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The next generation of hydrate prediction
I. Hydrate standard states and incorporation of spectroscopy
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Abstract

The van der Waals and Platteeuw hydrate equation of state, coupled with the classical thermodynamic equation for
hydrates, has been used in the prediction of hydrate formation for over 40 years. These equations describe a hydrate
to liquid water phase change, where the hydrate is always treated as an ideal solid solution. Several limitations of
this method have been removed in a new derivation of the model.

In this work, a direct derivation of the standard empty hydrate lattice fugacity has been given. This allows for
description of the hydrate phase itself, instead of a specific phase change. The ideal solid solution assumption is
removed by defining a specific volume of the standard hydrate lattice. The activity of water in the hydrate is a
function of the energy difference between the real and standard lattice. This approach, which allows for distortion
of the hydrate from its standard state, is believed to give a more accurate composition of the hydrate. We propose
to make the cage radii a linear function of the hydrate lattice parameter. Direct incorporation of spectroscopic data
is crucial for parameter optimization in the model.

Preliminary predictions with the new model are presented that show the wider applicability of the approach.
H–V and I–H equilibrium can be calculated using this method as well as a correct description of high pressure
behavior. This paper is the first in a series of four that the authors believe to be a more complete prescription for
hydrate modeling. Therefore, this part only pertains to the theory of the hydrate model. Subsequent papers will
discuss: (1) the aqueous phase model; (2) incorporation of the models into a multi-phase flash routine and (3)
regressed parameter values and a comparison of our models with four commercial hydrate prediction programs.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

As the demand for oil and natural gas becomes greater, there is a need to go to deeper depths of water
to obtain them. Therefore, the pressure and temperature ranges of thermodynamic models that are the
basis of flow assurance strategy need to be extended.

The current hydrate fugacity model applies statistical thermodynamics [1] and classical thermodynam-
ics [2]. Predictions from this model are relatively good at moderate pressures and temperatures. However,
at high pressures (P > 200 bar) and for natural gas hydrates the model predictions deviate from experi-
mental data. This suggests that the hydrate standard state (empty lattice) properties are not well defined.
We propose two modifications to the current theory for hydrate fugacity: (1) the first description of the
hydrate standard state itself and (2) an activity coefficient based on exact knowledge of the hydrate volume.

2. Current hydrate fugacity model

The current hydrate fugacity model is split into two parts: (1) a statistical part and (2) a classical part.
What follows is a brief discussion of both parts.

2.1. Statistical thermodynamic model

The statistical thermodynamic model for the chemical potential of water in the hydrate uses the as-
sumption that, if the standard state hydrate energy is known atT andP, the only accountable energy
change is due to the occupation of the hydrate cavities [1]. This assumption requires that the energy of
the standard state hydrate be well defined.

In the development of the statistical thermodynamic hydrate model, the free energy of water in the
standard hydrate (empty hydrate lattice) is assumed to be known at a givenT andv. Since the model
was developed at constant volume, the assumption requires that the volume of the empty hydrate lattice,
vβ , must be equal to the volume of the equilibrium hydrate,vH, so that the only energy change is due to
occupation of the hydrate cavities, as shown in Fig. 1.

The statistical thermodynamic model relating the free energy change of water for process (1) described
in Fig. 1 is given as

�µw,H

RT
= µw,H

RT
− gw,β

RT
=
∑
m

υm ln

(
1 −

∑
J

θJm

)
(1)

Fig. 1. Current model doesn’t allow for distortion of hydrate due to guests (vβ = vH).
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wheregw,β is the chemical potential of water in the standard (empty) hydrate lattice at a given volume
andθJm is the fractional occupancy of guestJ in hydrate cagem. The summation term in Eq. (1) is the
resulting energy change due to the insertion of the guest molecules into the empty hydrate lattice.

