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Abstract 23 

The demand for developing rapid and non-destructive techniques that is suitable to real-time and on-line 24 

detection of aflatoxin and fungal contamination has received significant attentions. Measurement 25 

techniques based on fluorescence spectroscopy (FS), near-infrared spectroscopy (NIRS) and 26 

hyperspectral imaging (HSI) have provided interesting and promising results for detecting aflatoxin 27 

and/or fungal contamination in a variety of foods. As such, the main goal of this article is to give an 28 

overview of the current research progress of FS, NIRS and HSI techniques in rapid detection of aflatoxin 29 

and fungal contamination in different varieties of agricultural products. These techniques are described in 30 

terms of their working principles, features and application advantages in detecting aflatoxins and fungal 31 

contamination. The research advances of each technique applied in different agricultural products are 32 

reviewed and the results obtained from different studies are compared and discussed. Perspectives on 33 

their future trends and challenges are also addressed.  34 

Keywords: aflatoxin; aflatoxigenic fungus; fluorescence; near-infrared spectroscopy; hyperspectral 35 

imaging; rapid and non-destructive detection 36 

Abbreviations 37 

A., Aspergillus; AFB1, aflatoxin B1; AFB2, aflatoxin B2; AFG1, aflatoxin G1; AFG2, aflatoxin G2; ANN, 38 

artificial neural network; AOAC, Association of Analytical Communities; ARS, Agricultural Research 39 

Service; ASTM, American Society of Testing and Materials; BGYF, bright greenish yellow fluorescence; 40 

BY, bright-yellow; CDA, canonical discriminant analysis; CEN, European Committee for Standardization; 41 

CFU/cm2, colony forming units per cm2; COE, constant offset elimination; D, dimensional; DA, 42 

discriminant analysis; DFI, difference fluorescence index; DT, detrending; EEM, excitation-emission 43 

matrix; EF-SOSAM, enhanced spectrofluorimetry in combination with second-order standard addition 44 

method; ELISA, enzyme-linked immunosorbent assay; EU, European Union; FDA, factorial discriminant 45 
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analysis; FF, fluorescence fingerprint; FFS, forward feature selection; FS, fluorescence spectroscopy; 46 

FSP-DF, forward stepwise procedure combined with discriminant function; FT, Fourier transform; FT-47 

NIR, Fourier transform near-infrared; FT-NIRS, Fourier transform near-infrared spectroscopy; FWHM, 48 

full width half maximum; GA, genetic algorithm; GA-SPCR, genetic algorithm combined with selective 49 

principal component regression; GA-SVM, genetic algorithm combined with support vector machine; GC, 50 

gas chromatography; HBBE, hierarchical bottleneck backward elimination; HPLC, high-performance 51 

liquid chromatography; HSI, hyperspectral imaging; IS, inoculated samples; ISO, International 52 

Organization for Standardization; KNN, k-nearest neighbor; LDA, linear discriminant analysis; LDB, 53 

local discriminant bases; LDB-LDA, local discriminant bases combined with linear discriminant analysis; 54 

LDC, linear discriminant classifier; LOD, limit of detection; LOGLC, logistic linear classifier; LS-SVM, 55 

least squares SVM; MAS, moving average smoothing; ML, maximum likelihood; MLP, multilayer 56 

perceptron; MLR, multiple linear regression; MMN, minimum maximum normalization; MS, multi-57 

spectral; MSC, multiplicative scatter correction; MSI, multispectral imaging; MSU, Mississippi State 58 

University; N, normal; NDFI, normalized difference fluorescence index; NIR, near-infrared; NIRS, near-59 

infrared spectroscopy; NN, neural network; P, purple; PARAFAC, parallel factor analysis; PARZENC, 60 

Parzen classifier; PC, principal component; PCA, principal component analysis; PCR, principal 61 

component regression; PDA, potato dextrose agar; PLS-DA, partial least squares discriminant analysis; 62 

PLSR, partial least squares regression; QDA, quadratic discriminant analysis; QDC, quadratic 63 

discriminant classifier; QHM, quantized histogram matrix; RC, correlation coefficient of calibration set; 64 

RC
2, determination coefficient of calibration set; RCV

2, determination coefficient of cross validation; RP, 65 

correlation coefficient of prediction set; RP
2, determination coefficient of prediction set; REP, relative 66 

error of prediction; RF, random forest; RFE, recursive feature elimination; RFI, ratio fluorescence index; 67 

RMSD, root mean square difference; RMSECV, root mean square error of cross validation; RMSEP, root 68 

mean square error of prediction set; ROI, region of interest; RPD, residual prediction deviation; SAM, 69 

spectral angle mapper; SC, sterile control; SD, standard deviation; SECV, standard error of cross 70 

validation; SEP, standard error of prediction set; SG, Savitzky-Golay; SLS, straight line subtraction; SNR, 71 
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signal-to-noise ratio; SNV, standard normal variate; SNV-DT, SNV-detrending; SPCR, selective 72 

principal component regression; SVM, support vector machine; SWIR, short-wave infrared; TLC, thin 73 

layer chromatography; TPR, true positive rate; UC, untreated control; USDA, United Stated Department 74 

of Agriculture; UV, ultraviolet; Vis, visible; Vis/NIRS, Visible and near-infrared spectroscopy. 75 

1. Introduction 76 

    Aflatoxins are a group of highly toxic secondary metabolites produced by fungi of the genus 77 

Aspergillus (A.), predominantly A. flavus and A. parasiticus [1]. The term “aflatoxin” comes from three 78 

words, namely, Aspergillus genus, flavus species and toxin. Among the eighteen different types of 79 

aflatoxins identified to date, the naturally occurring and well-known types are aflatoxin B1 (AFB1, 80 

C17H12O6), aflatoxin B2 (AFB2, C17H14O6), aflatoxin G1 (AFG1, C17H12O7) and aflatoxin G2 (AFG2, 81 

C17H14O7) [2], with AFB1 identified as the most common and carcinogenic one [1]. The aflatoxins are 82 

biosynthetically derived from the identical precursor (versiconal hemiacetal acetate) through the 83 

polyketide pathway [3]. Structurally, aflatoxins are a group of highly oxygenated heterocyclic 84 

difuranocoumarin compounds, containing furofuran rings, lactone rings, aromatic six-membered ring, 85 

and/or pentanone ring moiety as shown in Figure 1 [4-5]. 86 

    Aflatoxins are known to be hepatotoxic, hepatocarcinogenic, teratogenic and mutagenic [6-10], and are 87 

considered as Class 1 human carcinogens by the International Agency for the Research on Cancer of the 88 

World Health Organization [11]. Among the more than 400 known mycotoxins, aflatoxins especially the 89 

AFB1 remains the most toxic [12, 13]. However, more than 5 billion people in developing countries are 90 

reported to be chronically exposed to aflatoxins through food [14-15]. The number of deaths in Indonesia 91 

due to aflatoxin-induced liver cancer is estimated at 20,000/year [16]. Moreover, aflatoxin contamination 92 

can result in severe economic losses, i.e., > $250 million in direct losses to farmers [17]. The U.S. Food 93 

and Drug Administration economists [18] estimated the annual cost of aflatoxin contamination in the 94 

United States at ~ $500 million through two categories of loss, market rejection and animal health 95 

impacts. In addition, products infected by the Aspergillus fungi may also contain potent hazards because 96 
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of their aflatoxin-producing character. However, aflatoxin contamination and fungal infection can occur 97 

with greater prevalence in tropical and humid climates in a wide variety of agricultural products during 98 

both the pre-harvest and post-harvest periods. In the field, high temperature, prolonged drought conditions 99 

and high insect activities are significant factors for pre-harvest aflatoxin contamination. Warm 100 

temperature and high humidity are contributing factors that increase the fungal invasion and toxin 101 

production during post-harvest stages including storage, processing, transportation and sale [19]. Thus, 102 

efficiently detecting, identifying and separating the samples that are contaminated with aflatoxins and/or 103 

fungi is of great importance in order to reduce the risk of aflatoxins entering the food chain.  104 

    Various methods have been developed and utilized to determine aflatoxin and fungal contamination in 105 

foods. For aflatoxin detection, the available techniques include thin layer chromatography (TLC), gas 106 

chromatography (GC), high-performance liquid chromatography (HPLC), enzyme-linked immunosorbent 107 

assay (ELISA), fluorescence polarization assays, radio immunoassays, etc. [20-24]. The current analytical 108 

methods validated by the Association of Analytical Communities (AOAC), European Committee for 109 

Standardization (CEN) and International Organization for Standardization (ISO) for aflatoxins detection 110 

in agricultural and food products are mainly based on these methods mentioned above [11, 25]. 111 

Traditionally, fungal contamination in foods is determined using microbiological methods in a laboratory 112 

setting, which includes fungal enumerating using plate-counting or direct plating techniques, isolating in 113 

appropriate media and identifying the genus and species level by morphological characterization, 114 

including macroscopic characteristics (color, size, colony appearance) and microscopic characteristics 115 

(conidia, conidiophore, conidial heads) [26-28]. These methods for determining aflatoxin and fungal 116 

contamination may give accurate results in laboratories, however, most of them require skilled personnel 117 

and a well-equipped laboratory. They are also expensive, time-consuming and destructive to the test 118 

samples, making them impossible for large-scale non-destructive screening detection or integration in an 119 

on-line sorting and production system. In addition, the uneven presence of aflatoxins in both agricultural 120 

products and crops often makes the traditional sample-based analysis give a limited view of the degree of 121 
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contamination. In this context, the demand for developing a rapid and non-destructive method for sensing 122 

aflatoxin and/or fungal contamination that is suitable to real-time and on-line detection has received 123 

significant attentions.  124 

    Among currently emerging technologies, the optical-based methods have been reported to show great 125 

potential for on-line applications [29-30]. The measurement techniques based on fluorescence 126 

spectroscopy (FS), near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) have provided 127 

interesting and promising results for detection of aflatoxin and fungal contamination in varieties of foods. 128 

Therefore, the main goal of this article is to give an overview of the current research progress in the 129 

application of FS, NIRS and HSI techniques in rapid and non-destructive detection of aflatoxin and fungal 130 

contamination in different varieties of agricultural products, which consist of corn, rice, wheat, peanuts, 131 

almond kernels, pistachio nuts, dried figs, date fruit and chili peppers., etc. These techniques are 132 

described in terms of their working principles, features and application advantages in detection of 133 

aflatoxin and/or fungal contamination. The research advances of each technique applied in a wide variety 134 

of agricultural products are reviewed and the factors influencing their qualitative and quantitative results 135 

are discussed. In addition, perspectives on their future trends and challenges are also discussed. 136 

2. Optical techniques 137 

2.1.  Fluorescence spectroscopy 138 

FS is an analytical technique of which the theory and methodology have been extensively exploited in 139 

the disciplines of both chemistry and biochemistry, such as in investigations of the structure, functions 140 

and reactivity of small molecules, synthetic polymers, proteins and other biological molecules, etc., 141 

however, it has just recently become a popular tool in the field of food science [31]. The applications of 142 

FS in food analysis have significantly increased during the last two decades, and it has been proven to be 143 

a useful tool for the characterization of chemical constituents, detection of hazards, and authentication 144 

analysis in varieties of foods [32].  145 
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Fluorescence is the emission of light subsequent to absorption of ultraviolet (UV) or visible (Vis) light 146 

of a fluorescent molecule or substructure, called a fluorophore. The fluorophore absorbs energy in the 147 

form of light at a specific wavelength and liberates energy in the form of emission of light at a longer 148 

wavelength [33]. The basic principles can be illustrated by a Jabloński diagram [34]. Briefly, three steps 149 

are involved in a typical fluorescence process, namely, excitation, vibrational relaxation/internal 150 

conversion, and emission. Excitation of a susceptible molecule by an incoming light happens in 151 

femtoseconds, during which light is absorbed by the molecule, and transferred to an electronically excited 152 

state. The vibrational relaxation/internal conversion refers to the process where the molecule undergoes a 153 

transition from an upper electronically excited state to a lower one, without any radiation. The final 154 

process involves the emission of light at a longer wavelength and return of the molecule to the ground 155 

state [35].  156 

A number of compounds emit fluorescence in the Vis spectral region when excited with UV radiation. 157 

Marsh and co-workers first reported observation of a bright greenish yellow fluorescence (BGYF) in 158 

cotton bolls infected by A. flavus [36], and later associated aflatoxins in cotton seeds with the BGYF in 159 

the fiber [37]. The fluorescence was reported to be produced by the reaction of peroxidases in living 160 

plants with kojic acid, which is formed by Aspergillus types [37]. However, its mechanisms are complex 161 

and still not quite clear now. Some researchers reported aflatoxin itself as a fluorescent substance. Cole 162 

and Cox [38] found that AFB1 peaks at excitation wavelengths of 223, 265 and 362 nm; AFB2 has three 163 

peaks at excitation wavelengths of 222, 265 and 363 nm; AFG1 peaks at excitation wavelengths of 243, 164 

257, 264 and 362 nm; and AFG2 peaks at excitation wavelengths of 214, 265 and 363 nm. With aflatoxin 165 

irradiated under UV light, the fluorescence phenomenon can occur, and particularly the two major groups, 166 

AFB and AFG can emit fluorescence in the bright-blue (425-480 nm) and blue-green (480-500 nm) 167 

spectral ranges, respectively, which makes it possible to detect aflatoxin contamination using fluorescence 168 

characteristics [39]. Actually, the currently used VICAM AflaTest method for aflatoxins detection is 169 

based on their fluorescent characteristics. However, the direct use of fluorescence spectra in agricultural 170 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 
 

products is made difficult by the complexity of background food matrices as they may contain a great 171 

variety of natural fluorescent compounds that can overlap with the analyte signal. Currently, with the 172 

extensive investigations concerning detecting aflatoxins using FS in combination with different 173 

chemometric techniques, this technique seems to be one of the most promising non-destructive optical 174 

detection methods for monitoring aflatoxin contamination in agricultural products.  175 

2.2. Near-infrared spectroscopy 176 

Near-infrared (NIR) region in the electromagnetic spectrum is defined to be from 780 to 2526 nm 177 

(12821-3959 cm-1) by the American Society of Testing and Materials (ASTM), which is located between 178 

the red band of the visible light and the mid-infrared regions [40]. The NIRS detection technique is based 179 

on the principle that different chemical bonds in the tested sample absorb or emit different wavelengths of 180 

light when irradiated by continuous changing frequency of NIR light. NIR signals are associated with 181 

molecular vibrations, specifically the overtones and combinations of fundamental vibrations. Chemical 182 

bonds between light atoms, such as C-H, O-H, and N-H generally have high vibrational frequencies, 183 

which result in overtone and combination bands that are detectable in the NIR region [41]. 184 

