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Abstract

The demand for developing rapid and non-destru¢éigbniques that is suitable to real-time and pa-li
detection of aflatoxin and fungal contamination rexeived significant attentions. Measurement
technigues based on fluorescence spectroscopyri€&}infrared spectroscopy (NIRS) and
hyperspectral imaging (HSI) have provided intergstind promising results for detecting aflatoxin
and/or fungal contamination in a variety of foods.such, the main goal of this article is to give a
overview of the current research progress of FRIN&nd HSI techniques in rapid detection of aflatox
and fungal contamination in different varietiesagficultural products. These techniques are destiii
terms of their working principles, features andlaagion advantages in detecting aflatoxins andjyain
contamination. The research advances of each mohmipplied in different agricultural products are
reviewed and the results obtained from differemdiits are compared and discussed. Perspectives on

their future trends and challenges are also adelless

Keywords: aflatoxin; aflatoxigenic fungus; fluorescence; nedirared spectroscopy; hyperspectral

imaging; rapid and non-destructive detection

Abbreviations

A., Aspergillus; AFB,, aflatoxin B; AFB,, aflatoxin B; AFG,, aflatoxin G; AFG,, aflatoxin G; ANN,
artificial neural network; AOAC, Association of Alytical Communities; ARS, Agricultural Research
Service; ASTM, American Society of Testing and Mitls; BGYF, bright greenish yellow fluorescence;
BY, bright-yellow; CDA, canonical discriminant agais; CEN, European Committee for Standardization;
CFU/cnt, colony forming units per cnCOE, constant offset elimination; D, dimensiori,
discriminant analysis; DFI, difference fluorescemuex; DT, detrending; EEM, excitation-emission
matrix; EF-SOSAM, enhanced spectrofluorimetry imbtination with second-order standard addition

method; ELISA, enzyme-linked immunosorbent ass&y; European Union; FDA, factorial discriminant
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analysis; FF, fluorescence fingerprint; FFS, forviature selection; FS, fluorescence spectroscopy;
FSP-DF, forward stepwise procedure combined wiskrdhinant function; FT, Fourier transform; FT-
NIR, Fourier transform near-infrared; FT-NIRS, Heutransform near-infrared spectroscopy; FWHM,
full width half maximum; GA, genetic algorithm; GBPCR, genetic algorithm combined with selective
principal component regression; GA-SVM, genetioatym combined with support vector machine; GC,
gas chromatography; HBBE, hierarchical bottlenemtidwvard elimination; HPLC, high-performance
liquid chromatography; HSI, hyperspectral imagil®);inoculated samples; ISO, International
Organization for Standardization; KNkinearest neighbor; LDA, linear discriminant anady$iDB,

local discriminant bases; LDB-LDA, local discrimittebases combined with linear discriminant anajysis
LDC, linear discriminant classifier; LOD, limit afetection; LOGLC, logistic linear classifier; LS-8V
least squares SVM; MAS, moving average smoothing; iaximum likelihood; MLP, multilayer
perceptron; MLR, multiple linear regression; MMNinimum maximum normalization; MS, multi-
spectral; MSC, multiplicative scatter correctionSMmultispectral imaging; MSU, Mississippi State
University; N, normal; NDFI, normalized differenfieorescence index; NIR, near-infrared; NIRS, near-
infrared spectroscopy; NN, neural network; P, peirfPIARAFAC, parallel factor analysis; PARZENC,
Parzen classifier; PC, principal component; PCAgipal component analysis; PCR, principal
component regression; PDA, potato dextrose age®:[PA, partial least squares discriminant analysis;
PLSR, partial least squares regression; QDA, gtiadtscriminant analysis; QDC, quadratic
discriminant classifier; QHM, quantized histograratrix; R, correlation coefficient of calibration set;
Rc, determination coefficient of calibration set;R determination coefficient of cross validation;, R
correlation coefficient of prediction setzRdetermination coefficient of prediction set; RE&ative

error of prediction; RF, random forest; RFE, retugrdeature elimination; RFI, ratio fluorescencder;
RMSD, root mean square difference; RMSECV, rootmegguare error of cross validation; RMSEP, root
mean square error of prediction set; ROI, regioimigfest; RPD, residual prediction deviation; SAM,
spectral angle mapper; SC, sterile control; Shdsted deviation; SECV, standard error of cross
validation; SEP, standard error of prediction §&; Savitzky-Golay; SLS, straight line subtractiBiR,
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signal-to-noise ratio; SNV, standard normal vari&sV-DT, SNV-detrending; SPCR, selective
principal component regression; SVM, support veotachine; SWIR, short-wave infrared; TLC, thin
layer chromatography; TPR, true positive rate; U@reated control; USDA, United Stated Department

of Agriculture; UV, ultraviolet; Vis, visible; VIMIRS, Visible and near-infrared spectroscopy.
1. Introduction

Aflatoxins are a group of highly toxic secondaretabolites produced by fungi of the genus
Aspergillus (A.), predominanthA. flavus andA. parasiticus [1]. The term “aflatoxin” comes from three
words, namelyAspergillus genusflavus species and toxin. Among the eighteen differepé$yof
aflatoxins identified to date, the naturally ocougrand well-known types are aflatoxin B\FB;,
C17H1,0g), aflatoxin B (AFB,, Ci71H140), aflatoxin G (AFG,, Ci7H1:0;) and aflatoxin G (AFG,,
C17H1407) [2], with AFB; identified as the most common and carcinogenic[bh& he aflatoxins are
biosynthetically derived from the identical prearréversiconal hemiacetal acetate) through the
polyketide pathway [3]. Structurally, aflatoxineax group of highly oxygenated heterocyclic
difuranocoumarin compounds, containing furofuragsi lactone rings, aromatic six-membered ring,
and/or pentanone ring moiety as shown in Figuré-3][

Aflatoxins are known to be hepatotoxic, hepatomogenic, teratogenic and mutagenic [6-10], aed
considered as Class 1 human carcinogens by thmdnienal Agency for the Research on Cancer of the
World Health Organization [11]. Among the more tH&@® known mycotoxins, aflatoxins especially the
AFB; remains the most toxic [12, 13]. However, morentBaillion people in developing countries are
reported to be chronically exposed to aflatoximsulgh food [14-15]. The number of deaths in Indémes
due to aflatoxirinduced liver cancer is estimated at 20,000/ye@}. [oreover, aflatoxin contamination
can result in severe economic loss&s, > $250 million in direct losses to farmers [1The U.S. Food
and Drug Administration economists [18] estimateel annual cost of aflatoxin contamination in the
United States at ~ $500 million through two catéggpof lossmarket rejection and animal health

impacts. In addition, products infected by #spergillus fungi may also contain potent hazards because



97  of their aflatoxin-producing character. Howevefasifxin contamination and fungal infection can accu
98  with greater prevalence in tropical and humid ctiesan a wide variety of agricultural products digri
99  both the pre-harvest and post-harvest period$diii¢ld, high temperature, prolonged drought ctiowls
100 and high insect activities are significant factimspre-harvest aflatoxin contamination. Warm
101  temperature and high humidity are contributingdesthat increase the fungal invasion and toxin
102  production during post-harvest stages includinggsfe, processing, transportation and sale [19]s;Thu
103 efficiently detecting, identifying and separatitg tsamples that are contaminated with aflatoxiiiécan

104  fungiis of great importance in order to reduceribk of aflatoxins entering the food chain.

105 Various methods have been developed and witzeletermine aflatoxin and fungal contamination i
106  foods. For aflatoxin detection, the available téghas include thin layer chromatography (TLC), gas
107  chromatography (GC), high-performance liquid chrtogeaphy (HPLC), enzyme-linked immunosorbent
108 assay (ELISA), fluorescence polarization assayiprianmunoassays, etc. [20-24]. The current arcaifti
109 methods validated by the Association of AnalytiCaimmunities (AOAC), European Committee for
110  Standardization (CEN) and International Organizafar Standardization (ISO) for aflatoxins detentio
111  in agricultural and food products are mainly basedhese methods mentioned above [11, 25].