Traditionally, the chemical potential of the standard hydrate is assumed to be at a given volume.
However, X-ray diffraction (XRD) measurements of several different hydrates show that the volume of
the equilibrium hydrate is dependent on the hydrate guest(s) [3,4]. That is, different sizes and compositions
of hydrate guest(s) correspond to different volumes of the hydrate. If the standard hydrate volume is not
the volume of the equilibrium hydrate, there should be an energy change proportional to the difference
in volume(�vH = vH − vβ). Note that, in the development of Eq. (1),�vH is assumed to be equal to
zero. However, we account for this distortion via an activity coefficient as shown below.

2.2. Classical thermodynamic model

The classical thermodynamic hydrate model uses the following two equations, which can be derived
using pure component thermodynamics

µw,Lw

RT
= gw0,Lpure

RT0
−
∫ T

T0

hw,Lpure

RT2
dT
∫ P

P0

vw,Lpure

RT
dP + ln aw,Lw (2)

and

gw,β

RT
= gw0,β

RT0
−
∫ T

T0

hw,β

RT2
dT +

∫ P

P0

vw,β

RT
dP (3)

wheregw, hw andvw are the molar Gibbs energy, enthalpy, and volume of water, respectively, and the
superscriptsLw, Lpure, andβ correspond to the aqueous, pure liquid water, and standard hydrate phases,
respectively. Subtracting Eq. (3) from Eq. (2), we get the needed expression to describe the phase change
from a standard hydrate lattice to an aqueous phase [2]

�µw,Lw

RT
= µw,Lw

RT
− gw,β

RT
= �gw0

RT0
−
∫ T

T0

�hw

RT2
T +

∫ P

P0

�vw

RT
dP + ln aw,Lw (4)

Using Eqs. (1) and (4), the following equation for the fugacity of water in hydrates can be derived

fw,H = fw,Lw exp

[
�µw,H −�µw,Lw

RT

]
(5)

Note that, since the fugacity of water in the aqueous phase must be known in Eq. (5), an aqueous phase
must be present to correctly calculate the fugacity of water in the hydrate. We have eliminated this
constraint.

3. Accounting for non-ideality

Note that Eq. (1) is considered to be an ideal solid solution model. That is, upon rearrangement, Eq. (1)
can be expressed as

µw,H − gw,β = RT ln
∏
m

(
1 −

∑
J

θJm

)υm
(6)
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which is quite similar to the well known thermodynamic expression

µi − gi,o = RT ln ai (7)

wheregi ,o is the Gibbs energy of speciesi in its pure state. With Eqs. (6) and (7) in mind, the activity of
water in the hydrate can be expressed as

aw,H =
∏
m

(
1 −

∑
J

θJm

)υm
(8)

which is simply a function of the composition of water in the hydrate. Expanding the product term in
Eq. (8) leads to

aw,H =
(

1 −
∑
J

θJS

)υS (
1 −

∑
J

θJL

)υL
= aw,Saw,L (9)

where we can see that the activity of water in the hydrate can be expressed in terms of its activity in
each of the cavities. Upon further inspection of Eq. (9), we can see that the activity of water in a given
hydrate cavity is an effective composition of water in that cavity. That is, Eq. (9) gives the decrease in
energy of water in the hydrate due to the inclusion of the guest(s) in the hydrate cavities. Note that, in
the derivation of Eq. (1), it was assumed that there were no energy changes due to other effects (i.e. the
water and guest(s) in the hydrate act as an ideal solution).

In traditional thermodynamics, the activity of a component in a phase is defined as the ratio of the
fugacity of that component in the phase to the fugacity of that component in its pure state. Hence, the
idea of an empty hydrate lattice. Note, however, that the Gibbs energy of the component in its pure state
is usually known quite well. That is, the activity is simply a perturbation in the fugacity of the component
from its pure state. For fluid phases, the following expression for the activity of a component is familiar

ai,f = xi,fγi,f (10)

wherexi ,f is the composition andγ i,f is the activity coefficient of componenti in the fluid phase. Note
that the activity coefficient accounts for non-idealities between componenti and other components in the
fluid. We can extend this principle to water in the hydrate phase.

