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Abstract. Convolution Neural Networks (CNN) have achieved undis-
puted success in many practical applications, such as image classification,
face detection, and speech recognition. As we all know, FPGA-based
CNN prediction is more efficient than GPU-based schemes, especially
in terms of power consumption. In addition, OpenCL-based high-level
synthesis tools in FPGA is widely utilized due to the fast verification
and implementation flows. In this paper, we propose an FPGA accel-
erator with a scalable architecture of deeply pipelined OpenCL kernels.
The design is verified by implementing three representative large-scale
CNNs, AlexNet, VGG-16 and ResNet-50 on Altera OpenCL DE5-Net
FPGA board. Our design has achieved a peak performance of 141 GOPS
for convolution operation, and 103 GOPS for the entire VGG-16 network
that performs ImageNet classification on DE5-Net board.
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1 Introduction

Convolutional Neural Network (CNN) is a widely-regarded algorithm in the field
of artificial intelligence. It has achieved great success in image classification [1],
object detection [2], and speech recognition [3]. In the past decade, CNN has sig-
nificantly improved the accuracy and performance of image classification. This
is mainly due to the continuous improvement of data sets and the successive
enhancement of the neural network structure. Being compute-intensive, GPUs
are now widely used to train CNN. However, the GPUs with high power dissipa-
tions at the deployment level of the CNNs is not the best choice. FPGA based
hardware accelerators with provide massive processing elements, reconfigurable
interconnections and lower power dissipation are naturally suitable to implement
neural network circuits.

The traditional FPGA development method uses hardware description lan-
guage (HDL). The work of [7,8] propose efficient CNN accelerators on embed-
ded FPGA platforms. However, traditional register-transfer-level (RTL) design
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flows takes a lot of time to simulate and compile before actually running hard-
ware accelerators. With the development of FPGA high-level synthesis tool
(HLS), high-level programming language (C/C++) is used to replace low-level
HDL, which improves the speed of FPGA implementation and verification flows.
Greatly reducing the development cycle, to design FPGA has brought great con-
venience. In recent yeas, the use of HLS to design CNN architecture has contin-
ued to emerge. The work of [9] using the Vivado-HLS tool on a Xilinx VC707
FPGA board. However, only convolution layers are implemented on AlexNet [1].
In [10], author present a systematic methodology for maximizing the through-
put of an FPGA-based accelerator. In this work, an entire CNN model is pro-
posed consisting of all CNN layers: convolution, normalization, pooling and clas-
sification layers. The scalable of accelerator architecture only use like AlexNet
and VGG [4]. The feedforward neural networks with shortcut connections like
ResNet [5] dose not work. The main contribution of this work are:

(1) Propose a FPGA accelerator with a scalable architecture of deeply pipelined
OpenCL kernels;

(2) The design is verified by implementing three representative large-scale CNNs,
AlexNet, VGG-16 and ResNet-50;

(3) The design space of the proposed architecture was fully explored on Stratix-
V A7 FPGA.

2 Background

2.1 Classic Convolution Neural Network

AlexNet. AlexNet was able to achieve record breaking object recognition
results on the ImageNet challenge in 2012. It consisted of eight layers in total,
5 convolutional and 3 fully connected, as depicted in Fig. 1. The 3-dimensional
(3-D) convolution operation can be defined by

Do(fo, y, x) =
Cl∑

fi=1

K−1∑

ky=0

K−1∑

kx=0

Wl(fo, fi, ky, kx) · Di(fi, y + ky, x + kx) (1)

where Di(fi, y, x) and Do(fo, y, x) denote the neurons at position (x, y) in the
input feature map fi and output feature map fo, respectively. Wl(fo, fi, y, x) rep-
resents the corresponding weights in the l-th layer that gets convolved with fi.
The size of the convolution filters is K ×K, while the total number of input fea-
ture maps is Cl. In addition to this, AlexNet considered the use of the ReLU non-
linearity instead of the saturating nonlinearites, such as sigmoids; Using dropout
in training and Local Response Normalization (LRN) to reduce the problem of
overfitting.
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Fig. 1. AlexNet architecture. Figure reproduced from [1]

VGG. VGG achieves its depth by simply stacking more layers while following
the standard practices introduced with AlexNet. The size of the convolution
kernel is more regular. AlexNet use 11×11, 5×5 and 3×3 filters, but VGG only
use 3× 3 filters in the entire network. Notably, while using smaller filters, VGG
required far more filters per layer. The amount of calculations and parameters
of VGG is much larger than AlexNet.