112 Traditionally, fungal contamination in foods is eehined using microbiological methods in a labamato
113 setting, which includes fungal enumerating usiraggecounting or direct plating techniques, isolgiim
114  appropriate media and identifying the genus andiepdevel by morphological characterization,

115 including macroscopic characteristics (color, sexdony appearance) and microscopic characteristics
116  (conidia, conidiophore, conidial heads) [26-28]e3& methods for determining aflatoxin and fungal
117  contamination may give accurate results in laboiedphowever, most of them require skilled pergbnn
118 and a well-equipped laboratory. They are also esipentime-consuming and destructive to the test
119  samples, making them impossible for large-scaledestructive screening detection or integratioarin
120  on-line sorting and production system. In additits, uneven presence of aflatoxins in both agricalt

121 products and crops often makes the traditional tedmgsed analysis give a limited view of the degriee



122 contamination. In this context, the demand for dgpiag a rapid and non-destructive method for sensi
123 aflatoxin and/or fungal contamination that is shiggato real-time and on-line detection has received

124  significant attentions.

125 Among currently emerging technologies, theagitbased methods have been reported to show great
126  potential for on-line applications [29-30]. The rmBeement techniques based on fluorescence

127  spectroscopy (FS), near-infrared spectroscopy (INHRE hyperspectral imaging (HSI) have provided
128 interesting and promising results for detectiomftdtoxin and fungal contamination in varietiefadds.
129  Therefore, the main goal of this article is to gireoverview of the current research progressen th

130 application of FS, NIRS and HSI techniques in ragpid non-destructive detection of aflatoxin andyhln
131  contamination in different varieties of agricultupaoducts, which consist of corn, rice, wheat,més,

132 almond kernels, pistachio nuts, dried figs, daté find chili peppers., etc. These techniques are

133  described in terms of their working principles,tieas and application advantages in detection of

134  aflatoxin and/or fungal contamination. The resead¥iances of each technique applied in a widetyarie
135  of agricultural products are reviewed and the fachofluencing their qualitative and quantitatiesults

136  are discussed. In addition, perspectives on theiré trends and challenges are also discussed.

137 2. Optical techniques

138 2.1. Fluorescence spectroscopy

139 FS is an analytical technique of which the thearg methodology have been extensively exploited in
140  the disciplines of both chemistry and biochemis$rych as in investigations of the structure, fuordi

141  and reactivity of small molecules, synthetic polyseroteins and other biological molecules, etc.,

142  however, it has just recently become a popularitotie field of food science [31]. The applicasoof

143  FSin food analysis have significantly increasedrdythe last two decades, and it has been pravée t
144  a useful tool for the characterization of chemixaistituents, detection of hazards, and autheidicat

145  analysis in varieties of foods [32].
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Fluorescence is the emission of light subsequeabsorption of ultraviolet (UV) or visible (Vis)dht
of a fluorescent molecule or substructure, callid@ophore. The fluorophore absorbs energy in the
form of light at a specific wavelength and libesémergy in the form of emission of light at a leng
wavelength [33]. The basic principles can be illatstd by a Jabfski diagram [34]. Briefly, three steps
are involved in a typical fluorescence process, elgnexcitation, vibrational relaxation/internal
conversion, and emission. Excitation of a suscéptiiblecule by an incoming light happens in
femtoseconds, during which light is absorbed byntieéecule, and transferred to an electronicallyitexc
state. The vibrational relaxation/internal convengiefers to the process where the molecule undergo
transition from an upper electronically excitedst@ a lower one, without any radiation. The final
process involves the emission of light at a longavelength and return of the molecule to the ground

state [35].

A number of compounds emit fluorescence in thesyisctral region when excited with UV radiation.
Marsh and co-workers first reported observatioa bfight greenish yellow fluorescence (BGYF) in
cotton bolls infected bj. flavus [36], and later associated aflatoxins in cottoedsewith the BGYF in
the fiber [37]. The fluorescence was reported tpioeluced by the reaction of peroxidases in living
plants with kojic acid, which is formed Aspergillus types [37]. However, its mechanisms are complex
and still not quite clear now. Some researchersrteg aflatoxin itself as a fluorescent substafue
and Cox [38] found that AFBpeaks at excitation wavelengths of 223, 265 ar&dr36; AFB, has three
peaks at excitation wavelengths of 222, 265 andiB63AFG, peaks at excitation wavelengths of 243,
257, 264 and 362 nm; and AF@eaks at excitation wavelengths of 214, 265 ar®&r36. With aflatoxin
irradiated under UV light, the fluorescence phenaomecan occur, and particularly the two major ggyup
AFB and AFG can emit fluorescence in the brightelfd25-480 nm) and blue-green (480-500 nm)
spectral ranges, respectively, which makes it ptes$d detect aflatoxin contamination using fluoersce
characteristics [39]. Actually, the currently usd@€AM AflaTest method for aflatoxins detection is

based on their fluorescent characteristics. Howetierdirect use of fluorescence spectra in agticail
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products is made difficult by the complexity of kgoound food matrices as they may contain a great
variety of natural fluorescent compounds that cagrlap with the analyte signal. Currently, with the
extensive investigations concerning detecting efias using FS in combination with different
chemometric techniques, this technique seems tméef the most promising non-destructive optical

detection methods for monitoring aflatoxin contaation in agricultural products.
2.2. Near-infrared spectroscopy

Near-infrared (NIR) region in the electromagnepearum is defined to be from 780 to 2526 nm
(12821-3959 cify) by the American Society of Testing and Mater{#iSTM), which is located between
the red band of the visible light and the mid-indgiregions [40]. The NIRS detection techniquegisetd
on the principle that different chemical bondsha tested sample absorb or emit different wavelengt
light when irradiated by continuous changing fragpyeof NIR light. NIR signals are associated with
molecular vibrations, specifically the overtoned @ombinations of fundamental vibrations. Chemical
bonds between light atoms, such as C-H, O-H, amtidénerally have high vibrational frequencies,

which result in overtone and combination bands énatdetectable in the NIR region [41].

For NIRS, there are mainly three modes of datactitin, namely, reflectance, transmittance and
interactance [42]. The determination of a suitab&asurement mode relies on the type of samplehend t
constituents to be tested. Most of the studiesrtegmn detection of aflatoxin contamination anaigfal
infection using NIRS employed the measurement noddeflectance. The NIRS instruments can be
categorized into three groups according to Baeterardenne [43], namely, (i) sequential instruregnt
where the reflectance or absorbance is sequentialligcted in time and the instrument is equippét &
monochromator or filters, and generally the eardR8linstruments belong to this type; (ii) Fourier
transform (FT) or multiplex instruments, where sal&equencies are detected simultaneously in the
form of an interferogram; and (iii) multichannestruments, where several detectors separatelytdbtec

absorbance at several wavebands.
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The NIR spectra are generally complex due to highsrlapping and weak absorption bands
associated with overtones and combinations of titoral bonds, which may need chemometric
assistance for spectral interpretation and analygith the latest development in chemometrics and
computer techniques, NIRS has been extensivelyestud an effective tool for qualitative and
guantitative evaluation of food quality and safettyibutes [44]. The capability of NIRS in detegfin
aflatoxin contamination and fungal infection haeeb investigated and proven to be useful in a wide
range of agricultural products. There is a repoowgng that the major Fourier transform near-irdchr
(FT-NIR) bands associated with aflatoxin molecieude 6923 cm (1444 nm), 5868 cth(1704 nm),
and 5789 cm (1727 nm,), which are corresponding to C-H strietgland deformation, 1st overtone of
CH; and 1st overtone of GHrespectively [45]. Also, the FT-NIR waveband 0$600-7000 crm (1429-
2000 nm) was pointed out to tend to correlate afthtoxin concentrations, which contain combinagion
and overtones associated with the various functigmaups of aflatoxin and the starch moleculesarfic
samples [46]. Regarding fungal infection detectising NIRS, the most significant bands related to
fungal infection of cereals were investigated tah@und 870-1200 nm, which correspond to NH in most
amino acids and aromatic rings, radical structime®ll wall components, such as furanic or phenoli

compounds, and could be interpreted as signs atkdeterioration caused by fungal infection [47].

