the info-based algorithmand to compare its
performance with several other algorithms [25,21,12], which are
selected from the following categories respectively: hybrid token-
based, permission-based, and quorum-based.

The simulation parameters are shown in Table 2, which is
similar to [6]. We assumed that local computation and message
transmission do not consume local time. The time of first request
of every process to enter the CS is selected randomly, while the
CS execution time and message delay is assumed to be constant.
The number of trials (simulations) is 100 for each combination of
simulation parameters, and each simulation terminates when the
total number of CS entries by all processes reaches 1000N . We
define two scenarios (similar to [6]):
• Scenario 1. In this scenario three cases (Tidle = 10−5, 100, and
10+5) are assumed. In each case the number of nodes is variable
(N = 4, 9, 16, . . . , 100) while non-CS time is fixed.
• Scenario 2. In this scenario, three cases (N = 25, 36, and 100)

are supposed. In each one the number of nodes is fixed while
non-CS time is variable (Tidle = 10−5, 10−4, . . . , 10+5).

Although the proposed algorithm assumes an asynchronous DS,
our simulation model is a synchronous one, with a global clock.
The simulationwas performed viaMatlab software. The computing
environment is given as follows:

• AMD AthlonTM 64 X2 Dual Core Processor 4200+(a 2.21 GHz
clock) and a 1.00-GB memory,
• Microsoft Windows XP Professional (32 bit) Version 2008,

Service Pack 3, and
• Matlab Software: Matlab 7.10 (R2010a).

In the following, we investigate the simulation results using
Figs. 10 and 11. Fig. 10 shows the relations between the number
of nodes (N) and the average number of messages per CS entry in
different loads (Scenario. 1). When Tidle is large (small), the system
is in light (heavy) demand situations. For case that the load is
heavy (Tidle = 10−5; see Fig. 10(a)) the message complexity of the
proposed algorithm is very low, because the received requests are
blocked in the requesting processes (PCL_1) and, generally, most
of the processes enter the CS when each of them becomes implicit
token-holding process (PCL_2). In the info-based algorithm, for
light load situations (Tidle = 10+5; see Fig. 10(b)) more messages
are exchanged, because every requester must become an explicit
token-holding node for each entry of the CS. Fig. 10(c) indicates an
average load on the DS when Tidle = 1. It is clear that info-based
algorithm performance is acceptable.

Fig. 11 shows the relations between Tidle and the average
number of messages per CS invocation when N = 25, 64, and 100
(Scenario. 2). Also, this figure indicates that the proposed algorithm
is scalable on the number of nodes.



P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665 663
ba

c

Fig. 10. Scenario 1: (a) Tidle = 10−5 , (b) Tidle = 10+5 , and (c) Tidle = 100 .
Fig. 11. Scenario 2: (a) N = 25, (b) N = 64, and (c) N = 100.
As shown in Figs. 10 and 11:

• Multi token algorithm [21] presents a uniform message com-
plexity which isN messages per CS invocation on both light and
heavy demand.
• Maekawa’s algorithm [12] gives a better message complexity in
comparison with multi token because it is quorum-based and
needs c(

√
N − 1) messages (3 ≤ c ≤ 5). In contrast to info-

based, Maekawa’s algorithm has the worst (best) performance



664 P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665
on heavy (light) demand conditions. This algorithm performs
better than info-based algorithm only in very light demand
conditions.
• Hybrid algorithm [25] applies perpetual mobility of the token.

This mobility wastes resources of the DS in very light situations
because the token sometimes circulates uselessly. Therefore,
hybrid performance is low in these conditions, but it is bounded
to
√
N in the heavy demand conditions.

8. Discussion

8.1. Improvement of the array

The algorithm presented here can be implemented using a
logical two dimensional array with u rows and v columns. With
this structure, a request of process Pi for executing its CS reaches
an informed-nodewith u−1message exchanges, in theworst case
(similar to what is mentioned in Section 6). It reaches the token-
holding node with one message exchange at the most. The total
number of messages exchanged, so far, becomes u. Furthermore,
there is one message exchange for token movement, v message
exchanges for circulating InfoMsg in process Pi’s row, one message
exchange for sending RelMsg, v − 1 message exchanges for
multicasting RowRel, v − 1 message exchanges for receiving Acks,
and, finally, onemessage exchange for sending Finished is required.
Therefore, in the worst case (light load conditions), u + 3v + 1
message exchanges are needed. Similar to what is mentioned in
Section 6, this algorithm requires between 2 and u + 1 message
exchanges, in the best case.

To improve the minimum number of message exchanges in
light load conditions, we define the dimensions of the two-
dimensional array as follows:

Let f = u+ 3v + 1, we have N = uv. Thus, f = u+ 3N/u+ 1.
To find the minimum f we have to set ∂ f /∂u = 0. But ∂ f /∂u =
1− 3N/u2. Therefore, we obtain u =

√
3N and v =

√
3N/3.