ResNet. Deeper neural networks are more difficult to train, so in [5], author
proposed residual learning framework reducing the vanishing gradient problem
to ease the training of networks. This residual learning is mainly use of shortcut
connections, illustrated in Fig. 2, that connect components of different layers
with an identity mapping [6]. In particular, ResNet is built such that each layer
learns an incremental transformation, F (x), on top of the input, x, according to

H(x) = F (x) − x (2)

instead of learning the transformation H(x) directly as done in other standard
CNN architectures.

Fig. 2. Schematic of residual learning. Figure reproduced from [5]

2.2 OpenCL Framework on FPGA

OpenCL is an open, cross-platform parallel programming language that can
be used in both CPU, DSP, GPU and FPGA developments. Recently, FPGA
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vendors such as Xilinx and Intel have released OpenCL SDK for programming
FPGAs. The Intel OpenCL environment which can be a mixture of C, C++,
and OpenCL, provides a complete CPU/GPU-like development experience and
run-time experience on a CPU/FPGA platform, including a complete software
workflow spanning multiple target devices and x86 emulation with cycle-accurate
FPGA hardware models and cycle-accurate FPGA hardware.

3 Architecture Design and Optimization

3.1 Accelerator Architecture

As shown in Fig. 3, our FPGA design based OpenCL framework consists of a
group of OpenCL kernels that are cascaded by using Altera’s OpenCL extension
Channels. Two data mover kernels, namely MemRD and MemWR, transfer fea-
ture map and weight data from/to the global memory feeding other kernel with
high throughput data streams. The cascaded kernels form a deep computation
pipeline that can implement a serial of basic CNNs operations without the need
of storing interlayer data back to global memory. It significantly reduces the
bandwidth requirement compared to the work of [10]. The Convolution kernel is
designed to implement both the convolution layer and the fully connected layer
which are the most compute-intensive operations in CNNs. The Pooling kernel
is controlled by the synchronization signal of the MemWR kernel. When the
synchronization signal set one, the Pooling kernel operation is performed. This
technique is mainly used to achieve overlap between two kernels. The Batch-
Norm kernel using in [5] loads mean, variance, α and β from global memory
and performs the normalization directly on the output data streams of the Con-
volution kernel. The Local Response Normalization(LRN) kernel using in [1]
fetches data from global memory and performs normalization on the feature
map of neighboring neurons in deep direction. The Eltwise kernel mapping Elt-
wise Layer using in [5] loads data from global momory and adds each elements
mainly using shortcut connections.

This architecture has the following advances:

(1) The cascaded and overlaped kernels form a deep pipeline architecture.
(2) Using a single hardware kernel to implement both the convolution and fully

connected layers.
(3) Scalable hardware structure which implementation many classic CNNs oper-

ations, such as LRN kernel to AlexNet, BatchNorm kernel and Eltwise kernel
to ResNet.

Convolution Kernel. A single work-item kernel with parallel convolution data
paths is designed to implement both the function of the convolution and FC
layers. In this paper, we propose to flatten the 3-D convolution operation into
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Fig. 3. The top-level architecture of CNN accelerator.

a 1-D convolution operation and integrate it with the full-connect operation as
follow:

Do(fo) =
Cl×K×K∑

f ′
i=1

Wl(fo, f ′
i) · Di(f ′

i) (3)

In this way, data vectorization and parallel CU structure are both explored
in the design. Vectorized input features Di and weights Wl are streamed by
multiple Channels. A design parameter VEC SIZE determines the degree of
data vectorization and controls the input throughput. Another design variable
parameter to accelerator the convolution operation CU NUM, represents the
parallel factor of weight and reuse factor of data. Due to efficient pipelined by
the OpenCL compiler, We propose an efficient convolution pipeline structure
consisted of a multiplier-adder tree with a delayed buffer as in Fig. 4.

Fig. 4. The hardware architecture of the convolution kernel.
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Data Mover Kernel. Two multi-model single work-item kernels are designed
to fetch/store data from/to the global memory for the computation pipelines.
MemRD kernel detailed schemes in [11] can fetch data from global memory
to convolution mode or FC mode. We propose design parameter FT NUM to
determine the size of local memory, which further influences the reuse of input
data. MemWR kernel is mainly used to receive the output of convolution ker-
nel through the channel and arrange it into the storage structure required for
the next convolution or pooling operation. For the convolution mode, the data
received from the channel is arranged to have a depth of CU NUM, and MemWR
kernel need to divide the depth into VEC SIZE copies and return it to global
memory. The pooling mode simply transfer the data received from the channel
and directly put back to global memory. In the pooling mode, the MemWR ker-
nel also needs to pipe the synchronization signal to the pooling kernel at the right
time for them can overlap work. Note all memory operations should be commit-
ted before sending token to the pooling kernel. Detailed MemWR schemes are
illustrated in Fig. 5.