2.3. Hyperspectral imaging

HSI is a relatively new but rapidly growing techmégthat integrates spectroscopic and imaging
techniques to provide both spectral and spatiakinition of the tested sample simultaneously. €mat
“hyperspectral imaging” originated from remote segstudies and was first mentioned by Goetz et al.
[48]. The HSI technique can be implemented in otélece, transmission, scattering and fluorescence
modes, and the images obtained, commonly calledrbypes, are three-dimensional (3-D) data cubes
with two spatial dimensions and one spectral dinoensvhich are made up of hundreds of contiguous
wavebands for each spatial pixel of the tested ganperefore, compared to conventional spectrascop

technigues, the added spatial dimension enablesdipeing of chemical components in the tested



220 sample (chemical imaging), which is particularlefus for detection of unevenly distributed compatsen

221  such as aflatoxin contamination and fungal infettioagricultural products.

222 There are generally three approaches for acquiibBghypercubesx y, 4), namely point-scan, line-
223 scan and area-scan methods. In the point-scan th@tbg the whiskbroom method), a single point is
224  scanned along two spatial dimensioksa0dY) by moving either the sample or the detector, and

225  hyperspectral image data are accumulated pixelxs}). @ he line-scan method (i.e., the push-broom
226  method) is an extension of the point-scan methodich a line of spatial information with a full

227  spectral range per spatial pixel is captured seplgrto complete a volume of spatial-spectralad@t9].
228  Different from the spatial-scan methods of poirdarsand line-scan, the area-scan method (i.e.,ahe b
229  sequential method) is a spectral-scan method, iohadnfull spatial scene at each spectral band is

230  captured sequentially to form a 3-D hypercube ddtarelative movement between the sample and the
231  detector is required for this method, and the disauwdtiple band-pass filters, a liquid-crystal thiafilter,
232 or an acousto-optic tunable filter exemplifies @upgroach [50-51]. Among the three methods, lir@sc
233 imaging is a typical choice for online applicatiomisere the sample is moving. Lately, HSI technigue
234  becoming increasingly important for rapid and nestductive assessment of food quality and safdig. T
235  applications of HSI for detecting aflatoxin contamtion and fungal infection started relatively mtbe

236  while considerable studies have shown its greantiatl in such aspects.

237 3. Applicationsof optical techniquesin detection of aflatoxin and fungal contamination

238 With the development of optical techniques, consibke studies have been conducted and reported on
239 using FS, NIRS and HSI to determine aflatoxin amtyfl contamination in different varieties of

240  agricultural products. Tables 1 and 2 summarizeddkent publications on detection of aflatoxin and

241  fungal contamination, respectively. It can be obsérfrom both tables that the three optical techesoof

242  FS, NIRS and HSI have been studied extensivelypamhising results have been demonstrated in

243  detecting aflatoxin contamination or fungal infectiof different varieties of agricultural products.

244  Among that, corn is the mainly focused product, hasl been studied a lot compared to other products.
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The NIRS and HSI techniques have been exploiteghsitely in detecting both aflatoxin and fungal
contamination, while the FS technique was primafplied to detect aflatoxin contamination and the
reports on using it to determine fungal infectioa gare. The detailed applications of each optical

technique are described in the following secti@ysasately.
3.1. Applications of FS
3.1.1. Applications of FSin aflatoxin contamination

Not long after the report associating aflatoxinsadtton seeds with BGYF in the cotton fiber, BGYF
was observed on aflatoxin-contaminated corn keld@$4]. Fluorescence HSI technique is a
combination of fluorescence spectra and HSI teclesgFluorescence HSI employs UV lights as the
excitation sources, which is the main differenceveen the fluorescence and the common HSI systems.
In the past decade, fluorescence HSI techniquéédas developed to enable the acquisition of
fluorescence image data with both high spectralspadial resolutions [55-56] and was first utilized
detect aflatoxin-contaminated corn samples by Yao [b7]. Series of studies conducted at Missjssip
State University (MSU) have shown great potentidhe fluorescence HSI technique in distinguishing
aflatoxin-contaminated corn kernels [58-65]. Basadhe laboratory fluorescence HSI system with the
excitation wavelength centered at 365 nm, Yao.gb8] examined the relationship between fluoreseen
emissions of corn kernels inoculated withflavus and their aflatoxin contamination levels. A
fluorescence peak shift phenomenon was found amdifiegent groups of corn kernels contaminated
with different aflatoxin levels, namely, the flusence peak moved toward a longer wavelength in the
blue region for the highly contaminated kernels toweard a shorter wavelength for healthy or slightl
contaminated kernels. Additionally, a general niegatorrelation was observed between the aflatoxin
concentrations and the fluorescence magnituddgiblue and green spectral regions, and an adjusted
multiple linear regression (MLR) model yielding etérmination coefficient of calibration set{fRof
0.72 based on 74 fluorescence wavebands, whicbaitadi a moderate capability of fluorescence HSI in

guantifying aflatoxin contents in corn kernels. Tigcriminant analysis showed classification acciesa

11
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between 84% and 91% when classifying the corn sssnpith the aflatoxin threshold of 20 or 100 pg/kg.
Further, in order to reduce the data acquisitioretand image space, genetic algorithm (GA) and
selective principal component regression (SPCRjritlgns were performed to select the fluorescence
features. The results showed that a correlatiofficmat of calibration set (B of 0.80 for quantifying

the aflatoxin content in infected corn kernels weabkieved when using 30 of the original 74 wavebands
determined by GA for SPCR transformation produeddch was comparable to that{#0.82) obtained
using the standard principal component regres$@R( analysis based on the whole wavebands [60].
For the two-class classifications with the aflatottiresholds of 20 and 100 pg/kg, the employedatipp
vector machine (SVM) method produced validatiorusacies of 87.7% and 90.5% respectively, when
using 36 and 11 fluorescence wavebands selectdtel@A method. The obtained accuracies were
similar to those obtained using the whole spetiaalds, while the image space was reduced signifjcan
especially with the threshold of 100 pg/kg, whemgyd 1 wavebands were used indicating the postibili

of developing a fluorescence multispectral imadi&!) system for aflatoxin detection on-line [61].

In addition, Yao et al. [62] applied two image pibased classification algorithms of maximum
likelihood (ML) and binary encoding to discrimindtealthy and aflatoxin-contaminated corn kernels,
and obtained the same validation accuracy of 87#gusoth algorithms when taking 20 pg/kg of
aflatoxin as the classification threshold. When @tkg was used as the classification threshotd, th
binary encoding algorithm achieved a validationuaacy of 88%, better than the 80% obtained usieg th
ML algorithm. In this work, the authors also calteld three fluorescence indices between each twd-ba
combination, namely, the normalized difference faszence index (NDFI), the difference fluorescence
index (DFI) and the ratio fluorescence index (RiiY found that using the NDFI at 437 and 537 nm, th
maximum correlation between the corn aflatoxin emiation and the calculated index value could be
achieved at -0.81, which constituted the first imgot step towards the development of a new aflatox
screening method based on the simplified MSI sydternis able to separate the contaminated product

from the uncontaminated stream. The fluorescenak ghkift phenomenon was also observed as

12
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previously mentioned, with the mean fluorescen@kpecated at 467 and 481 nm for control and
contaminated corn kernels when 20 pug/kg was uséteasreshold, and 470 and 484 nm for control and
contaminated corn kernels with 100 pug/kg as thesthold (Figure 2). Further, Yao et al. [63] also
examined the capability of fluorescence HSI inidgtishing corn kernels artificially inoculated tvit
toxigenic (AF13) and atoxigenic (AF38) strainsfoflavus. In this work, the authors first classified the
infected corn kernels into two groups of “glowirayid “adjacent”, with the “glowing” group referring

the corn kernels that exhibited fluorescence ifiabte by the human eye under UV illumination, dhe
“adjacent” group referring to those adjacent todlmving fluorescent kernels. Although the linear
discriminant analysis (LDA) results did not showsilerable potential of the fluorescence spectra in
distinguishing control (uninfected), “adjacent” diglowing” corn kernels, it did well in identifyinthe

corn kernels inoculated with toxigenic and atoxigdangal strains. Using germ and endosperm sifles o
“adjacent” kernels, the overall classification aeay of 100% and 71.7% was achieved, and 71.7% and
55.5% using the “glowing” kernels, respectivelysBd on all the corn data, the LDA algorithm achieve
the classification accuracy of 78.9% and 77.2%rduging corn kernels with the aflatoxin threshold o