If the number of rows is
√
3N and the number of columns

is
√
3N/3 (note that the number of rows and columns must be

rounded to integers), the number of message exchanges, in the
worst case, is approximately equal to 3.5

√
N . Therefore, for the

optimal message exchanges, the number of nodes in a row and
column of the array should be calculated.

8.2. Limitations of the model

There are some limitations in the model which can lead to
future research. The limitations are as follows.

• Fault tolerance: generally, the algorithms that incorporate fault
tolerance aspects base their detection mechanisms on the use
of timeouts (e.g. [19,22,21]). Some algorithms (e.g. [12]), by
assuming that a node failure can be detected by another node
and a failed node is removed from the system, consider a
simple approach for node removal which is to have another
node to take over the role of the failed node. It will cause the
overtaking node to play a somewhat greater role. According
to our algorithm and the wraparound two-dimensional array
logical topology, considering fault tolerance makes the analysis
and design more complicated. Therefore we suppose that
the network is error-free and the processes operate properly
(similar to [9,17,24,15,2,6,11,16]). We left fault tolerance
aspects for the future work.
• Scalability: if number of nodes is considered constant, in the

heavy demand situation the proposed algorithm performs
better than many other algorithms as shown in Fig. 11.
and also Table 1. Although, in the light demand situation,
some algorithms may perform better than our algorithm. We
evaluated the performance under a variable number of nodes
in Fig. 10. In this case, the performance of the algorithm is
acceptable when the number of nodes is increasing. However,
in the worst case, performance of the algorithm is O(

√
N).

Therefore, we do not claim its complete scalability.
• Ad-hoc connection: we presented an algorithm to solve the

DME problem for applications such as replicated data manage-
ment and atomic commitment in distributed databases. This
algorithm does not support mobility of nodes or energy con-
sumption considerations. However, it may function in ad-hoc
networks directly on top of routing protocols but we do not
recommend it.

9. Conclusion

The algorithmpresented in this paper is an info-based approach
to solve the distributed mutual exclusion problem. Our algorithm
is based on token, and a process that obtains the token can enter
a critical section. The algorithm is fully distributed. On the other
hand,we proved that it satisfies the requests of entering the critical
sections, correctly.

This algorithm can be generalized to more than one resource.
Thus, every node may have separate queues for requests to enter
each CS. For every resource there should be a dedicated token and
the algorithm executes separately per resource. Therefore, using
this algorithm, it is possible to execute multiple critical sections
for different resources in each process.

Generally, in very light demand conditions, the number of
necessary message exchanges, 4

√
N + 1, is more than heavy

demand conditions, 2, per CS invocation. The performance of
the algorithm is much better in comparison with many other
algorithms and requires fewer message exchanges, especially in
the heavy load situations. Therefore, we recommend that the
algorithm should be used on resources with high utilization or
implemented in the large distributed systems. In a large DS, it
is more probable that some requesting nodes exist at any given
time; therefore, the algorithm is not executed in very light demand
situations. The algorithm also recommended for the applications
that the upper bound of message exchanges is important. The
development of an algorithm that adapts to a group mutual
exclusion problem is left as a future work.

References

[1] D. Agrawal, A. El Abbadi, An efficient and fault-tolerant solution for distributed
mutual exclusion, ACM Transactions on Computer Systems 9 (1) (1991) 1–20.

[2] R. Atreya, N.Mittal, S. Peri, A quorum-based groupmutual exclusion algorithm
for a distributed systemwith dynamic group set, IEEE Transactions on Parallel
and Distributed Systems 18 (10) (2007) 1345–1360.

[3] G. Cao,M. Singhal, A delay-optimal quorum-basedmutual exclusion algorithm
for distributed systems, IEEE Transactions on Parallel and Distributed Systems
12 (12) (2001).

[4] S.Y. Cheung, M.H. Ammar, M. Ahamad, The grid protocol: a high performance
scheme for maintaining replicated data, IEEE Transactions on Knowledge and
Data Engineering 4 (6) (1992).

[5] E.W. Dijkstra, Solution of a problem in concurrent programming control,
Communications of the ACM 8 (9) (1965) 569.

[6] H. Kakugawa, S. Kamei, T. Masuzawa, A token-based distributed group
mutual exclusion algorithm with quorums, IEEE Transactions on Parallel and
Distributed Systems 19 (9) (2008).

[7] A. Kumar, Hierarchical quorum consensus: a new algorithm for managing
replicated data, IEEE Transactions on Computers (1991) 996–1004.

[8] Y.-C. Kuo, S.-T. Huang, A geometric approach for constructing coteries and k-
coteries, IEEE Transactions on Parallel and Distributed Systems 8 (4) (1997)
402–411.

[9] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Communications of the ACM 21 (7) (1978) 558–565.

[10] G. Le Lann, Distributed systems towards of a formal approach, in: IFIP
Congress, North-Holland, 1977, pp. 155–160.