Fig. 5. The hardware architecture of the memWR kernel.

Fig. 6. The hardware architecture of the maxpool kernel.

Pooling Kernel. A shift-register-based hardware structure is proposed for the
pooling kernel as shown in Fig. 6. The kernel first fetch the synchronization
signal from the blocked channel, only waiting for the synchronization signal
from blocked channel to come, the pooling kernel can start working. When the
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synchronization signal comes, the pooling kernel read data from global memory
to shift register. In the process of data transfer, if the time point of pooling
is reached, data will be extracted from the shift register to the pooling logic.
Similarly, we designed a parameter PT NUM for adjusting the size of the local
memory in pooling kernel to exploiting input data reuse. In the pooling strategy,
the first line is processed first, then the second line is compared with the first line,
and so on. The final result of the pooling calculation is stored in the ping-pong
buffer. During the pooling calculation, the result of the last calculation is also
divided into VEC SIZE and returned to global memory for the next convolution
calculation. This process is similar to MemWR.

Other Kernel. Besides the most compute-intensive convolution and fully con-
nected kernel, we also designed some common opencl kernels, such as LRN,
BatchNorm, Eltwise for the scalability and integrity of the CNN accelerator’s
overall design. In this architecture, you can choose the basic units used in the
network to piece together to implement different network structures. For exam-
ple, implementation AlexNet just choose convolution kernel, pooling kernel and
LRN kernel. Therefore, this scalable architecture can process the complete CNN
forword computation flow with little involvement of host CPU.

Table 1. Operations in AlexNet model

Index Layer d x d y d z w x w y w n w m GOPS

1 Conv1 227 227 3 11 11 3 96 0.281

2 Conv2 55 55 96 5 5 48 256 0.448

3 Conv3 27 27 256 3 3 256 384 0.299

4 Conv4 13 13 384 3 3 192 384 0.224

5 Conv5 13 13 384 3 3 192 256 0.032

6 FC1 6 6 256 6 6 256 4096 0.075

7 FC2 1 1 4096 1 1 4096 4096 0.034

8 FC3 1 1 4096 1 1 4096 1024 0.008

Output 1 1 1024 Total Ops 1.40

4 Design Space Exploration

In this section, we present an analytical performance model and resource utiliza-
tion model to choose the best combination of the design parameters (VEC SIZE,
CU NUM, FT NUM, PT NUM ) that maximizes the performance of the CNN
accelerator, while still being able to fit in the limited FPGA resources.
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4.1 Performance Model

Convolution and Fully Connected Time. The execution time of convolution
and fully connected layer-i is modeled as follow:

Convolution or FC Runtimei =
No.of Convolution or FC Opsi

VEC SIZE× CU NUM× Frequency
(4)

Table 1 gives a operations summary of each layer in AlexNet model. Note that
d x, d y and d z represents the size of the output feature map from the previous
layer, not the input size of the current layer. In 3.1 the convolution and fully
connected operation have parallelism of two levels, one is the degree of parallelism
VEC SIZE based on the depth dimension of the input feature map, and the other
is the degree of parallelism CU NUM based on the number of convolution filters.
So the speedup ratio for the convolution kernel is VEC SIZE × CU NUM. The
execution times of AlexNet, VGG-16 and ResNet-50 on CU NUM are shown in
Fig. 7.

Other Layers Time. Due to the idea of pipeline and overlap in the overall
hardware design, the execution time of other kernels can be basically ignored
relative to convolution and fully connected operations.

Fig. 7. Execution time empirical models for CU NUM.

Memory Bandwidth. In order to reduce the pressure of external memory
bandwidth, we use 8-bit fixed point calculations and propose a sliding-window-
based data buffering scheme. Using fixed-point instead of floating-point calcula-
tions can reduce hardware synthesis costs and memory bandwidth requirements.
Fortunately, research shows that using 8-bit fixed-point numbers instead of full-
precision floating-point numbers is less than 1% loss in top 1/5 accuratacy for
AlexNet/VGG predictions. As shown in Fig. 8, this sliding-window-based data
buffering scheme use in MemRD kernel and maxpool kernel to cache data that
was fetched from global memory. The filter stride S of this filter window is usu-
ally smaller than the filter size K. Therefore, a large portion of data can be
reused during the convolution and maxpool computation. To exploiting data
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reuse, the MemRD kernel design a FT NUM parameter and maxpool kernel
design a PT NUM parameter. These kernel fetches a window of data that cov-
ers the area of FT NUM or PT NUM of filters each time, and caches the data
in the on-chip buffers or shift register.