20 pg/kg, and of 94.4% and 91.7% with the aflatakieshold of 100 pg/kg, when using the germ and
endosperm side, respectively. As demonstrated fr@mnesults above, the germ side was found more
useful in identifying both the infected strain ghd aflatoxin contamination level of corn kerneting
fluorescence spectra. Hruska et al. [64] from #reesresearch group at MSU, examined the fluorescenc
spectra differences of aflatoxin produced by theinadly infected and artificially inoculated corars

from the same field. Results of the study indicdted when all the spectral data across all saegie

were averaged, the potential differences betweamla@rnels from the naturally infected, artificiall
inoculated and control (healthy) ears were obscuredever, spectral analysis based on the
contaminated “hot” pixels of hyperspectral imagesveed a distinct difference between the contaméhate
and control ears with fluorescence peaks centardflaand 478 nm, respectively. Both the artifigial

inoculated and naturally infected corn ears hadréiscence peaks at 501 nm, which validated the
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usefulness of the achieved advancements in theeBoence HSI technique for detection of aflatoxin

from naturally infected corn ears in the field.

In addition to aflatoxin detection in corn sampksidies have also been reported with aflatoxin
contaminated peanuts, hazelnuts, pistachio nutsatkernels, red chili pepper, et al. Chen ettd] |
reported observing the fluorescence phenomenoreanyb kernels with excitation at 365 nm. The peanut
samples with skin were prepared by artificial smikivith A. flavus suspension and incubating for
different time intervals, namely, 0, 12, 24, 36,248l 72 h. The authors found that the emission pgak
aflatoxin-contaminated peanuts was around 450 nchaanegative correlation existed between the
fluorescence intensities and the aflatoxin contaution levels over the spectral range of 440~460 nm.
The negative correlation obtained here is in acoed with that reported by Yao et al. [59] in thedark
with corn kernels. While the fluorescence peaktiocawas somewhat different, the difference cowdd b
attributed to the fluorescence peak shift phenomeasulting from the effect of different aflatoxin
concentrations and background food matrices. Kadita. [67] conducted an experiment using
fluorescence MSI with the excitation wavelengtt865 nm to identify aflatoxin-contaminated hazelnuts
ground red chili pepper flakes, and fungi-infedbedelnuts. The samples were screened with 12 eliffer
filters, some of which were between 400-510 nm @dmm full width half maximum (FWHM) and
others at 550 and 600 nm with 70 and 40 nm FWHRpeetively. By developing a local discriminant
bases (LDB) -based feature extraction and seleefgorithm for the analysis of multispectral datee
authors extracted the features which were ableh@ee the highest classification accuracy fronyonl
two or three spectral bands, making the designsihale, effective, and practical food inspectiowl a
sorting system possible. Based on the algorithneldged for the study, the classification accuraofes
92.3% and 79.2% were obtained for hazelnuts andhiidoeppers, respectively. By removing the
hazelnuts/peppers that were classified as aflatoxiiaminated, the aflatoxin concentrations were
decreased from 608 to 0.84 ng/kg for the testedlhais and from 38.26 to 22.85 pg/kg for the tested

chili peppers. The algorithm was also proven usefalassifying hazelnut kernels infected and
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uninfected by fungi, and an accuracy of 95.7% vadsesed. By removing the kernels identified as

infected, the aflatoxin concentration of the testadelnut kernels was decreased from 608 to Okbu g/

Studies using fluorescence spectra to detect afftatmntamination in pistachio nuts are many. An
early work was reported to use BGYF to identifyatdkin-contaminated nuts from 46 lots of Iranian
pistachio nuts and found that 7% of the pistachalls exhibited BGYF and kernels from the fluoregce
nuts contained 50% of the total aflatoxin contaiimethe samples [68]. Although this work does not
conclude that aflatoxin is always present where B@Xists, the results do show that the removal of
pistachio nuts with fluorescing shells from a lotuld significantly reduce the total concentratidn o
aflatoxin. Farsaie et al. [68bnducted experiments aimed to clarify the fluoeese characteristics of
pistachio nuts, and their results showed thatdditeon to BGYF, there were at least three other
categories of fluorescence evident when excit&b@tnm, which they named purple (P), normal (N} an
bright-yellow (BY). An emission ratio ofddl420 (Where koo and koo are the fluorescence intensity at 490
and 420 nm, respectively) was a practical methaparate the four categories of fluorescence.dBase
on these results, McClure and Farsaie [70] desigrdghl-wavelength fluorescence photometer to
measure the fluorescence of aflatoxin-contaminpistdchio nuts and subsequently developed an
automatic electro-optical sorter to remove the BGVYIE [71]. However, no report about the viabibfy
this method at the commercial level has been pudisMeanwhile, another study concluded that the
analysis of pistachio nuts with fluorescent shets not an appropriate means to find all kernels
containing high concentrations of aflatoxin becanfse observed non-specific nature of BGYF as a
criterion for aflatoxin screening in pistachio 38¢¥2]. Later, Hadavi [73] investigated the fedlgip of
using BGYF as a discriminating factor to identifeA. flavus-infected pistachio nuts and consequently
potentially the aflatoxin-contaminated nuts, atieat and post-harvest. Good relationships weredfoun
between the presence of BGYF and aflatoxin contatiain in pistachio nuts at harvest, and samplds wit
visible mold post-harvest. The mean aflatoxin coregion of the BGYF pistachio nuts collected from

orchards was 2414.99 ug/kg, comparing to 9.86 ugfitge non-BGYF pistachio nuts. The author also
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370  pointed out that in the samples where aflatoxirntamimation took place after rehydration of driedsnu

371  post-harvest, the contamination could not be cheariaed by BGYF because of the lack of enzymatic
372 activity. More recently, Lunadei et al. [39] deveddl a fluorescence MSI system equipped with a filte
373  wheel to collect the fluorescence images at 410, 480, 520, 560, and 600 nm with the excitation

374  wavelength of 365 nm to identify and screen aflataontaminated pistachio nuts and cashews. By

375  performing the forward stepwise procedure withlaremce of 0.01, the authors determined the optimum
376  two wavelengths for BGYF detection, namely, 480 &2@ nm for pistachio nuts, and 440 and 600 nm
377  for cashews. The results showed that the BGYF dsment pistachios nuts and cashews identified by
378 their developed MSI system contained 92% and 82%pactively, of the total nuts that were

379  contaminated by aflatoxins.

380 Except from the conventional fluorescence speotter types of fluorescence such as fluorescence
381 fingerprint (FF), enhanced fluorescence have atsmistudied to detect aflatoxin contamination in

382  different varieties of agricultural products. FFiah is also known as excitation-emission matrigNg,
383 is a series of fluorescence emission spectra amjairconsecutive excitation wavelengths [74-7Bg T
384  FF method is highly sensitive compared with conieera fluorescence measurement because the FF
385 method is capable of acquiring all the spectraddahich consists of three-dimensional informatién
386  excitation x emission x fluorescence intensitiagit& et al. [76] reported a study using FF witk th

387  excitation and emission wavelengths between 20@Baf6cm to detect total aflatoxins (AEB\FB,,

388 AFG; and AFG) in nutmeg extract. The contaminated nutmeg exsamples were artificially prepared
389 by spiking with aflatoxin standard. Based on pattast squares regression (PLSR) modeling tecleniqu
390 significant correlation was observed between thesand the predicted values, with the determamati
391  coefficient (R?) and standard error (SEP) of prediction set of®and 1.Qug/L, respectively,

392 demonstrating that FF could be a useful tool imtjtettive determination of aflatoxin concentrations
393  food. Another method using enhanced fluorescensere@orted to detect the AlFBoncentration in