Using the statistical thermodynamic model for effective composition and introducing an activity coef-
ficient, which accounts for non-ideal interactions, we can define the activity of water in a hydrate cavity
as

aw,m =
(

1 −
∑
J

θJm

)υm
γw,m (11)

Substituting Eq. (11) into Eq. (8), the activity of water in the hydrate becomes

aw,H =
∏
m

(
1 −

∑
J

θJm

)υm
γw,m (12)

whereγ w,m is the activity coefficient of water in cavitym, accounting for perturbations of cavitym
from the standard hydrate lattice. However, since non-idealities will most likely not be known for each
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Fig. 2. Corrected model which allows for distortion of hydrate due to guests (vβ �= vH).

hydrate cavity, we assume that they can be gathered into a structural activity coefficient which accounts
for non-ideality from the standard hydrate. Therefore, Eq. (12) can be expressed as

aw,H = γw,H

∏
m

(
1 −

∑
J

θJm

)υm
(13)

whereγ w,H is the effective activity coefficient. Substitution of Eq. (13) into Eq. (1) gives

µw,H = gw,β + RT
∑
m

υm ln

(
1 −

∑
J

θJm

)
+ RT ln γw,H (14)

Note that Eq. (14) can be visualized in a similar manner as in Fig. 1. Fig. 2 illustrates the processes needed
to determine the chemical potential of water in the hydrate (as given by Eq. (14)). Process (1) in Fig. 2
is done at constant volume and therefore, the van der Waals and Platteeuw statistical model can be used.
Process (2) in Fig. 2, the volume change of the hydrate from it’s standard state volume, is done at constant
composition and is described by the activity coefficient in Eq. (14).

An expression must be developed which describes the differences between the hydrate and the stan-
dard state. XRD data show that the volume of the hydrate is a strong function of the guest(s) present
in the hydrate [3,4]. Therefore, we suggest that the activity coefficient be a function of the differ-
ence in volume between the hydrate and the standard hydrate,�vH. We note, however, that the ac-
tivity coefficient must have the following propertyγw,H → 1 as�vH → 0. Implementing the above
constraint reduces Eq. (14) to Eq. (1) when�vH = 0 (i.e. γw,H = 1). In the strictest sense, the
activity coefficient accounts for the energy change involved in taking the volume of the standard
lattice to the volume of the real hydrate. That is, it will perturb the Gibbs energy of the standard lattice
such as

µw,H = gw,β +�gw,β + RT
∑
m

υm ln

(
1 −

∑
J

θJm

)
(15)

where the perturbation can be described in a manner similar to Eq. (3) as

�gw,β = �gw0,β

RT0
−
∫ T

T0

�hw,β

RT2
dT +

∫ P

P0

�vH

RT
dP (16)
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Evaluating Eqs. (14)–(16) and assuming that the heat capacity of the hydrate is not affected in the process,
we propose that the activity coefficient of water in the hydrate be expressed as

ln γw,H = �gw0,β

RT0
+ �hw0,β

R

(
1

T
− 1

T0

)
+
∫ P

P0

�vH

RT
dP (17)

wherehw0,β is the enthalpy of formation at reference conditions. In this work, we arbitrarily define the
perturbed Gibbs energy and enthalpy of formation be linear in�vH, satisfying the above constraint on
the activity coefficient.

It is important to note that the molar volume difference between the standard hydrate and the real hydrate,
�vH, is a strong function of composition of the real hydrate and small function of pressure. Therefore,
the activity coefficient will be a strong function of composition and a small function of pressure, as is the
normal case for liquids. There will also be a temperature dependence in the activity coefficient due to the
temperature dependent term introduced by the integration of the enthalpy (Eq. (17)).

4. Defining the standard hydrate

The best choice for the standard hydrate would be one that is well characterized and not too different
from the real state of the system. If the standard state is well defined, small perturbations from this
standard state can be accounted for correctly. With this in mind, we turn to the two most well-known
hydrates of sI and sII: methane and propane hydrate, respectively. Note that the standard states for sI and
sII are the empty hydrate lattices of these and not the actual hydrates. Therefore, the activity coefficients
for methane and propane hydrates will be close to unity.