For NIRS, there are mainly three modes of data collection, namely, reflectance, transmittance and 185 

interactance [42]. The determination of a suitable measurement mode relies on the type of sample and the 186 

constituents to be tested. Most of the studies reported on detection of aflatoxin contamination and fungal 187 

infection using NIRS employed the measurement mode of reflectance. The NIRS instruments can be 188 

categorized into three groups according to Baeten and Dardenne [43], namely, (i) sequential instruments, 189 

where the reflectance or absorbance is sequentially collected in time and the instrument is equipped with a 190 

monochromator or filters, and generally the early NIRS instruments belong to this type; (ii) Fourier 191 

transform (FT) or multiplex instruments, where several frequencies are detected simultaneously in the 192 

form of an interferogram; and (iii) multichannel instruments, where several detectors separately detect the 193 

absorbance at several wavebands. 194 
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The NIR spectra are generally complex due to highly overlapping and weak absorption bands 195 

associated with overtones and combinations of vibrational bonds, which may need chemometric 196 

assistance for spectral interpretation and analysis. With the latest development in chemometrics and 197 

computer techniques, NIRS has been extensively studied as an effective tool for qualitative and 198 

quantitative evaluation of food quality and safety attributes [44]. The capability of NIRS in detecting 199 

aflatoxin contamination and fungal infection have been investigated and proven to be useful in a wide 200 

range of agricultural products. There is a report showing that the major Fourier transform near-infrared 201 

(FT-NIR) bands associated with aflatoxin molecules include 6923 cm-1 (1444 nm), 5868 cm-1 (1704 nm), 202 

and 5789 cm-1 (1727 nm,), which are corresponding to C-H stretching and deformation, 1st overtone of 203 

CH3 and 1st overtone of CH2, respectively [45]. Also, the FT-NIR waveband over 5000-7000 cm-1 (1429-204 

2000 nm) was pointed out to tend to correlate with aflatoxin concentrations, which contain combinations 205 

and overtones associated with the various functional groups of aflatoxin and the starch molecules of corn 206 

samples [46]. Regarding fungal infection detection using NIRS, the most significant bands related to 207 

fungal infection of cereals were investigated to be around 870-1200 nm, which correspond to NH in most 208 

amino acids and aromatic rings, radical structures in cell wall components, such as furanic or phenolic 209 

compounds, and could be interpreted as signs of kernel deterioration caused by fungal infection [47].  210 

2.3.  Hyperspectral imaging 211 

HSI is a relatively new but rapidly growing technique that integrates spectroscopic and imaging 212 

techniques to provide both spectral and spatial information of the tested sample simultaneously. The term 213 

“hyperspectral imaging” originated from remote sensing studies and was first mentioned by Goetz et al. 214 

[48]. The HSI technique can be implemented in reflectance, transmission, scattering and fluorescence 215 

modes, and the images obtained, commonly called hypercubes, are three-dimensional (3-D) data cubes 216 

with two spatial dimensions and one spectral dimension, which are made up of hundreds of contiguous 217 

wavebands for each spatial pixel of the tested sample. Therefore, compared to conventional spectroscopic 218 

techniques, the added spatial dimension enables the mapping of chemical components in the tested 219 
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sample (chemical imaging), which is particularly useful for detection of unevenly distributed components, 220 

such as aflatoxin contamination and fungal infection in agricultural products. 221 

There are generally three approaches for acquiring 3-D hypercubes (x, y, λ), namely point-scan, line-222 

scan and area-scan methods. In the point-scan method (i.e., the whiskbroom method), a single point is 223 

scanned along two spatial dimensions (X and Y) by moving either the sample or the detector, and 224 

hyperspectral image data are accumulated pixel by pixel. The line-scan method (i.e., the push-broom 225 

method) is an extension of the point-scan method, in which a line of spatial information with a full 226 

spectral range per spatial pixel is captured sequentially to complete a volume of spatial-spectral data [49]. 227 

Different from the spatial-scan methods of point-scan and line-scan, the area-scan method (i.e., the band 228 

sequential method) is a spectral-scan method, in which a full spatial scene at each spectral band is 229 

captured sequentially to form a 3-D hypercube data. No relative movement between the sample and the 230 

detector is required for this method, and the use of multiple band-pass filters, a liquid-crystal tunable filter, 231 

or an acousto-optic tunable filter exemplifies this approach [50-51]. Among the three methods, line-scan 232 

imaging is a typical choice for online applications where the sample is moving. Lately, HSI technique is 233 

becoming increasingly important for rapid and non-destructive assessment of food quality and safety. The 234 

applications of HSI for detecting aflatoxin contamination and fungal infection started relatively recently, 235 

while considerable studies have shown its great potential in such aspects. 236 

3. Applications of optical techniques in detection of aflatoxin and fungal contamination 237 

With the development of optical techniques, considerable studies have been conducted and reported on 238 

using FS, NIRS and HSI to determine aflatoxin and fungal contamination in different varieties of 239 

agricultural products. Tables 1 and 2 summarized the recent publications on detection of aflatoxin and 240 

fungal contamination, respectively. It can be observed from both tables that the three optical techniques of 241 

FS, NIRS and HSI have been studied extensively and promising results have been demonstrated in 242 

detecting aflatoxin contamination or fungal infection of different varieties of agricultural products. 243 

Among that, corn is the mainly focused product, and has been studied a lot compared to other products. 244 
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The NIRS and HSI techniques have been exploited extensively in detecting both aflatoxin and fungal 245 

contamination, while the FS technique was primarily applied to detect aflatoxin contamination and the 246 

reports on using it to determine fungal infection are rare. The detailed applications of each optical 247 

technique are described in the following sections separately.  248 

3.1.  Applications of FS 249 

3.1.1. Applications of FS in aflatoxin contamination 250 

Not long after the report associating aflatoxins in cotton seeds with BGYF in the cotton fiber, BGYF 251 

was observed on aflatoxin-contaminated corn kernels [52-54]. Fluorescence HSI technique is a 252 

combination of fluorescence spectra and HSI techniques. Fluorescence HSI employs UV lights as the 253 

excitation sources, which is the main difference between the fluorescence and the common HSI systems. 254 

In the past decade, fluorescence HSI technique has been developed to enable the acquisition of 255 

fluorescence image data with both high spectral and spatial resolutions [55-56] and was first utilized to 256 

detect aflatoxin-contaminated corn samples by Yao et al [57]. Series of studies conducted at Mississippi 257 

State University (MSU) have shown great potential of the fluorescence HSI technique in distinguishing 258 

aflatoxin-contaminated corn kernels [58-65]. Based on the laboratory fluorescence HSI system with the 259 

excitation wavelength centered at 365 nm, Yao et al. [59] examined the relationship between fluorescence 260 

emissions of corn kernels inoculated with A. flavus and their aflatoxin contamination levels. A 261 

fluorescence peak shift phenomenon was found among different groups of corn kernels contaminated 262 

with different aflatoxin levels, namely, the fluorescence peak moved toward a longer wavelength in the 263 

blue region for the highly contaminated kernels and toward a shorter wavelength for healthy or slightly 264 

contaminated kernels. Additionally, a general negative correlation was observed between the aflatoxin 265 

concentrations and the fluorescence magnitudes in the blue and green spectral regions, and an adjusted 266 

multiple linear regression (MLR) model yielding a determination coefficient of calibration set (RC
2) of 267 

0.72 based on 74 fluorescence wavebands, which indicated a moderate capability of fluorescence HSI in 268 

quantifying aflatoxin contents in corn kernels. The discriminant analysis showed classification accuracies 269 
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between 84% and 91% when classifying the corn samples with the aflatoxin threshold of 20 or 100 µg/kg. 270 

Further, in order to reduce the data acquisition time and image space, genetic algorithm (GA) and 271 

selective principal component regression (SPCR) algorithms were performed to select the fluorescence 272 

features. The results showed that a correlation coefficient of calibration set (RC) of 0.80 for quantifying 273 

the aflatoxin content in infected corn kernels was achieved when using 30 of the original 74 wavebands 274 

determined by GA for SPCR transformation produced, which was comparable to that (RC=0.82) obtained 275 

using the standard principal component regression (PCR) analysis based on the whole wavebands [60]. 276 

For the two-class classifications with the aflatoxin thresholds of 20 and 100 µg/kg, the employed support 277 

vector machine (SVM) method produced validation accuracies of 87.7% and 90.5% respectively, when 278 

using 36 and 11 fluorescence wavebands selected by the GA method. The obtained accuracies were 279 

similar to those obtained using the whole spectral bands, while the image space was reduced significantly, 280 

especially with the threshold of 100 µg/kg, where only 11 wavebands were used indicating the possibility 281 

of developing a fluorescence multispectral imaging (MSI) system for aflatoxin detection on-line [61].  282 

In addition, Yao et al. [62] applied two image pixel-based classification algorithms of maximum 283 

likelihood (ML) and binary encoding to discriminate healthy and aflatoxin-contaminated corn kernels, 284 

and obtained the same validation accuracy of 87% using both algorithms when taking 20 µg/kg of 285 

aflatoxin as the classification threshold. When 100 µg/kg was used as the classification threshold, the 286 

binary encoding algorithm achieved a validation accuracy of 88%, better than the 80% obtained using the 287 

ML algorithm. In this work, the authors also calculated three fluorescence indices between each two-band 288 

combination, namely, the normalized difference fluorescence index (NDFI), the difference fluorescence 289 

index (DFI) and the ratio fluorescence index (RFI) and found that using the NDFI at 437 and 537 nm, the 290 

maximum correlation between the corn aflatoxin concentration and the calculated index value could be 291 

achieved at -0.81, which constituted the first important step towards the development of a new aflatoxin 292 

screening method based on the simplified MSI system that is able to separate the contaminated product 293 

from the uncontaminated stream. The fluorescence peak shift phenomenon was also observed as 294 
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previously mentioned, with the mean fluorescence peak located at 467 and 481 nm for control and 295 

contaminated corn kernels when 20 µg/kg was used as the threshold, and 470 and 484 nm for control and 296 

contaminated corn kernels with 100 µg/kg as the threshold (Figure 2). Further, Yao et al. [63] also 297 

examined the capability of fluorescence HSI in distinguishing corn kernels artificially inoculated with 298 

toxigenic (AF13) and atoxigenic (AF38) strains of A. flavus. In this work, the authors first classified the 299 

infected corn kernels into two groups of “glowing” and “adjacent”, with the “glowing” group referring to 300 

the corn kernels that exhibited fluorescence identifiable by the human eye under UV illumination, and the 301 

“adjacent” group referring to those adjacent to the glowing fluorescent kernels. Although the linear 302 

discriminant analysis (LDA) results did not show considerable potential of the fluorescence spectra in 303 

distinguishing control (uninfected), “adjacent” and “glowing” corn kernels, it did well in identifying the 304 

corn kernels inoculated with toxigenic and atoxigenic fungal strains. Using germ and endosperm sides of 305 

“adjacent” kernels, the overall classification accuracy of 100% and 71.7% was achieved, and 71.7% and 306 

55.5% using the “glowing” kernels, respectively. Based on all the corn data, the LDA algorithm achieved 307 

the classification accuracy of 78.9% and 77.2% in grouping corn kernels with the aflatoxin threshold of 308 

20 µg/kg, and of 94.4% and 91.7% with the aflatoxin threshold of 100 µg/kg, when using the germ and 309 

endosperm side, respectively. As demonstrated from the results above, the germ side was found more 310 

useful in identifying both the infected strain and the aflatoxin contamination level of corn kernels using 311 

fluorescence spectra. Hruska et al. [64] from the same research group at MSU, examined the fluorescence 312 

spectra differences of aflatoxin produced by the naturally infected and artificially inoculated corn ears 313 

from the same field. Results of the study indicated that when all the spectral data across all sample ears 314 

were averaged, the potential differences between corn kernels from the naturally infected, artificially 315 

inoculated and control (healthy) ears were obscured, however, spectral analysis based on the 316 

contaminated “hot” pixels of hyperspectral images showed a distinct difference between the contaminated 317 

and control ears with fluorescence peaks centered at 501 and 478 nm, respectively. Both the artificially 318 

inoculated and naturally infected corn ears had fluorescence peaks at 501 nm, which validated the 319 
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usefulness of the achieved advancements in the fluorescence HSI technique for detection of aflatoxin 320 

from naturally infected corn ears in the field.  321 

In addition to aflatoxin detection in corn samples, studies have also been reported with aflatoxin 322 

contaminated peanuts, hazelnuts, pistachio nuts, wheat kernels, red chili pepper, et al. Chen et al. [66] 323 

reported observing the fluorescence phenomenon on peanut kernels with excitation at 365 nm. The peanut 324 

samples with skin were prepared by artificial spiking with A. flavus suspension and incubating for 325 

different time intervals, namely, 0, 12, 24, 36, 48 and 72 h. The authors found that the emission peak of 326 

aflatoxin-contaminated peanuts was around 450 nm, and a negative correlation existed between the 327 

fluorescence intensities and the aflatoxin contamination levels over the spectral range of 440~460 nm. 328 

The negative correlation obtained here is in accordance with that reported by Yao et al. [59] in their work 329 

with corn kernels. While the fluorescence peak location was somewhat different, the difference could be 330 

attributed to the fluorescence peak shift phenomenon resulting from the effect of different aflatoxin 331 

concentrations and background food matrices. Kalkan et al. [67] conducted an experiment using 332 

fluorescence MSI with the excitation wavelength of 365 nm to identify aflatoxin-contaminated hazelnuts, 333 

ground red chili pepper flakes, and fungi-infected hazelnuts. The samples were screened with 12 different 334 

filters, some of which were between 400-510 nm with 10 nm full width half maximum (FWHM) and 335 

others at 550 and 600 nm with 70 and 40 nm FWHM, respectively. By developing a local discriminant 336 

bases (LDB) -based feature extraction and selection algorithm for the analysis of multispectral data, the 337 

authors extracted the features which were able to achieve the highest classification accuracy from only 338 

two or three spectral bands, making the design of a simple, effective, and practical food inspection and 339 

sorting system possible. Based on the algorithm developed for the study, the classification accuracies of 340 

92.3% and 79.2% were obtained for hazelnuts and red chili peppers, respectively. By removing the 341 

hazelnuts/peppers that were classified as aflatoxin-contaminated, the aflatoxin concentrations were 342 

decreased from 608 to 0.84 µg/kg for the tested hazelnuts and from 38.26 to 22.85 µg/kg for the tested red 343 

chili peppers. The algorithm was also proven useful in classifying hazelnut kernels infected and 344 
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uninfected by fungi, and an accuracy of 95.7% was achieved. By removing the kernels identified as 345 

infected, the aflatoxin concentration of the tested hazelnut kernels was decreased from 608 to 0.7 µg/kg. 346 