394  wheat kernels and pistachio nuts [77-78]. The nekthdased on the enhanced fluorescence of;AyB
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B-cyclodextrin in 10% (w/w) methanol-water solutidhus it is a sample-destructive method. However,
as the enhanced fluorescence spectra can achierermure accurate results compared with conventional
fluorescence spectra, it is also reviewed in thisgp as a fluorescence-based alternative for affato
detection in a rapid and accurate way. The detextioim of AFB, in wheat kernels was accomplished by
enhanced spectrofluorimetry in combination withasetorder standard addition method (EF-SOSAM)
[77]. In order to accurately determine the ARBntent in wheat extracts, the adopted strateqbawed

the use of parallel factor analysis (PARAFAC) fgtraction of the pure AFBsignal and the standard
addition method. The obtained results showed tr@aAFB, values analyzed by EF-SOSAM and HPLC
technigues were well correlated in the range 0-4/&gqi with R- over 0.99 and limit of detection (LOD)

of 0.9 pg/kg. Additionally, the results indicatdt the presence of AR@ wheat poses no serious
interference in determining AREontent with their proposed method. The deterronaif AFB; in
pistachio nuts was conducted using both normakgndhronous fluorimetry in combination with several
different multivariate calibration methods and dative techniques [78]. Synchronous fluorescence
spectrometry is a simple modification of the coniaral fluorescence technique, and it can affoghér
selectivity thanks to the narrowing of spectraldmand the simplification of spectra [79-80]. Eagn
combinational methods of fluorescence spectra tgpamal and synchronous), modeling methods (MLR,
PCR and PLSR) and derivative orders (0, 1 and 2¢ vested and compared to find the best model for
prediction of AFB in pistachio nuts. The authors found that the besilt was obtained using a method
based on 0-order derivative synchronous fluoresespectra in combination with MLR, which produced
the root mean square difference (RMSD) and relagiver of prediction (REP) of 0.328 and 4.354%,
respectively, indicating the usefulness of the tped method for quantitative determination of AHB

food.

Even though the FS technique has gained greatssiot@lentifying aflatoxin-contaminated samples,
it needs to be noted that controversial result®wdso presented in some studies. As early as 1989,

Wilson [81] found that the aflatoxin-contaminatemrt kernels did not always exhibit BGYF due to the
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insufficient amount of peroxidase in kernels. Jd8&3 stated that certain types of fungi that do no
produce aflatoxin may yield kojic acid in foods aney be misclassified as aflatoxin-contaminated by
the BGYF test. Atas et al. [83] also argued thek laf the peroxidase enzyme may conceal the presenc
of aflatoxins due to the absence of BGYF, and BGYF itself could not directly indicate the actual

presence of aflatoxin as it may result in falsetp@s and negatives during the evaluation stage.
3.2. Applications of NIRS
3.2.1. Applications of NIRSin detection of aflatoxin contamination

Over the last two decades, a considerable amoisttidfes have been reported employing the NIRS
technique in either reflectance or transmittanceeno detect aflatoxin contamination in a wide ebyri
of agricultural products, with most of them focugsion corn samples. To the best of our knowledge,
Pearson et al. [84] reported the first resultsgidifRS to evaluate aflatoxin contamination in corn
kernels where the contaminated samples were @lifiprepared by wound-inoculation with flavus
during the late milk to early dough stage of kematurity. Both the transmittance and reflectance
spectra over the spectral range of 500-950 nm &A8dl300 nm were collected and applied to invesigat
their capabilities in distinguishing the aflatoxiontamination levels of single corn kernels. Basedhoth
discriminant analysis (DA) and PLSR, qualitativedals were established to classify the aflatoxin
contamination of single corn kernels into threeugiy namely, low (< 10 pug/kg), intermediate (1000
pg/kg) and high (> 100 pg/kg) groups. Overall, ab&ined results showed that the classification
accuracies were similar when using DA or PLSR, thecclassification models established using the
transmittance spectra yielded slightly better tashian using reflectance. In detail, more than @6%he
corn kernels were classified correctly as contgmither high (> 100 pg/kg) or low (< 10 pg/kg) ééss
of aflatoxin, while the classification accuracies the intermediate kernels (10 to 100 pug/kg) veery
about 25%. The authors also found that using reflee spectra, the germ-down orientation (germménci
the sensor) resulted in better PLSR classificadioruracies for all groups than the germ-up orienat

which is probably because fungus generally invaéldegierm part of corn kernel first and thus it colog
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easier to detect aflatoxin contamination from treat. Later, the same research group at the Aduicl
Research Service, United Stated Department of Auie (ARS, USDA) developed and tested a high-
speed dual-wavelength sorter for removing corndderoontaminated with aflatoxin and fumonisin [85].
Based on the reflectance spectra of single keb@tlgeen 400 and 1700 nm, the absorbance bandfpair o
750 and 1200 nm was determined as the optimurnropajtical filters by performing DA analysis [86].
Using these two wavelengths, the classificatiomuemzy of > 99% could be achieved in a laboratory
setting with corn kernels stationary using thetaftan threshold of 100 pg/kg. The performance ef th
developed sorter was also tested at high speedccwithkernels fed by a vibratory feeder at a r&t&0o
kg/hr/channel, and results showed that the redugiio aflatoxin averaged 82% with an initial lewel0
pg/kg in corn kernels, and 38% with an initial lexel0 pg/kg. It should be noted that even thoungh t
simple dual-wavelength sorter developed in thighsttould not work well in identifying corn kernels
with low concentrations of aflatoxin contaminatidtgould screen and remove the highly contaminated
corn kernels effectively in a high-speed environmé&hus, the developed sorter could be a low-cost,

high-throughput, useful tool for decreasing aflatccontamination for big lot samples.

More recently, a similar study reported investiggtihe potential use of a low-cost, multispectoates
in identifying aflatoxin- and fumonisin-contamindt&enyan corn kernels [87]. The corn samples were
collected from both, small-scale corn traders iarepir markets and inoculated maize field trials in
Eastern Kenya. Based on the reflectance valugsatistinct wavelengths between 470 and 1550 nm
and the classification algorithms of LDA, randomef&t (RF) and SVM, different qualitative models &er
developed using the thresholds of 1, 10 and 10kgfof aflatoxin and 100, 1,000 and 10,000 ug/ky fo
fumonisin. The results showed that with the remdivedsholds of >10 pg/kg for aflatoxin and >1000
pa/kg for fumonisin, the optimum model achieveds#irity and specificity of 77% and 83%,
respectively. Specifically, the authors pointed thatt the basic circuitry is relatively inexpensiwe
US$100 in components), and the throughput is md@skernels/s, theoretically around 25 kg/h),

making it suitable for small-scale milling applicats in developing countries such as Kenya. Lex. et
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[46]reported a study using Fourier transform near-ieffaspectroscopy (FT-NIRS) to classify the
aflatoxin contamination levels in ground corn sagspln this study, the FT-NIR reflectance specteaew
recorded with assistance of an integrating sphetage region of 4000~9999 ¢h§1000~2500 nm) from
232 genetically and phenotypically diverse and radityrcontaminated and artificially-inoculated corn
samples. Based on the pre-processed spectra bylmation, ' derivative, 2 derivative and
deconvolution, the samples were grouped into Sgcaies, namely, Group 1 for < 20 pg/kg (negative),
Group 2 for 20-200 pg/kg, Group 3 for 300-450 pugkgoup 4 for 550-700 pg/kg, and Group 5 for >
850 pg/kg. The highest classification accuracie368b, 96% and 72%, were achieved using the
classification algorithms of LDAs-nearest neighbor (KNN), and partial least squdigsriminant
analysis (PLS-DA), respectively, for the externalidation set. Figure 3 shows the scatter plotatece
by the first two canonical discriminant scores dedi from normalized spectra of FT-NIRS, and it ban
seen that Group 1 can be clearly separated frorigidy contaminated samples using only two
canonical scores. Additionally, based on the qtetnte modeling methods of MLR, PCR and PLSR,
models were established to also quantify the aflatcontamination. The obtained results showed that
MLR method performed best, achieving thé &d root mean square error of prediction set (RRISE

0.876 and 106 pg/kg, respectively, using the dedlomed spectra.