P. Neamatollahi et al. / J. Parallel Distrib. Comput. 72 (2012) 650–665 665
[11] S. Lodha, A. Kshemkalyani, A fair distributed mutual exclusion algorithm, IEEE
Transactions on Parallel and Distributed Systems 11 (6) (2000).

[12] M. Maekawa, A
√
N algorithm for mutual exclusion in decentralized systems,

ACM Transactions on Computer Systems 3 (2) (1985) 145–159.
[13] D. Malkhi, M. Reiter, An architecture for survivable coordination in large

distributed systems, IEEE Transactions on Knowledge and Data Engineering
12 (2) (2000) 187–202.

[14] K. Miura, T. Tagawa, H. Kakugawa, A quorum-based protocol for searching ob-
jects in peer-to-peer networks, IEEE Transactions on Parallel and Distributed
Systems 17 (1) (2006) 25–37.

[15] M. Naimi, M. Trehel, A. Arnold, A log(n) distributed mutual exclusion
algorithm based on the path reversal, Journal of Parallel and Distributed
Computing 34 (1) (1996) 1–13.

[16] M. Nesterenko, A quorum-based self-stabilizing distributed mutual exclusion
algorithm, Journal of Parallel and Distributed Computing 62 (2002).

[17] S. Paydar, M. Naghibzadeh, A. Yavari, A hybrid distributed mutual exclusion
algorithm, in: 2nd International Conference on Emerging Technologies, 13–14
November 2006, pp. 263–270.

[18] S. Rangarajan, S. Setia, S.K. Tripathi, A fault-tolerant algorithm for replicated
data management, IEEE Transactions on Parallel and Distributed Systems 6
(12) (1995) 1271–1282.

[19] K. Raymond, A tree-based algorithm for distributed mutual exclusion, ACM
Transactions on Computer Systems 7 (1) (1989) 61–77.

[20] M. Raynal, A simple taxonomy for distributed mutual exclusion algorithms,
in: Operating Systems Review, ACM Press, 1991, pp. 47–49.

[21] Md. Abdur Razzaque, C. Seon Hong, Multi-token distributed mutual exclusion
algorithm, in: 22nd International Conference on Advanced Information
Networking and Applications, March 2008, pp. 963–970.

[22] G. Ricart, A.K. Agrawala, An optimal algorithm for mutual exclusion in
computer networks, Communications of the ACM 24 (1) (1981) 9–17.

[23] P.C. Saxena, J. Rai, A survey of permission-based distributed mutual exclusion
algorithms, Computer Standards & Interfaces 25 (2003) 159–181.

[24] I. Suzuki, T. Kasami, A distributed mutual exclusion algorithm, ACM
Transactions on Computer Systems 3 (4) (1985) 344–349.

[25] H. Taheri, P. Neamatollahi, M. Naghibzadeh, A hybrid token-based distributed
mutual exclusion algorithm using wraparound two-dimensional array logical
topology, Information Processing Letters 111 (17) (2011) 841–847.

[26] A.S. Tanenbaum, M.V. Steen, Distributed Systems Principles and Paradigms,
second ed., Prentice-Hall International, 2007.
[27] M. Velazquez, A survey of distributed mutual exclusion algorithms, Technical
Report CS-93-116, Colorado State University, September 1993.

Peyman Neamatollahi received his B.S. and M.S. degree
in computer engineering, with concentration in Parallel
Computing and Mutual Exclusion in Distributed Systems
respectively, from the Islamic Azad University, Mashhad
branch, Iran. He has published several conference and
journal papers. His research interests are in parallel
and distributed computing, wireless sensor networks and
fuzzy logic control.

Hoda Taheri received her B.S. andM.S. degree in computer
engineering, with concentration in Dasher Software and
Clustering Wireless Sensor Networks respectively, from
the Islamic Azad University, Mashhad branch, Iran. She
has published several conference and journal papers.
Her research interests are in parallel and distributed
computing, wireless sensor networks and fuzzy logic
control.

Mahmoud Naghibzadeh received his M.S. in computer
science and Ph.D. in electrical engineering (Computers)
from the University of Southern California (USC). He is
currently a full Professor at the Department of Computer
Engineering, Ferdowsi University of Mashhad, Iran. He
has published numerous conference and journal papers
and many books. His current research interests include
real-time process scheduling, grid computing, knowledge
engineering, and semantic web.


	Info-based approach in distributed mutual exclusion algorithms
	Introduction
	Related work
	Token-based algorithms
	Non-token-based algorithms

	Assumptions
	An info-based algorithm
	The main idea
	Control messages and data structures
	The description of algorithm
	A scenario

	Proof of correctness
	Safety is assured
	Liveness is assured

	Performance analysis
	Performance under heavy demand

	Simulation results
	Discussion
	Improvement of the array
	Limitations of the model

	Conclusion
	References