Studies using fluorescence spectra to detect aflatoxin contamination in pistachio nuts are many. An 347 

early work was reported to use BGYF to identify aflatoxin-contaminated nuts from 46 lots of Iranian 348 

pistachio nuts and found that 7% of the pistachio shells exhibited BGYF and kernels from the fluorescent 349 

nuts contained 50% of the total aflatoxin contained in the samples [68]. Although this work does not 350 

conclude that aflatoxin is always present where BGYF exists, the results do show that the removal of 351 

pistachio nuts with fluorescing shells from a lot could significantly reduce the total concentration of 352 

aflatoxin. Farsaie et al. [69] conducted experiments aimed to clarify the fluorescence characteristics of 353 

pistachio nuts, and their results showed that, in addition to BGYF, there were at least three other 354 

categories of fluorescence evident when excited at 360 nm, which they named purple (P), normal (N), and 355 

bright-yellow (BY). An emission ratio of I490/I420 (where I490 and I420 are the fluorescence intensity at 490 356 

and 420 nm, respectively) was a practical method to separate the four categories of fluorescence. Based 357 

on these results, McClure and Farsaie [70] designed a dual-wavelength fluorescence photometer to 358 

measure the fluorescence of aflatoxin-contaminated pistachio nuts and subsequently developed an 359 

automatic electro-optical sorter to remove the BGYF nuts [71]. However, no report about the viability of 360 

this method at the commercial level has been published. Meanwhile, another study concluded that the 361 

analysis of pistachio nuts with fluorescent shells was not an appropriate means to find all kernels 362 

containing high concentrations of aflatoxin because of the observed non-specific nature of BGYF as a 363 

criterion for aflatoxin screening in pistachio shells [72]. Later, Hadavi [73] investigated the feasibility of 364 

using BGYF as a discriminating factor to identify the A. flavus-infected pistachio nuts and consequently 365 

potentially the aflatoxin-contaminated nuts, at harvest and post-harvest. Good relationships were found 366 

between the presence of BGYF and aflatoxin contamination in pistachio nuts at harvest, and samples with 367 

visible mold post-harvest. The mean aflatoxin concentration of the BGYF pistachio nuts collected from 368 

orchards was 2414.99 µg/kg, comparing to 9.86 µg/kg of the non-BGYF pistachio nuts. The author also 369 
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pointed out that in the samples where aflatoxin contamination took place after rehydration of dried nuts 370 

post-harvest, the contamination could not be characterized by BGYF because of the lack of enzymatic 371 

activity. More recently, Lunadei et al. [39] developed a fluorescence MSI system equipped with a filter 372 

wheel to collect the fluorescence images at 410, 440, 480, 520, 560, and 600 nm with the excitation 373 

wavelength of 365 nm to identify and screen aflatoxin-contaminated pistachio nuts and cashews. By 374 

performing the forward stepwise procedure with a tolerance of 0.01, the authors determined the optimum 375 

two wavelengths for BGYF detection, namely, 480 and 520 nm for pistachio nuts, and 440 and 600 nm 376 

for cashews. The results showed that the BGYF fluorescent pistachios nuts and cashews identified by 377 

their developed MSI system contained 92% and 82%, respectively, of the total nuts that were 378 

contaminated by aflatoxins.  379 

Except from the conventional fluorescence spectra, other types of fluorescence such as fluorescence 380 

fingerprint (FF), enhanced fluorescence have also been studied to detect aflatoxin contamination in 381 

different varieties of agricultural products. FF, which is also known as excitation-emission matrix (EEM), 382 

is a series of fluorescence emission spectra acquired at consecutive excitation wavelengths [74-75]. The 383 

FF method is highly sensitive compared with conventional fluorescence measurement because the FF 384 

method is capable of acquiring all the spectral data, which consists of three-dimensional information of 385 

excitation × emission × fluorescence intensities. Fujita et al. [76] reported a study using FF with the 386 

excitation and emission wavelengths between 200 and 800 nm to detect total aflatoxins (AFB1, AFB2, 387 

AFG1 and AFG2) in nutmeg extract. The contaminated nutmeg extract samples were artificially prepared 388 

by spiking with aflatoxin standard. Based on partial least squares regression (PLSR) modeling technique, 389 

significant correlation was observed between the actual and the predicted values, with the determination 390 

coefficient (RP
2) and standard error (SEP) of prediction set of 0.773 and 1.0 µg/L, respectively, 391 

demonstrating that FF could be a useful tool in quantitative determination of aflatoxin concentrations in 392 

food. Another method using enhanced fluorescence was reported to detect the AFB1 concentration in 393 

wheat kernels and pistachio nuts [77-78]. The method is based on the enhanced fluorescence of AFB1 by 394 
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β-cyclodextrin in 10% (w/w) methanol-water solution, thus it is a sample-destructive method. However, 395 

as the enhanced fluorescence spectra can achieve much more accurate results compared with conventional 396 

fluorescence spectra, it is also reviewed in this paper as a fluorescence-based alternative for aflatoxin 397 

detection in a rapid and accurate way. The determination of AFB1 in wheat kernels was accomplished by 398 

enhanced spectrofluorimetry in combination with second-order standard addition method (EF-SOSAM) 399 

[77]. In order to accurately determine the AFB1 content in wheat extracts, the adopted strategy combined 400 

the use of parallel factor analysis (PARAFAC) for extraction of the pure AFB1 signal and the standard 401 

addition method. The obtained results showed that the AFB1 values analyzed by EF-SOSAM and HPLC 402 

techniques were well correlated in the range 0-18 µg/kg, with RC over 0.99 and limit of detection (LOD) 403 

of 0.9 µg/kg. Additionally, the results indicated that the presence of AFG1 in wheat poses no serious 404 

interference in determining AFB1 content with their proposed method. The determination of AFB1 in 405 

pistachio nuts was conducted using both normal and synchronous fluorimetry in combination with several 406 

different multivariate calibration methods and derivative techniques [78]. Synchronous fluorescence 407 

spectrometry is a simple modification of the conventional fluorescence technique, and it can afford higher 408 

selectivity thanks to the narrowing of spectral bands and the simplification of spectra [79-80]. Eighteen 409 

combinational methods of fluorescence spectra type (normal and synchronous), modeling methods (MLR, 410 

PCR and PLSR) and derivative orders (0, 1 and 2) were tested and compared to find the best model for 411 

prediction of AFB1 in pistachio nuts. The authors found that the best result was obtained using a method 412 

based on 0-order derivative synchronous fluorescence spectra in combination with MLR, which produced 413 

the root mean square difference (RMSD) and relative error of prediction (REP) of 0.328 and 4.354%, 414 

respectively, indicating the usefulness of the developed method for quantitative determination of AFB1 in 415 

food. 416 

Even though the FS technique has gained great success in identifying aflatoxin-contaminated samples, 417 

it needs to be noted that controversial results were also presented in some studies. As early as 1989, 418 

Wilson [81] found that the aflatoxin-contaminated corn kernels did not always exhibit BGYF due to the 419 
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insufficient amount of peroxidase in kernels. Jacks [82] stated that certain types of fungi that do not 420 

produce aflatoxin may yield kojic acid in foods and may be misclassified as aflatoxin-contaminated by 421 

the BGYF test. Atas et al. [83] also argued that lack of the peroxidase enzyme may conceal the presence 422 

of aflatoxins due to the absence of BGYF, and thus BGYF itself could not directly indicate the actual 423 

presence of aflatoxin as it may result in false positives and negatives during the evaluation stage. 424 

3.2. Applications of NIRS 425 

3.2.1. Applications of NIRS in detection of aflatoxin contamination 426 

Over the last two decades, a considerable amount of studies have been reported employing the NIRS 427 

technique in either reflectance or transmittance mode to detect aflatoxin contamination in a wide variety 428 

of agricultural products, with most of them focusing on corn samples. To the best of our knowledge, 429 

Pearson et al. [84] reported the first results using NIRS to evaluate aflatoxin contamination in corn 430 

kernels where the contaminated samples were artificially prepared by wound-inoculation with A. flavus 431 

during the late milk to early dough stage of kernel maturity. Both the transmittance and reflectance 432 

spectra over the spectral range of 500-950 nm and 550-1700 nm were collected and applied to investigate 433 

their capabilities in distinguishing the aflatoxin contamination levels of single corn kernels. Based on both 434 

discriminant analysis (DA) and PLSR, qualitative models were established to classify the aflatoxin 435 

contamination of single corn kernels into three groups, namely, low (< 10 µg/kg), intermediate (10 to 100 436 

µg/kg) and high (> 100 µg/kg) groups. Overall, the obtained results showed that the classification 437 

accuracies were similar when using DA or PLSR, and the classification models established using the 438 

transmittance spectra yielded slightly better results than using reflectance. In detail, more than 95% of the 439 

corn kernels were classified correctly as containing either high (> 100 µg/kg) or low (< 10 µg/kg) levels 440 

of aflatoxin, while the classification accuracies for the intermediate kernels (10 to 100 µg/kg) were only 441 

about 25%. The authors also found that using reflectance spectra, the germ-down orientation (germ facing 442 

the sensor) resulted in better PLSR classification accuracies for all groups than the germ-up orientation, 443 

which is probably because fungus generally invades the germ part of corn kernel first and thus it could be 444 
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easier to detect aflatoxin contamination from that part. Later, the same research group at the Agricultural 445 

Research Service, United Stated Department of Agriculture (ARS, USDA) developed and tested a high-446 

speed dual-wavelength sorter for removing corn kernels contaminated with aflatoxin and fumonisin [85]. 447 

Based on the reflectance spectra of single kernels between 400 and 1700 nm, the absorbance band pair of 448 

750 and 1200 nm was determined as the optimum pair of optical filters by performing DA analysis [86]. 449 

Using these two wavelengths, the classification accuracy of > 99% could be achieved in a laboratory 450 

setting with corn kernels stationary using the aflatoxin threshold of 100 µg/kg. The performance of the 451 

developed sorter was also tested at high speed with corn kernels fed by a vibratory feeder at a rate of 30 452 

kg/hr/channel, and results showed that the reductions in aflatoxin averaged 82% with an initial level > 10 453 

µg/kg in corn kernels, and 38% with an initial level < 10 µg/kg. It should be noted that even though the 454 

simple dual-wavelength sorter developed in this study could not work well in identifying corn kernels 455 

with low concentrations of aflatoxin contamination, it could screen and remove the highly contaminated 456 

corn kernels effectively in a high-speed environment. Thus, the developed sorter could be a low-cost, 457 

high-throughput, useful tool for decreasing aflatoxin contamination for big lot samples.  458 

More recently, a similar study reported investigating the potential use of a low-cost, multispectral sorter 459 

in identifying aflatoxin- and fumonisin-contaminated Kenyan corn kernels [87]. The corn samples were 460 

collected from both, small-scale corn traders in open-air markets and inoculated maize field trials in 461 

Eastern Kenya. Based on the reflectance values at nine distinct wavelengths between 470 and 1550 nm 462 

and the classification algorithms of LDA, random forest (RF) and SVM, different qualitative models were 463 

developed using the thresholds of 1, 10 and 100 µg/kg for aflatoxin and 100, 1,000 and 10,000 µg/kg for 464 

fumonisin. The results showed that with the removal thresholds of >10 µg/kg for aflatoxin and >1000 465 

µg/kg for fumonisin, the optimum model achieved sensitivity and specificity of 77% and 83%, 466 

respectively. Specifically, the authors pointed out that the basic circuitry is relatively inexpensive (< 467 

US$100 in components), and the throughput is modest (20 kernels/s, theoretically around 25 kg/h), 468 

making it suitable for small-scale milling applications in developing countries such as Kenya. Lee et al. 469 
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[46] reported a study using Fourier transform near-infrared spectroscopy (FT-NIRS) to classify the 470 

aflatoxin contamination levels in ground corn samples. In this study, the FT-NIR reflectance spectra were 471 

recorded with assistance of an integrating sphere, in the region of 4000~9999 cm-1 (1000~2500 nm) from 472 

232 genetically and phenotypically diverse and naturally-contaminated and artificially-inoculated corn 473 

samples. Based on the pre-processed spectra by normalization, 1st derivative, 2nd derivative and 474 

deconvolution, the samples were grouped into 5 categories, namely, Group 1 for < 20 µg/kg (negative), 475 

Group 2 for 20-200 µg/kg, Group 3 for 300-450 µg/kg, Group 4 for 550-700 µg/kg, and Group 5 for > 476 

850 µg/kg. The highest classification accuracies of 96%, 96% and 72%, were achieved using the 477 

classification algorithms of LDA, k-nearest neighbor (KNN), and partial least squares discriminant 478 

analysis (PLS-DA), respectively, for the external validation set. Figure 3 shows the scatter plots created 479 

by the first two canonical discriminant scores derived from normalized spectra of FT-NIRS, and it can be 480 

seen that Group 1 can be clearly separated from the highly contaminated samples using only two 481 

canonical scores. Additionally, based on the quantitative modeling methods of MLR, PCR and PLSR, 482 

models were established to also quantify the aflatoxin contamination. The obtained results showed that 483 

MLR method performed best, achieving the RP
2 and root mean square error of prediction set (RMSEP) of 484 

0.876 and 106 µg/kg, respectively, using the deconvoluted spectra. 485 

In addition to corn samples, a few studies have also been reported on rice and spices. Zhang et al. [88] 486 

investigated the capability of FT-NIRS absorbance spectra over the spectral range of 10000~4000 cm-1 487 

(1000~2500 nm) in quantifying AFB1 contamination in paddy rice. Both naturally and artificially 488 

contaminated samples were covered in this study. Using the pre-processed spectra by smoothing, 489 

normalizing, baseline offset, standard normal variate (SNV), SNV-detrending (SNV-DT) and 490 

multiplicative scatter correction (MSC), different PLSR equations were established. Their modeling 491 

results were compared, and the best model achieved by the SNV-DT pre-processed spectra, with RP
2, SEP 492 

and residual prediction deviation (RPD) of 0.85, 3.21 µg/kg and 1.97, respectively. Additionally, the 493 

authors also calculated the sensitivity of such method, which achieved 0.004 µg/kg, suggesting the great 494 
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potential of FT-NIRS in detecting aflatoxin contamination. In another work, based on NIRS with 495 

assistance of a remote reflectance fiber-optic probe over the spectral range of 1100~2000 nm, Hernández-496 

Hierro et al. [89] quantified AFB1 and total aflatoxins contents in naturally-contaminated red paprika 497 

powder. Based on the pre-processed spectra by MSC, SNV, detrending (DT), SNV-DT, derivative 498 

transformation and smoothing, quantitative models were established using the modified PLSR algorithm. 499 

The best cross-validation results were achieved with standard error of cross validation (SECV) of 0.2 and 500 

0.4 µg/kg for AFB1 and total aflatoxins, respectively. External validation was also performed with few 501 

samples, which obtained RMSEP of 0.2 and 1.2 µg/kg for AFB1 and total aflatoxins, respectively. 502 

Tripathi and Mishra [45] also reported a study quantifying AFB1 content in red chili powder by using FT-503 

NIRS between 12800 and 3600 cm-1 (780~2500 nm), however contrary to the sample preparation 504 

methods employed in the studies above, the contaminated samples were prepared by spiking the aflatoxin 505 

free chili powder with the AFB1 standard in methanol. Using the pre-processed spectra by straight line 506 

subtraction (SLS), constant offset elimination (COE) and minimum maximum normalization (MMN), 507 

different PLSR quantitative models were established and their modeling results were compared. The 508 

obtained results showed that the best cross validation result was achieved by using the SLS pre-processed 509 

spectra between 6900.3-4998.8 and 4902.3-3999.8 cm-1, with root mean square error of cross validation 510 

(RMSECV) of 0.65%. The model performance was also verified by external validation, which achieved 511 

high correlation coefficient of prediction set (RP) of 0.967. 512 

In an effort to address aflatoxin detection in more than a single type of grain, Fernández-Ibañez et al. 513 

[47] exploited the possibility of establishing a general model for detecting aflatoxin in both corn and 514 

barley samples. Both grating visible and near-infrared spectroscopy (Vis/NIRS) (400-2500 nm) and FT-515 

NIRS (9000-4000 cm-1, i.e., 1112-2500 nm) instruments were employed in this work, and the 516 

contaminated samples were artificially induced by vaporization with water. The PLS discriminant 517 

equations were established with the pre-processed spectra by SNV-DT and derivatives. The best modeling 518 

results using the grating NIRS instrument were achieved with the determination coefficient of cross 519 
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validation (RCV
2) and SECV of 0.80 and 0.211, 0.85 and 0.176, 0.92 and 0.142, respectively, for 520 

individual corn, barley and corn + barley samples. The RCV
2 and SECV using the FT-NIRS instrument 521 

were obtained with 0.82 and 0.201, 0.84 and 0.183, 0.81 and 0.203, respectively, for individual corn, 522 

barley and corn + barley samples. This work showed that the results for the combined data set of corn + 523 

barley were comparable to those obtained for individual variety of grain, which suggested the possibility 524 

of establishing a general model for detection of aflatoxin contamination in cereal grains. 525 