In addition to corn samples, a few studies have ladsen reported on rice and spices. Zhang et&l. [8
investigated the capability of FT-NIRS absorbanmectra over the spectral range of 10000~4000 cm
(1000~2500 nm) in quantifying ARR.ontamination in paddy rice. Both naturally antifiarally
contaminated samples were covered in this studpgdle pre-processed spectra by smoothing,
normalizing, baseline offset, standard normal vaff8NV), SNV-detrending (SNV-DT) and
multiplicative scatter correction (MSC), differdPlLSR equations were established. Their modeling
results were compared, and the best model achlewéte SNV-DT pre-processed spectra, with BEP
and residual prediction deviation (RPD) of 0.8213ug/kg and 1.97, respectively. Additionally, the

authors also calculated the sensitivity of suchhm@twhich achieved 0.004 pg/kg, suggesting thatgre
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potential of FT-NIRS in detecting aflatoxin contauatiion. In another work, based on NIRS with
assistance of a remote reflectance fiber-optic @mler the spectral range of 1100~2000 nm, Herrrdande
Hierro et al. [89] quantified AFBand total aflatoxins contents in naturally-contaatéd red paprika
powder. Based on the pre-processed spectra by BISE, detrending (DT), SNV-DT, derivative
transformation and smoothing, quantitative modedsevestablished using the modified PLSR algorithm.
The best cross-validation results were achievel standard error of cross validation (SECV) of@n2l
0.4 pg/kg for AFB and total aflatoxins, respectively. External vatidn was also performed with few
samples, which obtained RMSEP of 0.2 and 1.2 ufgk@dFB; and total aflatoxins, respectively.

Tripathi and Mishra [45] also reported a study difging AFB; content in red chili powder by using FT-
NIRS between 12800 and 3600 t(780~2500 nm), however contrary to the samplegrajon

methods employed in the studies above, the contaadrsamples were prepared by spiking the aflatoxin
free chili powder with the AFBstandard in methanol. Using the pre-processedrspeyg straight line
subtraction (SLS), constant offset elimination (J@&d minimum maximum normalization (MMN),
different PLSR quantitative models were establistred! their modeling results were compared. The
obtained results showed that the best cross validegsult was achieved by using the SLS pre-psmmbs
spectra between 6900.3-4998.8 and 4902.3-3999 8 with root mean square error of cross validation
(RMSECYV) of 0.65%. The model performance was atsified by external validation, which achieved

high correlation coefficient of prediction setfRf 0.967.

In an effort to address aflatoxin detection in mitv@n a single type of grain, Fernandez-lbafet et a
[47] exploited the possibility of establishing a genenaldel for detecting aflatoxin in both corn and
barley samples. Both grating visible and near-nefilaspectroscopy (Vis/NIRS) (400-2500 nm) and FT-
NIRS (9000-4000 cih i.e., 1112-2500 nm) instruments were employetii;work, and the
contaminated samples were artificially induced agarization with water. The PLS discriminant
equations were established with the pre-procegseatra by SNV-DT and derivatives. The best modeling

results using the grating NIRS instrument wereedd with the determination coefficient of cross
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520 validation (I%VZ) and SECV of 0.80 and 0.211, 0.85 and 0.176, ar@P0.142, respectively, for

521 individual corn, barley and corn + barley samplé®e R.,? and SECV using the FT-NIRS instrument
522  were obtained with 0.82 and 0.201, 0.84 and 0.083, and 0.203, respectively, for individual corn,
523  barley and corn + barley samples. This work shotliatthe results for the combined data set of eorn
524  barley were comparable to those obtained for indiai variety of grain, which suggested the possjbil

525  of establishing a general model for detection t#takin contamination in cereal grains.
526  3.2.2. Applicationsof NIRSin fungal contamination

527 Although products infected by fungi do not sigrafglefinite aflatoxin contamination, fungal infectio
528 can be an important indicator for potential hazdreisause of their aflatoxin-producing character. In
529 addition, fungi-infected agricultural products gemerally of low quality and may have undesiratdés,
530 such as discoloration, reduced density, being rinizdele, etc. In this context, investigations usomgical
531 methods to distinguish and remove such fungi-ifgécamples are attracting more attentions. Around
532  two decades ago, Hirano et al. [90] reported aly @ark using transmittance spectra between 500 and
533 1500 nm to detect internally moldy peanut kerniglshis study, moldy peanut samples were artifigial
534  prepared by inoculating the spore suspensigh tiavus between the two seed leaves of the kernels. The
535 authors found that the transmittance ratios of ZDO® nm between the internally moldy and sound

536  peanut kernels were quite different and thus, cbaldsed to distinguish the internally moldy peanut
537  kernels from the sound ones even though no obwrtesnal symptoms were noted. Additionally, a

538  strong linear relationship was found between tapgmittance ratio of 700/1100 nm and the degree of
539 triglyceride hydrolysis in peanuts, which reveatledt the changes in the NIR transmittance spectra
540 resulted mainly from the metabolization of nutrgeim peanuts caused by fungal infection. Remowt$te
541  were also conducted in this work to verify the uigdss of the developed method in reducing aflatoxi
542  contamination of peanuts. Pearson and Wicklow if8@&stigated the feasibility of several non-

543  destructive techniques including reflectance Vi&EI(550~1770 nm) in identifying the fungus-infected

544  corn kernels bw. flavus, A. niger, Diplodia maydis, Fusarium graminearum, Fusarium verticillioides
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545 andTrichoderma viride. Samples in this study were collected from coms @ich were inoculated with
546  one of the above-mentioned fungi in the field, egmihg a total of 1222 Pioneer hybrid P-3394 kegnel
547 and 1120 Farm Service hybrid FS-7111 kernels. Basdtie visual characteristics of each corn kernel,
548  the samples were first separated into three categaramely, “extensive discoloration” of 50% orreo
549  of the kernel surface, “minor discoloration” ofd¢ethan 50% of the kernel surface, and “asymptorhatic
550 referring to no visible kernel damage. Figure 4vehthe mean absorbance spectra of each categasy. Th
551  figure demonstrates obvious spectral differencesragndifferent groups, especially the differences

552  between the “asymptomatic” group and the otherdvoups. Based on the stepwise discriminant analysis
553 3 feature wavelengths were determined in discritimigahe asymptomatic and “extensive discoloration”
554  samples, which were the wavelength combinatiori6f, 1695 and 1700 nm, 535, 1690 and 1700 nm,
555 540, 780 and 1405 nm using the spectra collected the “germ side only”, “endosperm side only” and
556  “avg. of endosperm and germ sides”, respectivegmtythese determined feature wavelengths, the

557 classification accuracies of 97%, 98% and 98% wetained in identifying the “asymptomatic” samples
558 from the germ, endosperm and “avg. of endospernganu” sides, respectively, and correspondingly,
559  91%, 90% and 85% for the “extensive discoloratisathples. The authors also found that using only the
560 absorbance values at 715 and 965 nm, good resulld also be achieved in identifying the “extensive
561  discoloration” and uninfected control samples. Whahore, the authors also tried to classify tHedted
562  corn kernels by their fungal species, and the teshlowed that Vis/NIR reflectance spectra combined
563  with the neural network (NN) algorithm were ablectassify the infected fungal species if using the

564  ‘“extensive discoloration” symptoms; however, ifngsthe “minor discoloration” symptoms, the

565 classification results were inferior.