Fig. 8. The hardware architecture of the convolution kernel.

Fig. 9. Resource utilization empirical models for CU NUM on VGG-16.

4.2 Resource Utilization Model

In this subsection, we analyze resource utilization model on DE5-Net board.
As discussed in 3.1, two design parameters VEC SIZE, CU NUM are used to
control the hardware cost of the CNN accelerator. Therefore, we mainly con-
sider the impact of the following two parameters in resource utilization model.
Figure 9 shows the model with parameter CU NUM on VGG-16. As the parame-
ter CU NUM gradually increases, both logic elements model and DSP utilization
model present a trend of linear increase. However, the on-chip memory utilization
model shows small discrepancy due to the complexity of load/store units.
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5 Experimental Results

In this section, we present the experimental results to validate the scalable of
this CNN accelerator by implementation three large-scale CNN models: AlexNet,
VGG-16 and ResNet-50 on DE5-Net platform.

5.1 Experimental Setup

We use DE5-Net FPGA development board from Altera and compare with
DE5a-Net listed its specification in Table 2. The OpenCL kernel codes are com-
piled using Altera OpenCL SDK 16.1, and the Quartus 16.1 is used as the FPGA
implementation tool. The host machine is equipped with an Intel i7-5930K CPU
and 64 GB memories. The data of images are first loaded from hard disks to
the host programs, and then sended to the FPGA accelerators to perform CNN
forword computations.

Table 2. Comparision of FPGA accelerator boards.

Specification DE5-Net DE5a-Net

FPGA Stratix-V GXA7 Arria-10 GX1150

Logic elements 622 k 1150 k

DSP blocks 256 1518

M20K RAMs 2560 2560

5.2 Results and Discussion

In this subsection, we first list the best parameter configuration on different net-
works. Then, we show the benchmark of our CNN accelerator. Finally, we dis-
cuss the scalability of this hardware architecture. As discussed in 4, four design
parameters VEC SIZE, CU NUM, FT NUM, PT NUM are used to control the
hardware cost and throughput of the FPGA accelerator. Therefore, design space
exploration can be quantitatively performed by implementing the accelerator
with different parameter configuration. The final design variables for three net-
works optimized on the DE5-Net board are shown in Table 3.

In Table 4, we summarize the resource utilization, execution time and per-
formance of different networks on the best parameters. We can see that different
networks have different parameters and achieve different performance on same
FPGA board. To prove how fast this accelerator can accelerate CNN computa-
tions, we also compare with CPU by using the Caffe deep learning framework.
The execution time for AlexNet, VGG-16 and ResNet-50 is 189 ms, 1547 ms
and 1238 ms, respectively. We can see that using FPGA-based accelerator can
achieve more than 10 times faster on average in implementation CNN-based
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Table 3. Optimized parameters.

AlexNet VGG-16 ResNet-50

VEC SIZE 8 8 16

CU NUM 48 32 16

FT NUM 7 7 7

PT NUM 2 4 4

Table 4. Summary of the resource utilization, execution time and throughput on
different networks.

AlexNet VGG-16 ResNet-50

Logic elements 491.3 k 368.5 k 532.6 K

DSP blocks 236 170 256

M20K RAM 2252 1133 1537

Frequency 197.9 MHz 219.7 MHz 223.6 MHz

Execution time 18.08 ms 355.92 ms 102.97 ms

Throughput 77.5 GOPS 103 GOPS 75.7 GOPS

image classification applications. In future works, we will explore sparse convo-
lution algorithms and using Winograd transformations to reduce the number of
computations and to improve the performance of this accelerator.

6 Conclusion

In this work, we implemented a scalable FPGA accelerator for convolutional neu-
ral networks using OpenCL framework. An efficient and scalable hardware archi-
tecture with deep pipelined kernels was presented. We proposed and explored
four design parameters for hardware costs and bandwidth limited, and imple-
mented three large-scale CNNs, AlexNet, VGG-16 and ResNet-50 on DE5-Net
FPGA board.
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