The Gibbs energy of water in the standard state can be expressed using classical thermodynamics and
is given in Eq. (3). Note thatgw0,β is the molar Gibbs energy of formation of the standard hydrate at the
reference conditions (T0 andP0), hw,β is the molar enthalpy, andvw,β is the molar volume. These three
properties are the unknowns that need to be determined in order to specify the standard state hydrate.

We define the molar volume of the standard hydrates of sI and sII as the molar volumes of methane and
propane hydrate, respectively. The molar volume of these hydrates, and therefore of the standard states,
is well characterized via XRD data [3,4]. The following is the derived expression for the molar volume
of water in hydrates:

vw,β = v0 exp[α1(T − T0)+ α2(T − T0)
2 + α3(T − T0)

3 − κ(P − P0)] (18)

The compressibility coefficient,κ, and reference volume,v0, are solely dependent on the composition
of the guest(s) in the hydrate lattice while the thermal expansion coefficients,α1, α2, andα3 are solely
dependent on the hydrate structure. The values of these parameters will appear in the fourth part of this
series.

The molar enthalpy of water in the standard hydrate can be expressed as

hw,β = hw0,β +
∫ T

T0

cPw,β dT (19)

wherehw0,β is the molar enthalpy of formation of the standard hydrate at the reference conditions (T0 and
P0) andcPw,β is the heat capacity. The heat capacity of the standard hydrates for both sI and sII is well
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approximated by that of ice [5]. However, the molar enthalpy of formation is not known and needs to be
regressed to experimental data.

5. Developing the fugacity

In order to solve for thermodynamic equilibrium, the fugacity of water in the hydrate must be known.
Recall that the current approach to this is to relate the chemical potential of water in the hydrate to that
in the aqueous phase. This approach can be burdensome in that, as shown above, if an aqueous phase
is not present, comparing chemical potentials will not be consistent with thermodynamic equilibrium.
Therefore, we suggest the following approach.

It is common when solving for fugacity, with equations of state, to use the standard state of the ideal gas
of the pure component at 1 bar. To be consistent, we follow the same approach in this work. Therefore,
the fugacity of water in the hydrate is defined as

fw,H = fw,o exp

[
µw,H − gw,o

RT

]
(20)

wherefw,o is 1 bar,gw.o the Gibbs energy of pure water in the ideal gas state at 1 bar, andµw,H is given
by Eqs. (3) and (14). Note that the fugacity of water in the hydrate, as determined by Eq. (20), does not
require that an aqueous phase be present.

6. Calculation of cage occupancy

The calculation of the cage occupancies of the guest(s) in the hydrate is given by the following
equation:

θJ,m = CJ,mfJ,m

1 +∑
kCk,mfk,m

(21)

wherefJ ,m is the fugacity of componentJ in cagem andCJ ,m is the Langmuir constant of componentJ in
cavitym. The Langmuir constants describe the potential interaction between the encaged guest molecule
and the water molecules surrounding it. They are evaluated by assuming a spherically symmetrical cage
and can be described by a spherically symmetrical potential as

CJ,m = 4π

kT

∫ Rm−aJ

0
exp

[
−ωJ,m(r)

kT

]
r2 dr (22)

whereRm is the radius of cagem andωJ ,m(r) is the potential function. The Kihara spherical core potential
is used to calculate the Langmuir constants. McKoy and Sinanoglu [6] summed all the guest–water binary
interactions to yield an overall cell potentialωJ ,m(r) given by

ωJ,m(r) = 2εJ zm

[
σ 12
J

R11
m r

(
δ10
J,m + aJ

Rm

δ11
J,m

)
− σ 6

J

R5
mr

(
δ4
J,m + aJ

Rm

δ5
J,m

)]
(23a)
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Fig. 3. Illustration of guest–cage interaction.

where

δNJ,m = 1

N

[(
1 − r

Rm

− aJ

Rm

)−N
−
(

1 + r

Rm

− aJ

Rm

)−N]
(23b)

wherezm is the number of water molecules at the periphery of each cage (coordination number),aJ the
spherical core of the hydrate guest, andσJ andεJ are the distance between core surfaces corresponding
to zero potential energy and depth of the intermolecular potential well for the water–guest interaction,
respectively. The cell potential model essentially calculates each water–guest interaction as a summed
spherical field around the enclathrated molecule.