566 More recently, using the reflectance spectra betv@®d and 1685 nm, Tallada et al. [91] conducted a
567  study classifying the level of fungal damage seyem corn kernels (levels 1-4, referring to
568  asymptomatic, mildly infected, moderately infectad severely infected, respectively) and also the

569 infecting fungus. In total, 7 fungal species wereeistigated, namely. flavus, Bipolaris zeicola,
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Diplodia maydis, Fusarium oxysporum, Penicillium oxalicum, Penicillium funiculosum andTrichoderma
harzianum. Using the pre-processed spectra by mean cent@nish@NV, two classification algorithms of
LDA and multi-layer perceptron artificial neuraltnerk (ANN) were employed to establish models,
however, the results in classifying the level ofeséy from 1 to 4 were all inferior. Thus, the hats
combined the infected samples at levels 1 anda2d34 to represent the early stage and advanaogel sta
infection, respectively. It was found that compat@the early stage infection (levels 1 and 2yas
generally much easier to discriminate the infec@uples at an advanced stage (levels 3 and 4)tfrem
uninfected ones. For instance, based on the LDAyvarage classification accuracy of 85% was obthine
in discriminating the infected samples at an adedrstage from the uninfected samples, versus an
average of 77% for the early stage infection. &ssifying theA. flavus-infected and the uninfected
samples, the classification accuracies of 93%, @6674% were obtained for the uninfected control,
early stage and advanced stage groups, respectisity LDA, and 81%, 86% and 68% using ANN.
However, the results were not useful in identifythgA. flavus-infected corn kernels from those infected
with other fungal species using either algorithFgther, the NIR reflectance spectra over the splect
range of 1100~2500 nm was exploited to determiaedtio of infected corn (w/w) [92]. Both ground
and whole corn kernels were used, and the infesgathles were artificially prepared by inoculatinighw
theA. flavus spore suspension and incubated at 37 °C for 4 &esults showed that the PLSR models
based on the ground corn performed better, wittbést RPD of 5.36 and 1.74 obtained using the gtoun

and whole corn kernels, respectively.

In addition to corn samples, Sirisomboon et al] P&mined the possibility of using the reflectance
NIRS between 950 and 1650 nm to predict the pesgendf fungi-infected rice. Different from the
sample preparation method in Phetkaeo et al.’s {@#k the artificially infected rice samples were
prepared by simply inoculating different conceritnag of A. flavus spore suspension, in other words, no
following incubation procedure was applied. Bottatdungal infection and yellow-greekspergillus

infection were tested in this study, however, thstli and SEP of PLSR models only achieved 0.71 and
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28.07% in detecting total fungal infection, and8ahd 17.93% for yellow-greeXspergillus infection,
respectively. Compared to Phetkaeo et al.’s wok, e inferior results may be partly due to the
relatively narrower spectral range used in thegmestudy. On the other hand, the differencesiimpsa
preparation may be another reason for the discoypas the incubation following inoculation could
make the symptoms of fungal infection more appaaedteasier to detect. Even though only a small
number of artificially infected samples were covkirethis work, the results revealed the difficuty
early detection of fungal infection. Liang et &4] reported a study focusing on shelled almondddsr

in which the reflectance spectra between 800 af@ 25 were applied to discriminate infected and
uninfected almonds, and the infecting funglisfiavus vs. A. parasiticus) as well. The samples were
prepared by the following procedures: i) inoculgtihe spore suspensionAfflavus, A. parasiticus or
sterile deionized water (uninfected control) sefgdyaii) incubated at 31 °C for 7 days and iii)skad
with sterile deionized water containing 0.05% Tw@€rto remove conidia from the surface of infected
kernels. Using the pre-processed absorbance syigci@-point (26 nm) Savitzky-Golay (SGY'2
derivative filter, the backward elimination processs first performed to select the most important
wavelengths, and then the canonical discriminaalyais (CDA) classifiers were developed to
discriminate the infected and uninfected almondi® Best (lowest total classification error rated an
smallest (built based on the least number of wangthes without a significantly inferior error rate)
classifiers achieved the total classification eraetes of 0.09% and 0.26%, respectively, usingriz#22
selected wavelengths. Figure 5 shows the meantsdrsme spectra of the infected and uninfected almond
kernels. It was found that the largest differenuetsveen them seemed to occur at the lipid absoebanc
bands (e.g. 1210, 1720 and 1760 nm). In identifyfreginfected fungus, the best and smallest caabnic
classifiers yielded the total classification enrates of 13.2% and 14.7% using 42 and 38 selected
wavelengths, respectively. The wavebands relatéigits were similarly observed to contribute
significantly more than did the other bands in dimmating the infecting fungus. Bo# flavus andA.
parasiticus belong toAspergillus section Flavi and are phylogenetically relatedth&oauthors deduced
that the main differences between these infectedd kernels result from the differences in the
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621 metabolism and aflatoxin biosynthesisfoflavus andA. parasiticus. Lipids are the most abundant
622  compounds in almond kernels (49.93%), thus anygdmpaused by fungal invasion and metabolism
623  could be represented in their spectra. Howevea,different work, from the Vis/NIR reflectance spac
624  (400~1100 and 1100~2500 nm) of mycelia and spdrésftavus andA. niger, Phetkaeo et al. [95]
625 found the existing spectral differences betweeh hmtgi, and concluded that it was possible tofifign

626  Aspergillusspp. fungi from their Vis/NIR spectra.

627 What is more, Durmus et al. [96] reported aknam employing FT-NIRS (780-2500 nm) with

628  assistance of a bifurcated fiber-optic probe tedsboth surface-mold and aflatoxin contaminations
629 dried figs. The fig samples were classified as matdl aflatoxin-positive and -negative based on the
630 thresholds of 4 colony forming units per T(@FU/cnf) and 4 pg/kg (the maximum allowed limit of

631  aflatoxin in European Union (EU) countries), regpety. Using the normalized spectra, the forward
632  feature selection (FFS) algorithm was first emptbi@select the most significant features, and then
633  based on the determined features, 5 differentiGilssincluding a linear discriminant classifie&§C), a
634 logistic linear classifier (LOGLC), a quadratic ctisninant classifier (QDC), a KNN classifier and a
635 Parzen classifier (PARZENC) were conducted inwuosk. The obtained results showed that both LDC
636 and LOGLC classifiers performed excellently in ititmg aflatoxin and surface-mold contaminations,
637  with no errors occurring in any classificationseTduthors also analyzed the correlation between the
638  surface-mold and aflatoxin contamination, and fotirad 91 of the 98 mold-positive figs have morentha
639 4 pg/kg aflatoxin concentration (aflatoxin-posidivand 71 of the 74 mold-negative figs have aflatox
640 lower than 4 pug/kg (aflatoxin-negative), which icatied a strong correlation between surface-mold and

641  aflatoxin contaminations.
642  3.3. Applications of HS technique
643 3.3.1. Applicationsof HS technique in aflatoxin contamination

644 Unlike the early applications of FS and NIRSl@tection of aflatoxin contamination, the applicatof

645  HSI for aflatoxin detection began relatively redgnftas et al. [83] investigated the use of HSivmen
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646 400 and 720 nm (10 nm spectral bandwidth) to detietoxin in naturally contaminated ground redichi
647  pepper flakes, in which both halogen and UV lighése used for illumination. The feature vectors of
648  energy values at individual spectral bands, imajesnsecutive spectral bands and quantized hestogr
649  matrix (QHM) were extracted first, and then differéeature selection methods including hierarchical
650  bottleneck backward elimination (HBBE), Guyon's S\Btursive feature elimination (SVM-RFE),

651 classical Fisher discrimination power and princigahponent analysis (PCA) were performed to

652  decrease the data dimensions. Based on the thdeshtd pg/kg (the maximum allowed limit of

653  aflatoxin for spices and herbs in EU countries, ¢tassifiers of multilayer perceptrons (MLPs) amiA
654  were established separately using the selectearésatThe obtained results showed that amongaeall th
655  models developed, the best classification accuraald be achieved with 83.26% under halogen

656 illumination using the selected QHM features by HBBethod and the MLP classifier.