3.2.2. Applications of NIRS in fungal contamination 526 

Although products infected by fungi do not signify a definite aflatoxin contamination, fungal infection 527 

can be an important indicator for potential hazards because of their aflatoxin-producing character. In 528 

addition, fungi-infected agricultural products are generally of low quality and may have undesirable traits, 529 

such as discoloration, reduced density, being more friable, etc. In this context, investigations using optical 530 

methods to distinguish and remove such fungi-infected samples are attracting more attentions. Around 531 

two decades ago, Hirano et al. [90] reported an early work using transmittance spectra between 500 and 532 

1500 nm to detect internally moldy peanut kernels. In this study, moldy peanut samples were artificially 533 

prepared by inoculating the spore suspension of A. flavus between the two seed leaves of the kernels. The 534 

authors found that the transmittance ratios of 700/1100 nm between the internally moldy and sound 535 

peanut kernels were quite different and thus, could be used to distinguish the internally moldy peanut 536 

kernels from the sound ones even though no obvious external symptoms were noted. Additionally, a 537 

strong linear relationship was found between the transmittance ratio of 700/1100 nm and the degree of 538 

triglyceride hydrolysis in peanuts, which revealed that the changes in the NIR transmittance spectra 539 

resulted mainly from the metabolization of nutrients in peanuts caused by fungal infection. Removal tests 540 

were also conducted in this work to verify the usefulness of the developed method in reducing aflatoxin 541 

contamination of peanuts. Pearson and Wicklow [86] investigated the feasibility of several non-542 

destructive techniques including reflectance Vis/NIRS (550~1770 nm) in identifying the fungus-infected 543 

corn kernels by A. flavus, A. niger, Diplodia maydis, Fusarium graminearum, Fusarium verticillioides 544 
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and Trichoderma viride. Samples in this study were collected from corn ears which were inoculated with 545 

one of the above-mentioned fungi in the field, containing a total of 1222 Pioneer hybrid P-3394 kernels 546 

and 1120 Farm Service hybrid FS-7111 kernels. Based on the visual characteristics of each corn kernel, 547 

the samples were first separated into three categories, namely, “extensive discoloration” of 50% or more 548 

of the kernel surface, “minor discoloration” of less than 50% of the kernel surface, and “asymptomatic”, 549 

referring to no visible kernel damage. Figure 4 shows the mean absorbance spectra of each category. This 550 

figure demonstrates obvious spectral differences among different groups, especially the differences 551 

between the “asymptomatic” group and the other two groups. Based on the stepwise discriminant analysis, 552 

3 feature wavelengths were determined in discriminating the asymptomatic and “extensive discoloration” 553 

samples, which were the wavelength combinations of 1690, 1695 and 1700 nm, 535, 1690 and 1700 nm, 554 

540, 780 and 1405 nm using the spectra collected from the “germ side only”, “endosperm side only” and 555 

“avg. of endosperm and germ sides”, respectively. Using these determined feature wavelengths, the 556 

classification accuracies of 97%, 98% and 98% were obtained in identifying the “asymptomatic” samples 557 

from the germ, endosperm and “avg. of endosperm and germ” sides, respectively, and correspondingly, 558 

91%, 90% and 85% for the “extensive discoloration” samples. The authors also found that using only the 559 

absorbance values at 715 and 965 nm, good results could also be achieved in identifying the “extensive 560 

discoloration” and uninfected control samples. What is more, the authors also tried to classify the infected 561 

corn kernels by their fungal species, and the results showed that Vis/NIR reflectance spectra combined 562 

with the neural network (NN) algorithm were able to classify the infected fungal species if using the 563 

“extensive discoloration” symptoms; however, if using the “minor discoloration” symptoms, the 564 

classification results were inferior. 565 

More recently, using the reflectance spectra between 904 and 1685 nm, Tallada et al. [91] conducted a 566 

study classifying the level of fungal damage severity on corn kernels (levels 1-4, referring to 567 

asymptomatic, mildly infected, moderately infected and severely infected, respectively) and also the 568 

infecting fungus. In total, 7 fungal species were investigated, namely, A. flavus, Bipolaris zeicola, 569 
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Diplodia maydis, Fusarium oxysporum, Penicillium oxalicum, Penicillium funiculosum and Trichoderma 570 

harzianum. Using the pre-processed spectra by mean centering and SNV, two classification algorithms of 571 

LDA and multi-layer perceptron artificial neural network (ANN) were employed to establish models, 572 

however, the results in classifying the level of severity from 1 to 4 were all inferior. Thus, the authors 573 

combined the infected samples at levels 1 and 2, 3 and 4 to represent the early stage and advanced stage 574 

infection, respectively. It was found that compared to the early stage infection (levels 1 and 2), it was 575 

generally much easier to discriminate the infected samples at an advanced stage (levels 3 and 4) from the 576 

uninfected ones. For instance, based on the LDA, an average classification accuracy of 85% was obtained 577 

in discriminating the infected samples at an advanced stage from the uninfected samples, versus an 578 

average of 77% for the early stage infection. In classifying the A. flavus-infected and the uninfected 579 

samples, the classification accuracies of 93%, 76% and 74% were obtained for the uninfected control, 580 

early stage and advanced stage groups, respectively, using LDA, and 81%, 86% and 68% using ANN. 581 

However, the results were not useful in identifying the A. flavus-infected corn kernels from those infected 582 

with other fungal species using either algorithms. Further, the NIR reflectance spectra over the spectral 583 

range of 1100~2500 nm was exploited to determine the ratio of infected corn (w/w) [92]. Both ground 584 

and whole corn kernels were used, and the infected samples were artificially prepared by inoculating with 585 

the A. flavus spore suspension and incubated at 37 °C for 4 days. Results showed that the PLSR models 586 

based on the ground corn performed better, with the best RPD of 5.36 and 1.74 obtained using the ground 587 

and whole corn kernels, respectively.  588 

In addition to corn samples, Sirisomboon et al. [93] examined the possibility of using the reflectance 589 

NIRS between 950 and 1650 nm to predict the percentage of fungi-infected rice. Different from the 590 

sample preparation method in Phetkaeo et al.’s work [92], the artificially infected rice samples were 591 

prepared by simply inoculating different concentrations of A. flavus spore suspension, in other words, no 592 

following incubation procedure was applied. Both total fungal infection and yellow-green Aspergillus 593 

infection were tested in this study, however, the best RP and SEP of PLSR models only achieved 0.71 and 594 
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28.07% in detecting total fungal infection, and 0.48 and 17.93% for yellow-green Aspergillus infection, 595 

respectively. Compared to Phetkaeo et al.’s work [92], the inferior results may be partly due to the 596 

relatively narrower spectral range used in the present study. On the other hand, the differences in sample 597 

preparation may be another reason for the discrepancy, as the incubation following inoculation could 598 

make the symptoms of fungal infection more apparent and easier to detect. Even though only a small 599 

number of artificially infected samples were covered in this work, the results revealed the difficulty in 600 

early detection of fungal infection. Liang et al. [94] reported a study focusing on shelled almond kernels, 601 

in which the reflectance spectra between 800 and 2500 nm were applied to discriminate infected and 602 

uninfected almonds, and the infecting fungus (A. flavus vs. A. parasiticus) as well. The samples were 603 

prepared by the following procedures: i) inoculating the spore suspension of A. flavus, A. parasiticus or 604 

sterile deionized water (uninfected control) separately, ii) incubated at 31 °C for 7 days and iii) washed 605 

with sterile deionized water containing 0.05% Tween-20 to remove conidia from the surface of infected 606 

kernels. Using the pre-processed absorbance spectra by 13-point (26 nm) Savitzky-Golay (SG) 2nd 607 

derivative filter, the backward elimination process was first performed to select the most important 608 

wavelengths, and then the canonical discriminant analysis (CDA) classifiers were developed to 609 

discriminate the infected and uninfected almonds. The best (lowest total classification error rate) and 610 

smallest (built based on the least number of wavelengths without a significantly inferior error rate) 611 

classifiers achieved the total classification error rates of 0.09% and 0.26%, respectively, using 34 and 22 612 

selected wavelengths. Figure 5 shows the mean absorbance spectra of the infected and uninfected almond 613 

kernels. It was found that the largest differences between them seemed to occur at the lipid absorbance 614 

bands (e.g. 1210, 1720 and 1760 nm). In identifying the infected fungus, the best and smallest canonical 615 

classifiers yielded the total classification error rates of 13.2% and 14.7% using 42 and 38 selected 616 

wavelengths, respectively. The wavebands related to lipids were similarly observed to contribute 617 

significantly more than did the other bands in discriminating the infecting fungus. Both A. flavus and A. 618 

parasiticus belong to Aspergillus section Flavi and are phylogenetically related, so the authors deduced 619 

that the main differences between these infected almond kernels result from the differences in the 620 
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metabolism and aflatoxin biosynthesis of A. flavus and A. parasiticus. Lipids are the most abundant 621 

compounds in almond kernels (49.93%), thus any changes caused by fungal invasion and metabolism 622 

could be represented in their spectra. However, in a different work, from the Vis/NIR reflectance spectra 623 

(400~1100 and 1100~2500 nm) of mycelia and spores of A. flavus and A. niger, Phetkaeo et al. [95] 624 

found the existing spectral differences between both fungi, and concluded that it was possible to identify 625 

Aspergillus spp. fungi from their Vis/NIR spectra. 626 

    What is more, Durmus et al. [96] reported a work on employing FT-NIRS (780-2500 nm) with 627 

assistance of a bifurcated fiber-optic probe to detect both surface-mold and aflatoxin contaminations in 628 

dried figs. The fig samples were classified as mold- and aflatoxin-positive and -negative based on the 629 

thresholds of 4 colony forming units per cm2 (CFU/cm2) and 4 µg/kg (the maximum allowed limit of 630 

aflatoxin in European Union (EU) countries), respectively. Using the normalized spectra, the forward 631 

feature selection (FFS) algorithm was first employed to select the most significant features, and then 632 

based on the determined features, 5 different classifiers including a linear discriminant classifier (LDC), a 633 

logistic linear classifier (LOGLC), a quadratic discriminant classifier (QDC), a KNN classifier and a 634 

Parzen classifier (PARZENC) were conducted in this work. The obtained results showed that both LDC 635 

and LOGLC classifiers performed excellently in identifying aflatoxin and surface-mold contaminations, 636 

with no errors occurring in any classifications. The authors also analyzed the correlation between the 637 

surface-mold and aflatoxin contamination, and found that 91 of the 98 mold-positive figs have more than 638 

4 µg/kg aflatoxin concentration (aflatoxin-positive), and 71 of the 74 mold-negative figs have aflatoxin 639 

lower than 4 µg/kg (aflatoxin-negative), which indicated a strong correlation between surface-mold and 640 

aflatoxin contaminations.  641 

3.3.  Applications of HSI technique  642 

3.3.1. Applications of HSI technique in aflatoxin contamination 643 

    Unlike the early applications of FS and NIRS in detection of aflatoxin contamination, the application of 644 

HSI for aflatoxin detection began relatively recently. Atas et al. [83] investigated the use of HSI between 645 
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400 and 720 nm (10 nm spectral bandwidth) to detect aflatoxin in naturally contaminated ground red chili 646 

pepper flakes, in which both halogen and UV lights were used for illumination. The feature vectors of 647 

energy values at individual spectral bands, images of consecutive spectral bands and quantized histogram 648 

matrix (QHM) were extracted first, and then different feature selection methods including hierarchical 649 

bottleneck backward elimination (HBBE), Guyon’s SVM-recursive feature elimination (SVM-RFE), 650 

classical Fisher discrimination power and principal component analysis (PCA) were performed to 651 

decrease the data dimensions. Based on the threshold of 10 µg/kg (the maximum allowed limit of 652 

aflatoxin for spices and herbs in EU countries), the classifiers of multilayer perceptrons (MLPs) and LDA 653 

were established separately using the selected features. The obtained results showed that among all the 654 

models developed, the best classification accuracy could be achieved with 83.26% under halogen 655 

illumination using the selected QHM features by HBBE method and the MLP classifier. 656 

Later, a number of studies were conducted using HSI to detect aflatoxin contamination in corn kernels. 657 

Wang et al. [97] first reported a study discriminating the AFB1 contamination levels on corn surface, in 658 

which the contaminated samples were artificially prepared by dropping different amounts of aflatoxin 659 

standard dissolved in methanol on corn surface to achieve 10, 20, 100 and 500 µg/kg contamination levels. 660 

After preforming the following procedures including extracting mean reflectance spectra from the region 661 

of interest (ROI) of each corn image, absorbance transformation, SNV pre-processing, PCA and stepwise 662 

factorial discriminant analysis (FDA) over the spectral range of 1000-2500 nm, an overall classification 663 

accuracy of 88% was obtained in the prediction set. In a follow-up study conducted by Wang et al. [98], 664 

similar data processing procedures were used over the spectral range of 400-1000 nm. Quite positive 665 

results, with an overall classification accuracy of 98%, were achieved in identifying the same AFB1 666 

contamination levels on corn surfaces. Both studies demonstrated the potential of HSI in detecting AFB1 667 

contamination on corn kernel surfaces. In subsequent studies by Wang et al. [99-100], a different sample 668 

preparation method was used. HSI over the range of 1000-2500 nm was applied to detect AFB1 669 

contamination from artificially inoculated corn with A. flavus spore suspension at an early dough stage in 670 
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the field. Wang et al. [99] found that the first two principal components (PCs) extracted from the 671 

secondary PCA, namely PC1 and PC2, mainly reflected the common features of corn kernels regardless 672 

whether they were healthy or fungus-infected, therefore, only the PCs from PC3 to PC7 were used as the 673 

inputs for the spectral angle mapper (SAM) classifier to classify the healthy and contaminated corn 674 

kernels. With two commercial corn hybrids of ‘BH8740VTTP’ and ‘BH9051RR’ included in this work, 675 

the overall classification accuracies over 92.3% were achieved using the threshold of 20 µg/kg. Wang et 676 

al. [100] also reported another study in which four commercial corn hybrids of ‘BH8740VTTP’, 677 

‘DKC697’, ‘P31G98’ and ‘BH9051RR’ were used. Based on the five PCs from PC4 to PC8, the SAM 678 

classifiers yielded classification accuracies of 96.15% and 50%, 80% and 70%, 82.61% and 85.71%, 679 

83.33% and 66.67% in identifying the AFB1<10 µg/kg or AFB1≥100 µg/kg kernels and the 10 µg/kg 680 

≤AFB1<100 µg/kg kernels for ‘BH8740VTTP’, ‘DKC697’, ‘P31G98’ and ‘BH9051RR’ corn hybrids, 681 

respectively when germ sides were placed up (towards the sensor). The corresponding classification 682 

accuracies were 96.15% and 75%, 85% and 70%, 91.3% and 71.42%, 88.88% and 50% when germ sides 683 

were placed down. It could be observed that superior model performance could be generally obtained in 684 

identifying the AFB1<10 µg/kg or AFB1≥100 µg/kg corn kernels compared to those with 10 µg/kg 685 