In the development of Eq. (22), it was assumed that the interaction between the guest and the water
molecules in cagem could be approximated using an average cage radius. Fig. 3 illustrates this. In
this work, we suggest another approach. We propose that the interactions between the guest and water
molecules can be better approximated using a “multi-layered” cage (Fig. 4). We use direct single crystal
XRD data for the radii of each water molecule in the hydrate cages [7,8]. Table 1 lists these radii for sI
and sII hydrates. Note that the cubic lattice parameter, which corresponds to these cage radii, is given for
each hydrate structure. Eq. (24) is the proposed expression for the Langmuir constant

CJ,m = 4π

kT

∫ R1−aJ

0
exp

[
−
∑

nωJ,n(r)

kT

]
r2 dr (24)

where the summation is over all shells (n) in cagem. Note that the upper limit of the integral is evaluated
atR1, which is the smallest shell in cagem. Eq. (23) can still be used to evaluate the potential for a given
layer. In the development of Eq. (24), it is assumed that binary interactions between the guest and the
water molecules (shells) are of most importance.

The crucial change introduced in this work is to make the radii of each shell functions of temperature,
pressure, and composition. As the lattice expands or compresses, the cages also expand or compress. The

Fig. 4. Illustration of multiple shell with “multi-layered” first shell.
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Table 1
Types of oxygen atoms at the periphery of both sI and sII hydrate cages and distance of each to the center of the cages

Small cage (512) Large cage (51262)

Number of waters in cage 20 24
Average radius 3.908 4.326

Layer type (i) (k) (i) (k) (k) (c)

(a) sI ethylene oxide hydrate (a = 12.03 Å) [7]
Number of waters in layer 8 12 8 8 4 4
Radius (Å) 3.83 3.96 4.47 4.06 4.645 4.25

Large cage (51264)

Number of waters in cage 20 28
Average radius 3.902 4.683

Layer type (a) (e) (g) (e) (g) (g)

(b) sII tetrahydrofuran and hydrogen sulfide hydrate (a = 17.1 Å) [8]
Number of waters in layer 2 6 12 4 12 12
Radius (Å) 3.748 3.845 3.956 4.729 4.715 4.635

radii of the shells are assumed to be a linear function of the cubic hydrate lattice parameter. For example,
if the lattice parameter expands by 1% of its original value, each shell radius,Rn, also expands by 1% of
its original value.

7. Regression of unknown parameters

The unknown parameters in the given hydrate model are the molar Gibbs energy of formation of
the standard hydrate at the reference conditions (T0 andP0), gw0,β , the molar enthalpy of formation of
the standard hydrate at the reference conditions (T0 andP0), hw0,β , the distance between core surfaces
corresponding to zero potential energy,σJ , and the depth of the intermolecular potential well,εJ . The
formation properties only need to be regressed for the standard hydrates, however, the potential parameters
need to be regressed for all hydrate formers. The regression procedure was multi-dimensional because
the formation properties and the potential parameters are dependent on one another. Because of this, it
was important that there were several sets of hydrate data to regress the parameters.

The traditional approach in optimizing these parameters is to use pressure–temperature (PT) hydrate
dissociation data only. In this work, we use various hydrate phase measurements to optimize parameters:
occupancy ratio, hydration number, hydrate lattice parameters, sI–sII transitions in the methane+ethane+
water and ethane+propane+water systems, andPT hydrate dissociation data. The occupancy ratio data
for methane hydrates and the sI–sII transitions in the methane+ ethane+ water system were determined
using Raman and NMR spectroscopy [9,10], the hydrate lattice parameters for all former hydrates are
from XRD [3,4,7,8], and the sI–sII transitions in the ethane+ propane+ water system were determined
qualitatively by Holder and Hand [11].