≤AFB1<100 µg/kg. Also, no significant differences of model performance were observed between the 686 

germs-up and germs-down placement of corn kernels.  687 

In another study by Vis/NIR HSI over the spectral range of 400-900 nm in which the contaminated 688 

samples were prepared by inoculating the toxigenic A. flavus suspension artificially at an early dough/late 689 

milk stage of kernel development, Zhu et al. [101] obtained 90% overall accuracies from the germ side 690 

when taking 20 and 100 µg/kg as thresholds, separately. It was also found in this work that the gradient of 691 

the slope of the reflectance spectra over the range of 700~800 nm increased as the aflatoxin 692 

contamination level increased. When the band ratio image of 800 to 700 nm was calculated and used to 693 

identify the aflatoxin contaminated kernels, an overall identification accuracy of 80% was achieved when 694 

using 100 µg/kg as the threshold. Further, Zhu et al. [65] reported integration of fluorescence and 695 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

29 
 

reflectance HSI under both UV and halogen illumination, to detect aflatoxin-contaminated corn. Both 696 

least squares SVM (LS-SVM) and KNN classifiers were employed in this work, and the results showed 697 

that individual fluorescence and reflectance image data achieved generally similar classification 698 

accuracies. Using the images collected from the germ sides, the integrated form of fluorescence and 699 

reflectance was able to produce better results than using only one type of spectra (fluorescence or 700 

reflectance), and particularly, the true positive rates (TPRs) could be improved conspicuously after the 701 

integration. The best overall prediction accuracy of 95.33% was obtained using the integrated information 702 

from the germ side of corn kernels based on the LS-SVM model and the threshold of 100 µg/kg. 703 

Moreover, the authors calculated the mean aflatoxin concentration of the prediction samples and found it 704 

to be reduced from 2662.01 µg/kg to 64.04, 87.33, and 7.59 µg/kg after removing contaminated kernels 705 

identified by fluorescence, reflectance, and integrating both, respectively, from the germ side. More 706 

recently, Chu et al. [102] reported a study using NIR HSI over the spectral range of 1000-2500 nm to 707 

detect AFB1 contamination in corn kernels which were artificially infected by inoculating A. flavus 708 

suspension in the field. PCA analysis was also performed to decrease the data dimensions in this work, 709 

however, unlike the above-mentioned studies by Wang et al. [99-100] where the first several PCs were 710 

avoided for developing classifiers, the authors established the SVM classification models using the first 711 

five PCs, and obtained an overall classification accuracy of 82.50% when discriminating the corn kernels 712 

into three groups of <20 µg/kg, 20-100 µg/kg and >100 µg/kg. In addition, the authors also observed that 713 

a general correlation existed between the actual AFB1 content of corn kernels and the first several PCs, 714 

and the RC
2 and RP

2 achieved with 0.77 and 0.70, respectively, with large standard deviations (SDs). 715 

Kandpal et al. [103] reported a study employing short-wave infrared (SWIR) HSI (1100-1700 nm) to 716 

discriminate different AFB1 contamination levels on corn kernel surfaces. The contaminated samples 717 

were artificially prepared by emerging healthy kernels into four concentrations of AFB1 solutions (10, 718 

100, 500, and 1000 µg/kg) diluted with 100% acetonitrile for ~12 h. PLS-DA models were developed to 719 

categorize control and different levels of contaminated kernels and the overall classification accuracies of 720 

90.7%, 92.3% and 96.9% were yielded for yellow, white and purple corns, respectively. By applying the 721 
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beta coefficient of the PLS-DA model pixel-wise to the hyperspectral images, the final contamination 722 

maps of AFB1 for different corn varieties were generated (Figure 6), providing direct visualization for 723 

AFB1 contamination of corn kernels that could not be obtained from conventional techniques. However, it 724 

should be noted that the concentrations of 10, 100, 500, and 1000 µg/kg were not the concentrations of 725 

AFB1 on the corn kernels, and the actual concentrations on corn kernels were unknown in this work. 726 

3.3.2. Applications of HSI technique in fungal contamination 727 

Yao et al. [104] reported an early work investigating the feasibility of HSI technique between 400 and 728 

1000 nm to differentiate five fungal species which included A. flavus, A. parasiticus, Penicillium 729 

chrysogenum, Fusarium moniliforme (verticillioides) and Trichoderma viride. Two experiments were 730 

conducted, namely, each fungus was inoculated and cultured in an individual Petri dish in experiment A, 731 

and all five fungal strains were inoculated and cultured at different positions in a single dish in 732 

experiment B. All the images were acquired at day 5 of fungal growth. Based on the classification 733 

algorithm of ML, an overall fungal classification accuracy of 97.7% was achieved in experiment A, while 734 

in experiment B the accuracy dropped to 71.5%, possibly due to the rapid growth of Trichoderma viride 735 

in experiment B which contaminated the spectral reflectance features of the other four isolates. 736 

Additionally, 10 optimum wavebands were determined for classification of the five fungal species using 737 

stepwise discriminant analysis, namely, 450, 458, 478, 509, 541, 572, 616, 670, 743 and 864 nm. Among 738 

them, the wavelengths of 743, 458 and 541 nm were the most useful, and using them, the five fungal 739 

species could also be separated with an acceptable accuracy. Additional work was conducted by Jin et al. 740 

[105] in which the HSI system illuminated by both halogen and UV (excitation wavelength range: 180-741 

400 nm) lights was employed to classify toxigenic and atoxigenic strains of A. flavus over the spectral 742 

range of 400-1000 nm. The Aspergillus strains of aflatoxin-producing AF13 and three non-toxin 743 

producing AF2038, AF283 and AF38 were included in this study, and the strains were all cultured on 744 

potato dextrose agar (PDA) medium for 7 days before imaging. After performing PCA for data 745 

decorrelation and dimensionality reduction, and GA for selection of PCs based on Bhattacharya distance, 746 
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SVM classifiers were developed for classification of different Aspergillus strains. The results showed that 747 

under the halogen light source, the average accuracy rates of 83% and 74% were obtained in classifying 748 

toxigenic fungus pixels and the atoxigenic fungus pixels, respectively; while under the UV light source, 749 

67% and 85% classification accuracies were attained correspondingly. The pair-wise classification 750 

accuracies between toxigenic AF13 and each atoxigenic fungal species (AF38, AF283 and AF2038) were 751 

80%, 91% and 95%, respectively, under halogen light sources, and 75%, 97% and 99% under UV lights, 752 

respectively. 753 

Both studies mentioned above demonstrated the capability of HSI technique in classifying fungal 754 

species and Aspergillus strains, and in this context, studies on early detection of fungal infection in 755 

different varieties of agricultural products were carried out and promising results were demonstrated. 756 

Fiore et al. [106] reported a study using the Vis/NIR HSI technique (400-1000 nm) to detect fungal 757 

infection of corn kernels. The authors first examined the system’s feasibility in identifying fungal species 758 

inoculated with conidial suspensions on PDA medium in Petri dishes and incubated for 7 days. It was 759 

found that each species showed an increasing absorbance spectral signal during the growth. To evaluate 760 

the changes induced by fungal contamination on corn kernels in spectral profiles, artificial contamination 761 

assays with different fungal species (A. flavus 3357, A. parasiticus 2999, A. niger 7096 or Fusarium 762 

graminearum 126) were carried out with 12 commercial maize hybrids (Z. mays L.). The infected corn 763 

kernels were incubated for a total of 10 days, and were taken out for imaging on day1, day 2, day 3, day 4, 764 

day 7 and day 10. By performing PCA analysis, the four wavelengths of 410, 470, 535 and 945 nm were 765 

selected as taking the highest factor loadings. The authors found that for corn kernels inoculated with A. 766 

flavus 3357, the Fisher's least significant difference analysis of spectra between the categories of 767 

uninoculated (control) and day-2 infected corn samples already showed significant differences at 410 or 768 

470 nm, which demonstrated the possibility of using the Vis/NIR HSI technique in discriminating fungus-769 

infected corn kernels from uninfected kernels. Thus, the Vis/NIR HSI could provide an alternative 770 

technique for early detection of fungal infection of corn samples. More recently, another work with corn 771 
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samples was carried out by Zhao et al. [107] in which the NIR HSI technique over the spectral range of 772 

921-2529 nm was utilized to identify fungus-infected corn kernels. The infected corn kernels were 773 

artificially infected with 106 spores/mL of A. parasiticus suspension, and incubated at 30 °C for 1-7 days. 774 

Mean reflectance spectra were first extracted from the ROIs, and different spectral pre-processing 775 

methods including SG smoothing, moving average smoothing (MAS), normalization, SNV and MSC 776 

were performed on the extracted spectra individually or in combination. The performance of different 777 

spectral pre-processing methods was compared based on the yielded SVM classification results. The 778 

obtained results showed that the spectral pre-processing method of “MAS+SNV” performed best when 779 

categorizing the kernels into four groups of control, day 1-day 2, day 3-day 4 and day 5-day 7. Based on 780 

that, the overall classification accuracies of 91.67% and 84.38% were achieved with all germ-up kernels 781 

(germs towards camera) and mixed germ-up (50%) and germ-down (50%) kernels, respectively. 782 

In addition to corn samples, studies using the HSI technique to detect fungal infection have also been 783 

reported with date fruit, pistachio nuts, pulses and peanuts. Teena et al. [108] published a study 784 

employing NIR HSI over the region of 960-1700 nm to classify fungus-infected date fruit. In this work, 785 

the date fruit samples were treated as three groups: untreated control (UC), sterile control (SC) (surface 786 

sterilized, rinsed and dried) and inoculated samples (IS) (surface sterilized, rinsed, dried and inoculated 787 

with A. flavus suspension), and all the samples were imaged every 48 h after inoculation for a total of 10 788 

days using an area-scan HSI system. By performing PCA, the top four most significant wavelengths 789 

corresponding to the highest factor loadings of the first PC, namely, 1120, 1300, 1610 and 1650 nm were 790 

first selected and then a total of 64 features (16 features from each selected wavelength) were extracted 791 

and applied to build the LDA and quadratic discriminant analysis (QDA) classifiers. The classification 792 

accuracies for IS were compared with UC and SC separately using six-class model (control, infected day 793 

2, day 4, day 6, day 8 and day 10), two-class model (control vs infected (all stages of infection together)) 794 

and a pair-wise model (control vs each stage of infection). The mean accuracy (LDA and QDA) for 795 

discriminating the IS samples from the SC samples was 91.5%, 91.0% and 99.0% using the six-class, 796 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

33 
 

two-class and pair-wise model, respectively. Similarly, the accuracy was 92.4%, 100.0% and 99.6% when 797 

identifying the IS samples from the UC samples using the six-class model, two-class model and pairwise-798 

model, respectively. Another study reported classifying pistachio kernels infected by two different 799 

isolates of A. flavus, KK11 and R5, which are aflatoxin-producing and non-aflatoxin-producing fungal 800 

strains, respectively [109]. The infected samples were imaged every 24 h after inoculation for a total of 7 801 

days by HSI over the spectral range of 900-1700 nm. Both the LDA and QDA classifiers were established 802 

in this work and their obtained results showed that the QDA performed better than the LDA. The QDA 803 

model could yield 100% classification accuracy in distinguishing healthy (control) samples from KK11 or 804 

R5 infected samples at all stages, while the classification accuracy dropped to 94.4% when considering 805 

infected fungal species. More recently, Karuppiah et al. [110] reported a work on the detection of fungal 806 

infection in five different pulses using NIR HSI between 900 and 1700 nm. The five pulses of chick peas, 807 

green peas, lentils, pinto beans and kidney beans were artificially infected with A. flavus and Penicillium 808 

commune by spraying with fungus-inoculated water, and the images of healthy and fungal-infected 809 

kernels were acquired at 2-week intervals (0, 2, 4, 6, 8 and 10 weeks from artificial inoculation). Both the 810 

LDA and QDA classifiers were established in six-way (healthy vs the five different stages of infection) 811 

and two-way (healthy vs every stage of infection) models, and the results showed that the LDA classifier 812 

could identify both types of fungal infections with 90-94% accuracy when using the six-way model, and 813 

with 98-100% accuracy when using the two-way models for all five types of pulses, The QDA classifier 814 

also showed promising results as it gave 85-90% accuracy for the six-way model and 96-100% accuracy 815 

for the two-way model. Also, the authors identified significant wavelengths from the first and second PC 816 

factor loadings for different types of pulses infected by A. flavus and Penicillium commune in this study. 817 

Additionally, Pearson and Wicklow [86] also tested the capability of MSI in transmittance mode in 818 

identifying the fungus-infected corn kernels with “extensive discoloration” symptoms from asymptomatic 819 

kernels. They used 11 pass bands of the interference filters which were centered at 780, 830, 870, 880, 820 

890, 905, 920, 930, 960, 980 and 1020 nm with a 10-nm full width in this work, and their results showed 821 
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that using 3 determined features determined by stepwise discriminant analysis, the classification 822 

accuracies of 93% and 90% could be achieved for asymptomatic and “extensive discoloration” groups, 823 

respectively. The 3 selected features were % 780 nm pixels < 112, % 920 nm pixels < 208, and % 1020 824 

nm pixels < 128. 825 

4. Conclusions and future prospects 826 

This review summarized the recent research progress of three important optical techniques, namely FS, 827 

NIRS and HSI techniques in rapid and non-destructive detection of aflatoxin contamination and fungal 828 

infection in a wide variety of agricultural products, and promising results from the reported studies have 829 

demonstrated the capabilities of such optical-based methods. Depending on their detection principles and 830 

hardware components, each optical technique has its own characteristic properties in detecting aflatoxin 831 

and fungal contaminations. In detail, due to the specific occurrence of fluorescence phenomenon, FS can 832 

show high sensitivity and specificity when detecting aflatoxin contamination compared with the other two 833 

optical techniques. However, the background fluorescent elements from the tested sample can often affect 834 

the obtained aflatoxin fluorescence spectra, resulting in mixed wide or shifted fluorescence peaks. As a 835 

result, it seems more important to employ suitable chemometric techniques for handling fluorescence 836 

spectral data in order to obtain accurate models for detecting aflatoxins. NIRS, as a classical optical 837 

method, has shown great capabilities in detection of both aflatoxin contamination and fungal infection in 838 

different varieties of agricultural products, and some researchers even developed an automatic sorter for 839 

removing high concentrations of aflatoxin-contaminated corn kernels based on this technique. The 840 

significant reductions in average aflatoxin concentration of entire lots using NIRS technique have been 841 

verified in several studies. However, due to its nature of “point” detection and the possible inhomogeneity 842 

of aflatoxin and fungal contamination on different commodities, the accuracy of NIRS may be limited on 843 

detection of the inhomogeneous distribution of the contaminations. Thus, multi-point detection may be 844 

required for NIRS to achieve a better prediction of the overall contamination level of the test sample. In 845 

addition, it was observed from the reported studies that most of the work on aflatoxin detection using 846 
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NIRS was based on the sample preparation method of natural fungal infection or artificial inoculation of 847 

aflatoxigenic fungus, which therefore involve the processes of fungal growth and metabolic activities that 848 

may cause interior and/or external changes of the tested samples. Therefore, the underlying principle of 849 

such detections using NIRS still needs to be investigated. Other than the spectroscopic methods which are 850 

generally considered to be based on point-detection, HSI fuses the merits of traditional imaging and 851 

spectroscopy techniques, and thus enables the mapping of contaminations within the tested sample, which 852 

is especially useful for the uneven distribution of contaminants, such as aflatoxin. However, the HSI still 853 

remains an expensive technique, and it is still far from introducing industrial HSI sensor to applications in 854 

the automatic sorting lines. It appears that due to the high dimensionality of data and time constraints for 855 

image acquisition and subsequent image analyses when using the HSI technique, it would be more 856 

practical to seek the most sensitive wavebands so that MSI systems can be built. Development of more 857 

cost-effective and user-friendly MSI instrument appears to be the logical trend for real-time applications 858 

of HSI. 859 

It is also apparent from this review that generally low levels of aflatoxin contamination and early stages 860 

of fungal infection may not be accurately detected, endeavors are still needed to improve it in the future. 861 

The substantial advancement of hardware and software of the instrumental systems may provide 862 

improved performance through increased efficiency of the detection system. Further, the development of 863 

novel chemometric techniques including extracting meaningful and relevant information from the 864 

overlapped and superimposed spectra of complex food matrices may open a new practical way for 865 

detection of aflatoxin contamination in agricultural products. The information fusion of different 866 

techniques can also be a promising way for higher predictive accuracy. Moreover, developments that 867 

make the instrument compact, and therefore portable, and provide a decent signal-to-noise ratio (SNR), 868 

will increase the applicability of the optical instruments for on-site analysis of aflatoxin and fungal 869 

contaminations of different commodities. With the development of optical hardware and chemometrics, 870 
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the optical-based method will become an alternative tool for the detection of aflatoxin and fungal 871 

contamination in agricultural products to ensure food and feed safety. 872 

Acknowledgements 873 

    The authors gratefully acknowledge the financial support of the USDA cooperative agreement no. 58-874 

6435-3-0121, the U. S. Agency for International Development via the Peanut Mycotoxin Innovation 875 

Laboratory at University of Georgia (Subaward No. RC710-059/4942206), and Mississippi State 876 

University Special Research Initiative Program. 877 

References 878 

[1] IARC, Chemical agents and related occupations, IARC Monographs on the Evaluation of 879 

Carcinogenic Risks to Humans,100F (2012) 1-599. 880 

[2] E.G. Lizárraga-Paulín, E. Moreno-Martínez, S.P. Miranda-Castro, Aflatoxins and their impact on 881 

human and animal health: an emerging problem, in: R.G. Guevara-González (Ed.) Aflatoxins - 882 

Biochemistry and Molecular Biology, InTech, 2011, pp. 255-282. 883 

[3] J.W. Bennett, D. Bhatnagar, P.K. Chang, The molecular genetics of aflatoxin biosynthesis, in: K.A. 884 

Powell, A. Renwick, J.F. Peberdy (Eds.), The Genus Aspergillus, Plenum Press, New York, 1994, 885 

pp. 51-58. 886 

[4] S. Brechbühler, G. Büchi, G. Milne, The absolute configuration of the aflatoxins, The Journal of 887 

Organic Chemistry 32 (1967) 2641-2642. 888 

[5] G. Büchi, D.M. Foulkes, M. Kuromo, G.F. Mitchell, R.S. Schneider, The total synthesis of racemic 889 

aflatoxin B1, Journal of the American Chemical Society 89 (1967) 6745-6753. 890 

[6] J.A. DiPaolo, J. Elis, H. Erwin, Teratogenic Response by Hamsters, Rats and Mice to Aflatoxin B1, 891 

Nature 215 (1967) 638-639. 892 

[7] M.E. Alpert, M.S.R. Hutt, G.N. Wogan, C.S. Davidson, Association between aflatoxin content of 893 

food and hepatoma frequency in Uganda, Cancer 28 (1971) 253-260. 894 

[8] M. Peraica, B. Radic, A. Lucic, M. Pavlovic, Toxic effects of mycotoxins in humans, Bull, World 895 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

37 
 

Health Organ. 77 (1999) 754-766. 896 

[9] H.S. Hussein, J.M. Brasel, Toxicity, metabolism, and impact of mycotoxins on humans and animals, 897 

Toxicology 167 (2001) 101-134. 898 

[10] IARC, Some traditional herbal medicines, some mycotoxins, naphthalene and styrene, IARC 899 

Monogr Eval Carcinog Risks Hum 82 (2002) 1-556. 900 

[11] IARC, Some naturally occurring substances: food items and constituents, heterocyclic aromatic 901 

amines and mycotoxins, IARC Monographs on the evaluation of carcinogenic risks to humans 56 902 

(1993) 1-599. 903 

[12] R.A. Squire, Ranking animal carcinogens: a proposed regulatory approach. Science 214 (1981) 877-904 

880. 905 

[13] C.N. Ezekiel, M. Sulyok, D.A. Babalola, B. Warth, V.C. Ezekiel, R. Krska, Incidence and consumer 906 

awareness of toxigenic Aspergillus section Flavi and aflatoxin B1 in peanut cake from Nigeria, Food 907 

Control 30 (2013) 596-601. 908 

[14] C.P. Wild, Y.Y. Gong, Mycotoxins and human disease: A largely ignored global health issue, 909 

Carcinogenesis 31 (2010) 71-82. 910 

[15] F. Wu, C. Narrod, M. Tiongco, Y. Liu, The health economics of aflatoxin: Global burden of disease, 911 

International Food Policy Research Institute (IFPRI). http://www.ifpri.org/publication/health-912 

economics-aflatoxin, 2011(accessed 17.04.20). 913 

[16] J.I. Pitt, Toxigenic fungi and mycotoxins, British Medical Bulletin 56 (2000) 184-192. 914 

[17] J. Richard, G.A. Payne, Mycotoxins: Risk in Plant, Animal, and Human Systems, CAST Report 139, 915 

CAST, Ames, Iowa, 2003. 916 

[18] P. Vardon, C. McLaughlin, C. Nardinelli, Potential economic costs of mycotoxins in the United 917 

States, in: J. Richard, G.A. Payne, (eds.) Mycotoxins: Risks in Plant, Animal, and Human Systems, 918 

CAST Task Force Report No. 139, CAST, Ames, Iowa, 2003, pp. 136-142. 919 

[19] J.M. Wagacha, J.W. Muthomi, Mycotoxin problem in Africa: current status, implications to food 920 

safety and health and possible management strategies, International Journal of Food Microbiology 921 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

38 
 

124 (2008) 1-12. 922 

[20] N.W. Turner, S. Subrahmanyam, S.A. Piletsky, Analytical methods for determination of 923 

mycotoxins: A review, Analytica Chimica Acta 632 (2009) 168-180.  924 

[21] A. Rahmani, S. Jinap, F. Soleimany, Qualitative and quantitative analysis of mycotoxins, 925 

Comprehensive Reviews in Food Science and Food Safety 8 (2009) 202-251. 926 

[22] L. Xie, M. Chen, Y. Ying, Development of methods for determination of aflatoxins, Critical 927 

Reviews in Food Science and Nutrition 56 (2016) 2642-2664. 928 

[23] C. Maragos, Fluorescence polarization immunoassay of mycotoxins: a review, Toxins 1 (2009) 196-929 

207. 930 

[24] E. Matabaro, N. Ishimwe, E. Uwimbabazi, B.H. Lee, Current immunoassay methods for the rapid 931 

detection of aflatoxin in milk and dairy products, Comprehensive Reviews in Food Science and 932 

Food Safety 16 (2017) 808-820. 933 

[25] ISO 16050:2003, Foodstuffs -- Determination of aflatoxin B1, and the total content of aflatoxins B1, 934 

B2, G1 and G2 in cereals, nuts and derived products -- High-performance liquid chromatographic 935 

method. https://www.iso.org/standard/29628.html, 2017 (accessed 06.12.17). 936 

[26] R.A. Samson, E.S. Hoekstra, J.C. Frisvad, Introduction to food borne fungi, 7th ed., Centraalbureau 937 

voor Schimmelcucutures (CBS), Netherlands, 2004. 938 

[27] R.A. Samson, S.B. Hong, J.C. Frisvad, Old and new concepts of species differentiation in 939 

Aspergillus, Medical Mycology 44 (2006) SI33-SI48. 940 

[28] J.I. Pitt, A.D. Hocking, Fungi and food spoilage, 3rd ed., Springer, New York, 2009. 941 

[29] S.D. Shackelford, T.L. Wheeler, M. Koohmaraie, Tenderness classification of beef: II. Design and 942 

analysis of a system to measure beef longissimus shear force under commercial processing 943 

conditions, Journal of Animal Science 77 (1999) 1474-1481. 944 

[30] D.J. Vote, K.E. Belk, J.D. Tatum, J.A. Scanga, G.C. Smith, Online prediction of beef tenderness 945 

using a computer vision system equipped with a BeefCam module, Journal of Animal Science 81 946 

(2003) 457-465.  947 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

39 
 

[31] G.M. Strasburg, R.D. Ludescher, Theory and applications of fluorescence spectroscopy in food 948 

research, Trends in Food Science & Technology 6 (1995) 69-75. 949 

[32] L. Lenhardt, R. Bro, I. Zeković, T. Dramićanin, M.D. Dramićanin, Fluorescence spectroscopy 950 

coupled with PARAFAC and PLSDA for characterization and classification of honey, Food 951 

Chemistry 175 (2015) 284-291.   952 

[33] R. Karoui, C. Blecker, Fluorescence spectroscopy measurement for quality assessment of food 953 

system-a review, Food Bioprocess Technol. 4 (2011) 364-386. 954 

[34] M. Zude, Optical methods for monitoring fresh and processed food-Basics and applications for a 955 

better understanding of non-destructive sensing, Taylor & Francis, Boca Raton, 2008. 956 

[35] D. Reynolds, The Principles of Fluorescence, in: P. Coble, J. Lead, A. Baker, D. Reynolds, R. 957 

Spencer (Eds.), Aquatic Organic Matter Fluorescence (Cambridge Environmental Chemistry Series), 958 

Cambridge University Press, Cambridge, 2014, pp. 3-34. 959 

[36] P.B. Marsh, K. Bollenbacher, J.P. San Antonio, G.V. Merola, Observation on certain fluorescent 960 

spots in raw cotton associated with the growth of microorganisms, Tex. Rec. Jour. 25 (1955) 1007-961 

1016. 962 

[37] P.B. Marsh, M.E. Simpson, R.J. Ferretti, T.C. Campbell, J. Donoso, The relation of aflatoxins in 963 

cotton seeds at harvest to fluorescence in the fiber, J. Agric. Food Chem. 17 (1969) 462-467. 964 

[38] R.J. Cole, R.H. Cox, The Aflatoxins, in: Handbook of toxic fungal metabolites, Academic Press, 965 

Harahan, 1981, pp. 1-66. 966 

[39] L. Lunadei, L. Ruiz-Garcia, L. Bodria, R. Guidetti, Image-based screening for the identification of 967 

bright greenish yellow fluorescence on pistachio nuts and cashews, Food Bioprocess Technol. 6 968 

(2013) 1261-1268. 969 

[40] D.A. Burns, E.W. Ciurczak, Handbook of Near-infrared Analysis, Revised and Expanded, 2nd ed., 970 

Marcel Dekker, Inc., New York, 2001. 971 

[41] B.G. Osborne, T. Fearn, P.T. Hindle, Practical NIR spectroscopy with applications in food and 972 

beverage analysis, 2nd ed., Longman Scientific and Technical, Singapore, 1993. 973 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

40 
 

[42] D. Wu, D.-W. Sun, Advanced applications of hyperspectral imaging technology for food quality 974 

and safety analysis and assessment: A review-Part I: Fundamentals, Innov. Food Sci. Emerg. 975 

Technol. 19 (2013) 1-14. 976 

[43] V. Baeten, P. Dardenne, Spectroscopy: developments in instrumentation and analysis, Grasas y 977 

Aceites 53 (2002) 45-63. 978 

[44] W.F. McClure, Review: 204 years of near infrared technology: 1800-2003, Journal of Near Infrared 979 

Spectroscopy 11 (2003) 487-518. 980 

[45] S. Tripathi, H.N. Mishra, A rapid FT-NIR method for estimation of aflatoxin B1 in red chili 981 

powder, Food Control 20 (2009) 840-846. 982 

[46] K.-M. Lee, J. Davis, T.J. Herrman, S.C. Murray, Y. Deng, An empirical evaluation of three 983 

vibrational spectroscopic methods for detection of aflatoxins in maize, Food Chemistry 173 (2015) 984 

629-639. 985 

[47] V. Fernández-Ibañez, A. Soldado, A. Martínez-Fernández, B. de la. Roza-Delgado, Application of 986 

near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical 987 

quality assessment, Food Chemistry 113 (2009) 629-634.    988 

[48] A.F.H. Goetz, G. Vane, J.E. Solomon, B.N. Rock, Imaging spectroscopy for earth remote sensing, 989 

Science 228 (1985) 1147-1153. 990 

[49] P. Martinsen, P. Schaare, M. Andrews, A versatile near infrared imaging spectrometer, J. Near 991 

Infrared Spectrosc. 7 (1999) 17-25. 992 

[50] L.J. Denes, M. Gottlieb, B. Kaminsky, Acousto-optic tunable filters in imaging applications, Opt 993 

Eng. 37 (1997) 1262-1267. 994 

[51] N. Gat, Real-time multi- and hyper-spectral imaging for remote sensing and machine vision: An 995 

overview. ASAE Paper No. 98-3027, ASAE paper, St. Joseph, MI, 1998. 996 

[52] O.L. Shotwell, M.L. Goulden, C.W. Hesseltine, Aflatoxin contamination: Associated with foreign 997 

material and characteristic fluorescences in damaged corn kernels, Cereal Chem. 49 (1972) 458-998 

465. 999 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

41 
 

[53] O.L. Shotwell, M.L. Goulden, C.W. Hesseltine, Aflatoxin: Distribution in contaminated corn, 1000 

Cereal Chem. 51 (1974) 492-499. 1001 

[54] D.I. Fennell, R.J. Bothast, E.B. Lillehoj, R.E. Peterson, Bright greenish-yellow fluorescence and 1002 

associated fungi in white corn naturally contaminated with aflatoxin, Cereal Chem. 49 (1973) 404-1003 

414. 1004 

[55] M.S. Kim, Y.R. Chen, P.M. Mehl, Hyperspectral reflectance and fluorescence imaging system for 1005 

food quality and safety, Trans ASAE. 44 (2001) 721-729. 1006 

[56] G. Zavattini, S. Vecchi, R.M. Leahy, D.J. Smith, S.R. Cherry, A hyperspectral fluorescence imaging 1007 

system for biological applications, 2003 IEEE Nuclear Science Symposium Conference Record 2 1008 

(2004) 942-946. 1009 

[57] H. Yao, Z. Hruska, R.L. Brown, T.E. Cleveland, Hyperspectral bright greenish-yellow fluorescence 1010 

(BGYF) imaging of aflatoxin-contaminated corn kernels, Proceedings of SPIE, Optics for Natural 1011 

Resources, Agriculture, and Foods. 6381 (2006), 63810B1-63810B8. 1012 

[58] H. Yao, Z. Hruska, R. Kincaid, A. Ononye, R.L. Brown, T.E. Cleveland, Spectral Angle Mapper 1013 

classification of fluorescence hyperspectral image for aflatoxin contaminated corn, in 2010 2nd 1014 

Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing 1015 

(WHISPERS) (2010) 1-4. 1016 

[59] H. Yao, Z. Hruska, R. Kincaid, R. Brown, T. Cleveland, D. Bhatnagar, Correlation and 1017 

classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn 1018 

kernels inoculated with Aspergillus flavus spores, Food Additives & Contaminants: Part A 27 1019 

(2010) 701-709. 1020 

[60] H. Yao, Z. Hruska, R. Kincaid, A. Ononye, R.L. Brown, D. Bhatnagar, T.E. Cleveland, Selective 1021 

principal component regression analysis of fluorescence hyperspectral image to assess aflatoxin 1022 

contamination in corn, in 2011 3rd Workshop on Hyperspectral Image and Signal Processing: 1023 

Evolution in Remote Sensing (WHISPERS) (2011) 1-4. 1024 

[61] H. Yao, Z. Hruska, R. Kincaid, R.L. Brown, D. Bhatnagar, T.E. Cleveland, SVM-based feature 1025 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

42 
 

extraction and classification of aflatoxin contaminated corn using fluorescence hyperspectral data, 1026 

in 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing 1027 

(WHISPERS) (2012) 1-4. 1028 

[62] H. Yao, Z. Hruska, R. Kincaid, R.L. Brown, D. Bhatnagar, T.E. Cleveland, Hyperspectral image 1029 

classification and development of fluorescence index for single corn kernels infected with 1030 

Aspergillus flavus, Transactions of the ASABE 56 (2013) 1977-1988. 1031 

[63] H. Yao, Z. Hruska, R. Kincaid, R.L. Brown, D. Bhatnagar, T.E. Cleveland, Detecting maize 1032 

inoculated with toxigenic and atoxigenic fungal strains with fluorescence hyperspectral imagery, 1033 

Biosystems Engineering 115 (2013) 125-135. 1034 

[64] Z. Hruska, H. Yao, R. Kincaid, D. Darlington, R.L. Brown, D. Bhatnagar, T.E. Cleveland, 1035 

Fluorescence imaging spectroscopy (FIS) for comparing spectra from corn ears naturally and 1036 

artificially infected with aflatoxin producing fungus, Journal of Food Science 78 (2013) T1313-1037 

T1320. 1038 

[65] F. Zhu, H. Yao, Z. Hruska, R. Kincaid, R. Brown, D. Bhatnagar, T. Cleveland, Integration of 1039 

fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images for detection of 1040 

aflatoxins in corn kernels, Transactions of the ASABE 59 (2016) 785-794. 1041 

[66] W. Chen, D. Xing, W. Chen, Rapid Detection of Aspergillus flavus Contamination in Peanut with 1042 

Novel Delayed Luminescence Spectra, Photochemistry and Photobiology 81 (2005) 1361-1365. 1043 

[67] H. Kalkan, P. Beriat, Y. Yardimci, T.C. Pearson, Detection of contaminated hazelnuts and ground 1044 

red chili pepper flakes by multispectral imaging, Computers and Electronics in Agriculture 77 1045 

(2011) 28-34. 1046 

[68] J.W. Dickens, R.E. Welty, Fluorescence in pistachio nuts contaminated with aflatoxin, Journal of 1047 

American Oil and Chemical Society 52 (1975) 448-450. 1048 

[69] A. Farsaie, W.F. McClure, R.J. Monroe, Development of indices for sorting Iranian pistachio nuts 1049 

according to fluorescence, J. Food Sci. 43 (1977) 1550-1552. 1050 

[70] W.F. McClure, A. Farsaie, Dual-wavelength fiber-optic photometer measures fluorescence of 1051 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

43 
 

aflatoxin-contaminated pistachio nuts, Trans. ASAE 23 (1980) 204-207. 1052 

[71] A. Farsaie, W. McClure, R. Monroe, Design and development of an automatic electro optical sorter 1053 

for removing BGY fluorescent pistachio nuts, Trans. ASAE (1981) 1372-1375 (abstract). 1054 

[72] W.E. Steiner, K. Brunschweiler, E. Leimbacher, R. Schneider, Aflatoxin and fluorescence in brazil 1055 

nuts and pistachio nuts, Journal of Agriculture and Food Chemistry 40 (1992) 2453-2457. 1056 

[73] E. Hadavi, Several physical properties of aflatoxin-contaminated pistachio nuts: Application of 1057 

BGY fluorescence for separation of aflatoxin-contaminated nuts, Food Additives and Contaminants 1058 

22 (2005) 1144-1153. 1059 

[74] M. Tsuta, K. Miyanoshita, T. Suzuki, S. Nakauchi, Y. Sagara, S. Sugiyama, Three-dimensional 1060 

visualization of internal structural changes in soybean seeds during germination by excitation-1061 

emission matrix imaging, Transactions of the ASABE 50 (2007) 2127-2136. 1062 

[75] K. Fujita, M. Tsuta, M. Kokawa, J. Sugiyama, Detection of deoxynivalenol using fluorescence 1063 

excitation-emission matrix, Food Bioprocess Technol. 3 (2010) 922-927. 1064 

[76] K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, M. Kokawa, H. Onda, T. Sagawa, Detection of 1065 

aflatoxins B1, B2, G1 and G2 in nutmeg extract using fluorescence fingerprint, Food Sci. Technol. 1066 

Res. 19 (2013) 539-545. 1067 

[77] J. Hashemi, G.A. Kram, N. Alizadeh, Enhanced spectrofluorimetric determination of aflatoxin B1 in 1068 

wheat by second-order standard addition method, Talanta 75 (2008) 1075-1081. 1069 

[78] M. Aghamohammadi, J. Hashemi, G.A. Kram, N. Alizadeh, Enhanced synchronous 1070 

spectrofluorimetric determination of aflatoxin B1 in pistachio samples using multivariate analysis, 1071 

Analytica Chimica Acta 582 (2007) 288-294. 1072 

[79] J.B.F. Lloyd, Synchronyzed excitation of fluorescence emission spectra, Nature Phys. Sci. 231 1073 

(1971) 64-65. 1074 

[80] T. Vo-Dinh, Multicomponent analysis by synchronous luminescence spectrometry, Anal. Chem. 50 1075 

(1978) 396-401. 1076 

[81] D. Wilson, Analytical method for aflatoxin in corn and peanuts, Arch. Environment Contamination 1077 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

44 
 

and Toxicology 18 (1989) 304-314. 1078 

[82] T. Jacks, Evaluation of kojic acid for determining heme and nonheme haloperoxidase activities 1079 

spectrofluorometrically, Analytical Letters 38 (2005) 921-927. 1080 

[83] M. Atas, Y. Yardimci, A. Temizel, A new approach to aflatoxin detection in chili pepper by 1081 

machine vision, Computers and Electronics in Agriculture 87 (2012) 129-141. 1082 

[84] T.C. Pearson, D.T. Wicklow, E.B. Maghirang, F. Xie, F.E. Dowell, Detecting aflatoxin in single 1083 

corn kernels by transmittance and reflectance spectroscopy, Transactions of the ASAE 44 (2001) 1084 

1247-1254. 1085 

[85] T.C. Pearson, D.T. Wicklow, M.C. Pasikatan, Reduction of aflatoxin and fumonisin contamination 1086 

in yellow corn by high-speed dual-wavelength sorting, Cereal Chemistry 81 (2004) 490-498. 1087 

[86] T.C. Pearson, D.T. Wicklow, Detection of corn kernels infected by fungi, Transactions of the 1088 

ASABE 49 (2006) 1235-1245. 1089 

[87] M.J. Stasiewicz, T.D.O. Falade, M. Mutuma, S.K. Mutiga, J.J.W. Harvey, G. Fox, T.C. Pearson, 1090 

J.W. Muthomi, R.J. Nelson, Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in 1091 

Kenyan maize, Food Control 78 (2017) 203-214. 1092 

[88] Q. Zhang, F. Jia, C. Liu, J. Sun, X. Zheng, Rapid detection of aflatoxin B1 in paddy rice as 1093 

analytical quality assessment by near infrared spectroscopy, Int J Agric & Biol Eng 7 (2014) 127-1094 

133. 1095 

[89] J.M. Hernández-Hierro, R.J. García-Villanova, I. Gonz ález-Martín, Potential of near infrared 1096 

spectroscopy for the analysis of mycotoxins applied to naturally contaminated red paprika found in 1097 

the Spanish market, Analytica Chimica Acta 622 (2008) 189-194. 1098 

[90] S. Hirano, N. Okawara, S. Narazaki, Near infra red detection of internally moldy nuts, Bioscience, 1099 

Biotechnology, and Biochemistry 62 (1998) 102-107. 1100 

[91] J.G. Tallada, D.T. Wicklow, T.C. Pearson, P.R. Armstrong, Detection of Fungus-Infected Corn 1101 

Kernels Using Near-Infrared Reflectance Spectroscopy and Color Imaging, Transactions of the 1102 

ASABE 54 (2011) 1151-1158. 1103 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

45 
 

[92] T. Phetkaeo, R. Klaithin, P. Theanjumpol, K. Kunasakdakul, S. Thanapornpoonpong, S. Vearasilp, 1104 

Comparison of Sample Preparation Methods on the Infected Corn Seed Detection by NIR 1105 

Spectroscopy, Chiang Mai University Journal of Natural Sciences 11 (2012) 243-249. 1106 

[93] C.D. Sirisomboon, R. Putthang, P. Sirisomboon, Application of near infrared spectroscopy to detect 1107 

aflatoxigenic fungal contamination in rice, Food Control 33 (2013) 207-214. 1108 

[94] P.-S. Liang, D.C. Slaughter, A. Ortega-Beltran, T.J. Michailides, Detection of fungal infection in 1109 

almond kernels using near-infrared reflectance spectroscopy, Biosystems Engineering 137 (2015) 1110 

64-72. 1111 

[95] T. Phetkaeo, R. Klaithin, P. Theanjumpol, K. Kunasakdakul, S. Thanapornpoonpong, S. Vearasilp, 1112 

Application of VIS/NIR spectroscopy to specify identity of Aspergillus flavus and Aspergillus niger 1113 

isolated from maize seed, Agricultural Science Journal 42 (2011) 369-372. 1114 

[96] E. Durmus, A. Günes, H. Kalkan, Detection of aflatoxin and surface mould contaminated figs by 1115 

using Fourier transform near-infrared reflectance spectroscopy, J Sci Food Agric 97 (2017) 317-1116 

323. 1117 

[97] W. Wang, G.W. Heitschmidt, X. Ni, W.R. Windham, S. Hawkins, X. Chu, Identification of 1118 

aflatoxin B1 on maize kernel surfaces using hyperspectral imaging, Food Control 42 (2014) 78-86. 1119 

[98] W. Wang, G.W. Heitschmidt, W.R. Windham, P. Feldner, X. Ni, X. Chu, Feasibility of Detecting 1120 

Aflatoxin B1 on Inoculated Maize Kernels Surface using Vis/NIR Hyperspectral Imaging, Journal 1121 

of Food Science 80 (2015) M116-M122. 1122 

[99] W. Wang, K.C. Lawrence, X. Ni, S.-C. Yoon, G.W. Heitschmidt, P. Feldner, Near-infrared 1123 

hyperspectral imaging for detecting Aflatoxin B1 of maize kernels, Food Control 51 (2015) 347-1124 

355. 1125 

[100] W. Wang, X. Ni, K.C. Lawrence, S.-C. Yoon, G.W. Heitschmidt, P. Feldner, Feasibility of 1126 

detecting Aflatoxin B1 in single maize kernels using hyperspectral imaging, Journal of Food 1127 

Engineering 166 (2015) 182-192. 1128 

[101] F. Zhu, H. Yao, Z. Hruska, R. Kincaid, R. Brown, D. Bhatnagar, T. Cleveland, Visible near-infrared 1129 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

46 
 

(VNIR) reflectance hyperspectral imagery for identifying aflatoxin-contaminated corn kernels, 2015 1130 

ASABE Annual International Meeting (2015), New Orleans, Louisiana, July 26-29, Paper number, 1131 

152189995. 1132 

[102] X. Chu, W. Wang, S.-C. Yoon, X. Ni, G.W. Heitschmidt, Detection of aflatoxin B1 (AFB1) in 1133 

individual maize kernels using short wave infrared (SWIR) hyperspectral imaging, Biosystems 1134 

Engineering 157 (2017) 13-23. 1135 

[103] L.M. Kandpal, S. Lee, M.S. Kim, H. Bae, B.-K. Cho, Short wave infrared (SWIR) hyperspectral 1136 

imaging technique for examination of aflatoxin B1 (AFB1) on corn kernels, Food Control 51 (2015) 1137 

171-176. 1138 

[104] H. Yao, Z. Hruska, R. Kincaid, R.L. Brown, T.E. Cleveland, Differentiation of toxigenic fungi 1139 

using hyperspectral imagery, Sens. & Instrumen. Food Qual. 2 (2008) 215-224. 1140 

[105] J. Jin, L. Tang, Z. Hruska, H. Yao, Classification of toxigenic and atoxigenic strains of Aspergillus 1141 

flavus with hyperspectral imaging, Computers and Electronics in Agriculture 69 (2009) 158-164. 1142 

[106] A.D. Fiore, M. Reverberi, A. Ricelli, F. Pinzari, S. Serranti, A.A. Fabbri, G. Bonifazi, C. Fanelli, 1143 

Early detection of toxigenic fungi on maize by hyperspectral imaging analysis, International Journal 1144 

of Food Microbiology 144 (2010) 64-71. 1145 

[107] X. Zhao, W. Wang, X. Chu, C. Li, D. Kimuli, Early Detection of Aspergillus parasiticus Infection 1146 

in Maize Kernels Using Near-Infrared Hyperspectral Imaging and Multivariate Data Analysis, Appl. 1147 

Sci. 7 (2017) doi:10.3390/app7010090 1148 

[108] M.A. Teena, A. Manickavasagan, L. Ravikanth, D.S. Jayas, Near infrared (NIR) hyperspectral 1149 

imaging to classify fungal infected date fruits, Journal of Stored Products Research 59 (2014) 306-1150 

313. 1151 

[109] K. Kheiralipour, H. Ahmadi, A. Rajabipour, S. Rafiee, M. Javan-Nikkhah, D.S. Jayas, K. Siliveru, 1152 

Detection of fungal infection in pistachio kernel by long-wave near-infrared hyperspectral imaging 1153 

technique, Quality Assurance and Safety of Crops & Foods 8 (2015) 129-135. 1154 

[110] K. Karuppiah, T. Senthilkumar, D.S. Jayas, N.D.G. White, Detection of fungal infection in five 1155 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

47 
 

different pulses using nearinfrared hyperspectral imaging, Journal of Stored Products Research 65 1156 

(2016) 13-18. 1157 

 1158 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

48 
 

Figure Captions 

 

Figure 1. Chemical structures of aflatoxins: (a) AFB1, (b) AFB2, (c) AFG1, (d) AFG2. 

Figure 2. Mean fluorescence emission spectra of control and contaminated corn with aflatoxin threshold 

of (A) 20 µg/kg, (B) 100 µg/kg [62]. 

Figure 3. Scatter plots created by the first two canonical discriminant scores derived from normalized 

spectra of FT-NIRS of corn kernels [46]. 

Figure 4. Plots of mean absorbance spectra of A. flavus-infected corn kernels from different categories 

[86]. 

Figure 5. Mean spectra of infected (solid line) and uninfected (dashed line) almonds: (A) original 

absorbance spectra, (B) 2nd derivative absorbance spectra [94]. 