With a given set of formation properties, an infinite line of potential parameters can be found fromPT
hydrate dissociation data, as shown by Ballard and Sloan [12]. Therefore, for all possible combinations
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of formation properties, there is an infinite set of potential parameters in the potential parameter space
(εJ versusσJ ). To reduce this number, hydration number and occupancy ratio data at 273.15 K were
used. Since the prediction of hydration number and occupancy ratio are independent of the formation
properties, the infinite set of potential parameters was reduced. High pressure methane occupancy ratio
data [13] was used to reduce the set even more.

At this point, the potential parameters and formation properties were regressed simultaneously using
a Newton–Raphson procedure. ThePT hydrate dissociation data and sI–sII transition data were used for
the regression. Derivatives of the fugacity of water in the hydrate with respect to each unknown parameter
were developed for the regression. Due to their complexity and length, they are not listed here. It should
be noted that range of values for the potential parameters was constrained within the possible sets found
using hydration number and cage occupancy ratio data. The regressed values for formation properties
and potential parameters will be given in Section 4 of this series.

8. Predictions with new model

Fig. 5 is a plot of the sI methane hydrate dissociation line (Lw–sI–V). The dashed line is a predic-
tion with the current hydrate fugacity model (Eq. (5)) and the solid line is a preliminary prediction with
the proposed model (Eq. (22)). Both models fit the data well at lower pressures. However, note that the
proposed model predicts the maximum temperature at which sI hydrates can form (∼320 K), whereas the
current model fails to do this. This is a direct result of treating the shell radii as functions of temperature

Fig. 5. Pressure vs. temperature plot for sI methane hydrates (Lw–sI–V).
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Fig. 6. Pressure vs. temperature plot for sI methane hydrates (sI–V and I–sI–V).

and pressure. That is, at high pressure the hydrate cages compress such that methane can no longer fit
into the small cages.

Fig. 6 is a plot of the sI methane hydrate dissociation in the absence of an aqueous phase. Note that
the three-phase line, I–sI–V, and the two-phase lines, sI–V, are predicted well. This is one of the main
advantages of the new hydrate model: the ability to predict hydrate equilibria with any phase.

9. Conclusions

We have proposed a new hydrate fugacity model that accounts for non-idealities from the standard
state hydrate, introducing an activity coefficient for water in the hydrate phase. The proposed model
reduces to the ideal solid solution theory, developed by van der Waals and Platteeuw, when the activity
coefficient equals unity. A new approach for the calculation of the Langmuir constants has also been
proposed, treating the hydrate cavity radii as a function of hydrate volume. Table 2 is a listing of the
major differences between the current and proposed hydrate models. A method for the regression of
unknown model parameters is given, allowing for the incorporation of spectroscopic data.

The proposed hydrate fugacity model gives a direct description of the hydrate phase, and is thus not
limited to calculations with an aqueous phase. This constraint with the previous hydrate model was
inherent in choosing to describe the hydrate as a phase change instead of describing the hydrate phase
itself. Predictions with the new model for I–H–V, H–V, and high pressureLw–H–V equilibria show its
wider applicability.
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Table 2
Listing of the major differences between the current and proposed hydrate models

Hydrate property Current model Proposed model

Volume Constant f (T, P, x)

Formation properties (T0, P0) Constant f (x)
Constant f (v)

Cage size Single shell Multi-layered shell

List of symbols
a guest core radius, activity
C Langmuir constant
f fugacity
g Gibbs energy (J/mol)
h molar enthalpy (J/mol K)
k Boltzmann’s constant (J/K)
P pressure
r integration variable
R universal gas constant and hydrate shell radius (Å)
T temperature (K)
v molar volume (cm3/mol)

Greek letters
α volumetric thermal expansion coefficients
� properties difference between liquid water and empty hydrate lattice
κ volumetric compressibility coefficient
µ chemical potential (J/mol)
θ fractional occupancy of guests in the hydrate cages, stability variable
υ number of hydrate cavities per water molecule
ω cell potential function

Subscripts and superscript
0 property at reference conditions
f arbitrary fluid phase
H hydrate phase
i arbitrary component
J hydrate guest component
Lpure pure liquid water
Lw aqueous phase
m hydrate cavity
o ideal gas at 1 bar
w water (as a component)
β standard empty hydrate lattice
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