Figure 6. Contamination map of the PLS-DA model for corn samples [103]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

49 
 

 

 

 

 

Figure 1. Chemical structures of aflatoxins: (a) AFB1, (b) AFB2, (c) AFG1, (d) AFG2. 
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Figure 2. Mean fluorescence emission spectra of control and contaminated corn with aflatoxin threshold 

of (A) 20 µg/kg, (B) 100 µg/kg [62]. 
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Figure 3. Scatter plots created by the first two canonical discriminant scores derived from normalized 

spectra of FT-NIRS of corn kernels [46]. 
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Figure 4. Plots of mean absorbance spectra of A. flavus-infected corn kernels from different categories 

[86]. 
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Figure 5. Mean spectra of infected (solid line) and uninfected (dashed line) almonds: (A) original 

absorbance spectra, (B) 2nd derivative absorbance spectra [94]. 
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Figure 6. Contamination map of the PLS-DA model for corn samples [103]. 
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Table 1. Recent publications on qualitative/quantitative detection of aflatoxin contamination in different agricultural products using the three optical methods. 

Product Tested 
aflatoxin 

Contaminated sample 
source 

Whether 
needs sample 
pre-
processing 
before 
collecting 
spectral data? 

Instrument used Measurement 
mode 

Spectral range 
(nm) 

Data analysis 
method 

Accuracy Reference 

Pistachio nut Total 
aflatoxins 

Provided by nut 
processor 

No Fluorescence MSI Fluorescence 410, 440, 480, 
520, 560, and 
600 

FSP-DF 92% [39] 

Cashew Total 
aflatoxins 

Provided by nut 
processor 

No Fluorescence MSI Fluorescence 410, 440, 480, 
520, 560, and 
600 

FSP-DF 82% [39] 

Red chili 
powder 

AFB1 Spiking with the 
AFB1 standard in 
methanol 

No FT-NIRS Diffuse 
reflectance 

780-2500 
(12800-3600 cm-
1)  

PLSR RP=0.967 [45] 

Corn Total 
aflatoxins 

Both naturally 
contaminated and 
field-inoculated 

Yes FT-NIRS Reflectance 1000-2500 
(4000-9999 cm-
1) 

LDA, KNN, PLS-
DA; MLR 

Classification: 60-96% in 
validation;    
Quantification: RP

2: 0.60-0.88, 
RMSEP: 106-194 µg/kg 

[46] 

Corn, barley, 
corn+barley 

AFB1 Induced by 
vaporization with 
water 

No Vis/NIRS Reflectance 400-2500 PLS-DA RCV
2=0.80/0.85/0.92; 

SECV=0.211/0.176/0.142 for 
corn, barley and corn+barley, 
respectively 

[47] 

Corn, barley, 
corn+barley 

AFB1 Induced by 
vaporization with 
water 

No FT-NIRS Reflectance 1112-2500 
(9000-4000 cm-
1) 

PLS-DA RCV
2=0.82/0.84/0.81; 

SECV=0.201/0.183/0.203 for 
corn, barley and corn+barley, 
respectively 

[47] 

Corn Total 
aflatoxins 
 

Artificial inoculation 
of corn ears with A. 
flavus in the field 

No Fluorescence HSI Fluorescence 400-600 SAM 86% with 20 ppb as the 
threshold;  
88% with 100 ppb as the 
threshold 

[58] 

Corn Total 
aflatoxins 

Artificial inoculation 
of corn ears with A. 
flavus in the field 

No Fluorescence HSI Fluorescence 400-600 MLR/DA Adjusted RC
2=0.72; 

classification accuracies: 84-
91%  

[59] 

Corn Total 
aflatoxins 

Artificial inoculation 
of corn ears with A. 
flavus in the field 

No Fluorescence HSI Fluorescence 400-600 GA-SPCR, PCR RC: 0.80-0.82 [60] 

Corn  Total 
aflatoxins 

Artificial inoculation 
of corn ears with A. 
flavus in the field 

No Fluorescence HSI Fluorescence 400-600 GA-SVM 87.7% with 20 ppb as the 
threshold;  
90.5% with 100 ppb as the 
threshold 

[61] 

Corn Total 
aflatoxins 

Artificial inoculation 
of corn ears with A. 
flavus in the field 

No Fluorescence HSI Fluorescence 400-900 ML and binary 
encoding 

Validation accuracy: 80-88% [62] 

Corn Total 
aflatoxins 

Artificial inoculation 
of corn ears with 

No Fluorescence HSI Fluorescence 400-700 LDA 78.9 and 77.2% with 20 ppb as 
the threshold; 94.4 and 91.7% 

[63] 
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AF13 and AF38 in 
the field 

with 100 ppb as the threshold 

Corn Total 
aflatoxins 

Artificial inoculation 
of corn ears with A. 
flavus in the field 

No Fluorescence HSI Fluorescence 398.77-700.82 LS-SVM/KNN 86.67-93.33% [65] 

Corn Total 
aflatoxins 

Artificial inoculation 
of corn ears with A. 
flavus in the field 

No HSI Reflectance 460.87-876.99 LS-SVM/KNN 90-94% [65] 

Corn Total 
aflatoxins 

Artificial inoculation 
of corn ears with A. 
flavus in the field 

No Fluorescence and 
normal HSI 

Fluorescence 
and reflectance 

Fluorescence: 
398.77-700.82 
Reflectance: 
460.87-876.99 

LS-SVM/KNN 90-95.33% [65] 

Peanut 
kernel 

AFB1 Inoculation with A. 
flavus and then 
incubation 

Yes Luminescence 
spectrometer 

Fluorescence 400-600 / RC=-0.99 between log10 (AFB1 

concentration) and  
log10 (fluorescence intensity)  

[66] 

Hazelnut 
kernel 

Total 
aflatoxins 

Soaking in A. 
parasiticus 
suspension and pure 
water, and then 
incubation  

No Fluorescence MSI Fluorescence 400-510, 550, 
600 

LDB-LDA 92.3% [67] 

Ground red 
chili pepper 

Total 
aflatoxins 

Obtained from the 
market 

No Fluorescence MSI Fluorescence 400-510, 550, 
600 

LDB-LDA 79.2% [67] 

Pistachio nut Total 
aflatoxins 

/ No Dual-wavelength 
fiber optic 
photometer 

Fluorescence 420, 490 Log10 (I490/I420) Total classification errors of 
20.4, 15.4, 
4.0, and 13.9% 

[70] 

Nutmeg 
powder 

AFB1, 
AFB2, 
AFG1 and 
AFG2 

Uncontaminated 
samples spiked with 
aflatoxin standard 

Yes FF Fluorescence 200-800 PLSR RP
2=0.773,  

SEP=1.0 µg/L, 
[76] 

Wheat AFB1 Purchased from 
markets 

Yes Spectrofluorimetry Enhanced 
fluorescence 

390-490 PARAFAC RC>0.99,  
LOD=0.9 µg/kg 

[77] 

Pistachio AFB1 Provided by a 
research lab 

Yes Spectrofluorimetry Enhanced 
fluorescence 

Normal: 380-
480; 
Synchronous: 
300-430 

MLR, PCR, 
PLSR 

REP: 4.35-27.95% [78] 

Ground red 
chili pepper 

Total 
aflatoxins 

Obtained from 
market 

No Fluorescence MSI Fluorescence 400-510, 550, 
600 

LDA/MLP 67.5-87.5% [83] 

Ground red 
chili pepper 
flakes 

Total 
aflatoxins 

Obtained from 
market 

No Fluorescence HSI Fluorescence 400-720 LDA/MLP/SVM The best classification 
accuracy=72.63% 

[83] 

Ground red 
chili pepper 
flakes 

Total 
aflatoxins 

Obtained from 
market 

No HSI Reflectance 400-720 LDA/MLP/SVM The best classification 
accuracy=83.26% 

[83] 

Corn Total 
aflatoxins 

Wound-inoculation 
with A. flavus in the 
field 

No Vis/NIR 
spectrometer 

Transmittance 
/Reflectance 

Transmittance: 
500-950, 
Reflectance: 
550-1700 

DA, PLSR Classification accuracy>95% 
for groups of aflatoxins>100 
or <10 ppb; ~25% for 
10≤afaltoxins≤100 ppb 

[84] 

Corn Total 
aflatoxins 

Wound-inoculation 
with A. flavus in the 

No Vis/NIR 
spectrometer 

Reflectance 400-1700 MD > 99% with kernels stationary 
and 100 ppb as the threshold 

[85] 
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field or naturally 
infected 

Corn Total 
aflatoxins 

Wound-inoculation 
with A. flavus in the 
field or naturally 
infected 

No High-speed optical 
sorter 

Reflectance 750, 1200 Rejection 
threshold 

Reduction in aflatoxins 
averaged 82% with an initial 
level of aflatoxins at >10 ppb; 
38% at <10 ppb 

[85] 

Corn Total 
aflatoxins 

Purchased from 
markets and artificial 
inoculation with A. 
flavus in the field 

No MS optical sorter Reflectance Nine distinct 
wavelengths 
between 470 and 
1550 

LDA 83% reduction in total 
aflatoxins 

[87] 

Paddy rice AFB1 Naturally and 
artificially 
contaminated by 
adding water to the 
samples induce the 
AFB1 production 

Yes FT-NIRS Reflectance 1000-2500 
(4000-10000 cm-
1) 

PLSR RP
2: 0.79-0.85, SEP: 3.21-3.62 

µg/kg 
[88] 

Red paprika 
powder 

AFB1, 
Total 
aflatoxins 

Naturally 
contaminated 

No NIRS Reflectance 1100-2000 modified PLSR RMSEP=0.2/1.2 µg/kg for 
AFB1/total aflatoxins 

[89] 

Corn AFB1 Artificial surface 
contamination with 
aflatoxin standard 
dissolved in 
methanol 

No HSI Reflectance 1000-2500 Stepwise FDA 88% [97] 

Corn AFB1 Artificial surface 
contamination with 
aflatoxin standard 
dissolved in 
methanol 

No HSI Reflectance 400-1000 Stepwise FDA 98% [98] 

Corn AFB1 Artificial inoculation 
of corn ears with A. 
flavus in the field 

No HSI Reflectance 1000-2500 SAM 92.3% [99] 

Corn AFB1 Artificial inoculation 
of corn ears with A. 
flavus in the field 

No HSI Reflectance 1000-2500 SAM 50-96.15% [100] 

Corn Total 
aflatoxins 

Artificial inoculation 
of corn ears with A. 
flavus in the field 

No HSI Reflectance 400-900 DT 90% [101] 

Corn Total 
aflatoxins 

Artificial inoculation 
of corn ears with A. 
flavus in the field 

No HSI Reflectance 700, 800 Pixel threshold 
based on ratio 
image 

80% [101] 

Corn AFB1 Artificial inoculation 
of corn ears with A. 
flavus in the field 

No HSI Reflectance 1000-2500 SVM, Correlation 
analysis 

82.50%, 
RP

2=0.70 
 

[102] 

Corn AFB1 Artificial surface 
contamination with 
AFB1 solutions 

No HSI Reflectance 1100-1700 PLS-DA 90.7-96.9% [103] 
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Table 2. Recent publications on detection of aflatoxigenic fungal infection in different agricultural products using the three optical methods. 

Product Infected sample source Instrument used Measurement 
mode 

Spectral range 
(nm) 

Data analysis Accuracy Reference 

Hazelnut kernel Soaking in A. parasiticus 
suspension and pure water, and 
then incubation 

Fluorescence MSI Fluorescence 400-510, 550, 600 LDB-LDA 95.7% [67] 

Corn Artificial inoculation of corn 
ears with A. flavus in the field 

Vis/NIRS Reflectance 550-1770 Stepwise DA 97-98% in identifying the 
“asymptomatic” samples; 85-91% in 
identifying the “extensive 
discoloration” samples 

[86] 

Corn Artificial inoculation of corn 
ears with A. flavus in the field 

MSI Transmittance 780, 830, 870, 
880, 890, 905, 
920, 930, 960, 980 
and 1020 

Stepwise DA 93% and 90% achieved for 
asymptomatic and “extensive 
discoloration” groups, respectively 

[86] 

Peanut Artificial inoculation with A. 
flavus between the two seed 
leaves 

Spectrophotometer Transmittance 700, 1100 Transmittance 
ration threshold 

Aflatoxin content reduced to 4-18% 
levels after segragation 

[90] 

Corn Wound-inoculation with A. 
flavus in the field 

NIRS Reflectance 904-1685 LDA, ANN LDA: 93%, 76% and 74%, 
ANN: 81%, 86% and 68% for 
uninfected, early and advanced stage 
groups, respectively 

[91] 

Corn Artificial inoculation with A. 
flavus and incubation 

NIRS Reflectance 1100-2500 PLSR RPD: 1.55-1.74 for whole grain in 
determining the infected ratios; 
RPD: 3.40-5.36 for ground grain in 
determining the infected ratios 

[92] 

Rice Artificial inoculation with 
different concentrations of A. 
flavus without incubation 

NIRS Reflectance 950-1650 PLSR The best RP and SEP are 0.71 and 
28.07% for predicting the percentage 
of total fungal infection, respectively 

[93] 

Rice Artificial inoculation with 
different concentrations of A. 
flavus without incubation 

NIRS Reflectance 950-1650 PLSR The best RP and SEP are 0.48 and 
17.93% for predicting the percentage 
of yellow-green Aspergillus infection, 
respectively 

[93] 

Shelled almond kernel Artificial inoculation with A. 
flavus, A. parasiticus, and 
incubation 

NIRS Reflectance 800-2500 CDA The best and smallest classifiers 
achieved total classification error rates 
of 0.09% and 0.26%, respectively 

[94] 

Dried fig Obtained from a fig co-
operative 

FT-NIRS Reflectance 780-2500 LDC, LOGLC, 
QDC, KNN, 
PARZENC 

Classification errors: 0.00-0.33% [96] 

Corn Artificial inoculation with A. 
flavus, A. parasiticus, A. niger 
and incubation for different 
times 

HSI Reflectance 400-1000 Fisher's least 
significant 
difference analysis 

The categories of uninoculated and 
day-2 infected samples already showed 
significant differences at 410 or 470 
nm 

[106] 

Corn Artificial inoculation with A. 
parasiticus and incubation for 
different times 

HSI Reflectance 921-2529 SVM 67.71-91.67% [107] 

Date fruit Artificial inoculation with A. 
flavus 

HSI Reflectance 960-1700 LDA, QDA LDA for classifying UC/SC and 
different stages of IS samples: 74-
97%/74-94%; 

[108] 
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QDA for classifying UC/SC and 
different stages of IS samples: 97-
100%/95-100%; 
 

Pistachio kernel Artificial inoculation with A. 
flavus KK11 and R5 

HSI Reflectance 900-1700 LDA, QDA LDA accuracies in 15-class 
classification: 45.8-97.9%; 
QDA accuracies in 15-class 
classification: 70.8-100%; 
QDA accuracies in classifying healthy, 
samples infected by A. flavus KK11 or 
R5 at all stages: 91.3-100% 

[109] 

Five pulses of chick 
peas, green peas, 
lentils, pinto beans and 
kidney beans 

Artificial inoculation with A. 
flavus and incubation 

HSI Reflectance 900-1700 LDA, QDA LDA accuracies in 6-class 
classification: 71.6-100%; 
QDA accuracies in 6-class 
classification: 69.1-100% 

[110] 
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