657 Later, a number of studies were conducted usingtéi8étect aflatoxin contamination in corn kernels.
658  Wang et al. [97] first reported a study discrimingtthe AFB contamination levels on corn surface, in
659  which the contaminated samples were artificiallggared by dropping different amounts of aflatoxin
660  standard dissolved in methanol on corn surfaceheese 10, 20, 100 and 500 pg/kg contaminationiseve
661  After preforming the following procedures includiagtracting mean reflectance spectra from the regio
662  of interest (ROI) of each corn image, absorbareesformation, SNV pre-processing, PCA and stepwise
663  factorial discriminant analysis (FDA) over the gpalcrange of 1000-2500 nm, an overall classifaati

664  accuracy of 88% was obtained in the predictionlsed. follow-up study conducted by Wang et al. [98]
665  similar data processing procedures were used heesgectral range of 400-1000 nm. Quite positive
666  results, with an overall classification accurac®8%o, were achieved in identifying the same AFB

667  contamination levels on corn surfaces. Both studésonstrated the potential of HSI in detecting AFB
668  contamination on corn kernel surfaces. In subsdciadies by Wang et al. [99-100], a different skemp
669  preparation method was used. HSI over the rand€@d-2500 nm was applied to detect AFB

670 contamination from artificially inoculated corn Wid\. flavus spore suspension at an early dough stage in
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the field. Wang et al. [99] found that the firstatwrincipal components (PCs) extracted from the
secondary PCA, namely P@nd PG, mainly reflected the common features of corn &krnegardless
whether they were healthy or fungus-infected, tloees only the PCs from RGo PG were used as the
inputs for the spectral angle mapper (SAM) classiid classify the healthy and contaminated corn
kernels. With two commercial corn hybrids of ‘BH&RAT TP’ and ‘BH9051RR’ included in this work,
the overall classification accuracies over 92.3%eveehieved using the threshold of 20 pg/kg. Wang e
al. [100] also reported another study in which fooimmercial corn hybrids of ‘BH8740VTTP’,
‘DKC697’, ‘P31G98’ and ‘BH9051RR’ were used. Bassuthe five PCs from PQo PG, the SAM
classifiers yielded classification accuracies afl8686 and 50%, 80% and 70%, 82.61% and 85.71%,
83.33% and 66.67% in identifying the ARBLO pg/kg or AFB>100 pg/kg kernels and the 10 pg/kg
<AFB;<100 pg/kg kernels for ‘BH8740VTTP’, ‘DKC697’, ‘P&O8’ and ‘BH9051RR’ corn hybrids,
respectively when germ sides were placed up (tosvidrel sensor). The corresponding classification
accuracies were 96.15% and 75%, 85% and 70%, 94r8PF1.42%, 88.88% and 50% when germ sides
were placed down. It could be observed that superael performance could be generally obtained in
identifying the AFB<10 pg/kg or AFB>100 pg/kg corn kernels compared to those with Zegug
<AFB;<100 pg/kg. Also, no significant differences of rabgerformance were observed between the

germs-up and germs-down placement of corn kernels.

In another study by Vis/NIR HSI over the specteaige of 400-900 nm in which the contaminated
samples were prepared by inoculating the toxig&nftavus suspension artificially at an early dough/late
milk stage of kernel development, Zhu et al. [16ifained 90% overall accuracies from the germ side
when taking 20 and 100 pg/kg as thresholds, segpréitwas also found in this work that the gradief
the slope of the reflectance spectra over the rah@80~800 nm increased as the aflatoxin
contamination level increased. When the band matéme of 800 to 700 nm was calculated and used to
identify the aflatoxin contaminated kernels, anrallédentification accuracy of 80% was achievecewh

using 100 ug/kg as the threshold. Further, Zhu. §6%3] reported integration of fluorescence and
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reflectance HSI under both UV and halogen illumoatto detect aflatoxin-contaminated corn. Both
least squares SVM (LS-SVM) and KNN classifiers wemgloyed in this work, and the results showed
that individual fluorescence and reflectance imdaga achieved generally similar classification
accuracies. Using the images collected from themgédes, the integrated form of fluorescence and
reflectance was able to produce better resultsubkany only one type of spectra (fluorescence or
reflectance), and particularly, the true positiates (TPRs) could be improved conspicuously dfier t
integration. The best overall prediction accurat9®33% was obtained using the integrated infoionat
from the germ side of corn kernels based on th&W8t model and the threshold of 100 pg/kg.
Moreover, the authors calculated the mean aflatoaircentration of the prediction samples and fdtnd
to be reduced from 2662.01 pg/kg to 64.04, 87.688,7a59 pg/kg after removing contaminated kernels
identified by fluorescence, reflectance, and iraéigg both, respectively, from the germ side. More
recently, Chu et al. [102] reported a study usitig NSI over the spectral range of 1000-2500 nm to
detect AFB contamination in corn kernels which were artifiigianfected by inoculating\. flavus
suspension in the field. PCA analysis was alsooperdd to decrease the data dimensions in this work,
however, unlike the above-mentioned studies by Wairad. [99-100] where the first several PCs were
avoided for developing classifiers, the authoral@gthed the SVM classification models using tigt fi
five PCs, and obtained an overall classificatiocuaacy of 82.50% when discriminating the corn kéxne
into three groups of <20 pg/kg, 20-100 pg/kg an@0>Lg/kg. In addition, the authors also observad th
a general correlation existed between the actu,ABntent of corn kernels and the first several PCs,
and the R? and R? achieved with 0.77 and 0.70, respectively, witlydestandard deviations (SDs).
Kandpal et al. [103] reported a study employingrshave infrared (SWIR) HSI (1100-1700 nm) to
discriminate different AFBcontamination levels on corn kernel surfaces. ddrgaminated samples
were artificially prepared by emerging healthy ladsrinto four concentrations of ArBolutions (10,

100, 500, and 1000 pg/kg) diluted with 100% acetibmifor ~12 h. PLS-DA models were developed to
categorize control and different levels of contaatéa kernels and the overall classification acdesaof
90.7%, 92.3% and 96.9% were yielded for yellow,tevlaind purple corns, respectively. By applying the
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beta coefficient of the PLS-DA model pixel-wisethe hyperspectral images, the final contamination
maps of AFB for different corn varieties were generated (Fég8y, providing direct visualization for
AFB; contamination of corn kernels that could not b&amied from conventional techniques. However, it
should be noted that the concentrations of 10, 300, and 1000 ug/kg were not the concentrations of

AFB; on the corn kernels, and the actual concentrabarnsorn kernels were unknown in this work.

3.3.2. Applications of HY techniquein fungal contamination

Yao et al. [104] reported an early work investiggtthe feasibility of HSI technique between 400 and
1000 nm to differentiate five fungal species whintludedA. flavus, A. parasiticus, Penicillium
chrysogenum, Fusarium moniliforme (verticillioides) andTrichoderma viride. Two experiments were
conducted, namely, each fungus was inoculated altaked in an individual Petri dish in experiment A
and all five fungal strains were inoculated andweld at different positions in a single dish in
experiment B. All the images were acquired at day fbingal growth. Based on the classification
algorithm of ML, an overall fungal classificationairacy of 97.7% was achieved in experiment A, evhil
in experiment B the accuracy dropped to 71.5%,iplysdue to the rapid growth dfrichoderma viride
in experiment B which contaminated the spectrdéotdnce features of the other four isolates.
Additionally, 10 optimum wavebands were determifacclassification of the five fungal species using
stepwise discriminant analysis, namely, 450, 458, 809, 541, 572, 616, 670, 743 and 864 nm. Among
them, the wavelengths of 743, 458 and 541 nm virerenost useful, and using them, the five fungal
species could also be separated with an acceableacy. Additional work was conducted by Jinlet a
[105] in which the HSI system illuminated by botddgen and UV (excitation wavelength range: 180-
400 nm) lights was employed to classify toxigemd atoxigenic strains &. flavus over the spectral
range of 400-1000 nm. Thispergillus strains of aflatoxin-producing AF13 and three hoxin
producing AF2038, AF283 and AF38 were includechis study, and the strains were all cultured on
potato dextrose agar (PDA) medium for 7 days bafaeging. After performing PCA for data

decorrelation and dimensionality reduction, and fGselection of PCs based on Bhattacharya distance
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SVM classifiers were developed for classificatidmifferent Aspergillus strains. The results showed that
under the halogen light source, the average acgusses of 83% and 74% were obtained in classifying
toxigenic fungus pixels and the atoxigenic fungixels, respectively; while under the UV light soeirc
67% and 85% classification accuracies were attaipeaspondingly. The pair-wise classification
accuracies between toxigenic AF13 and each atoxidengal species (AF38, AF283 and AF2038) were
80%, 91% and 95%, respectively, under halogen $ghtces, and 75%, 97% and 99% under UV lights,

respectively.

Both studies mentioned above demonstrated the itigypabHSI technique in classifying fungal
species anédspergillus strains, and in this context, studies on earlgct&in of fungal infection in
different varieties of agricultural products weegried out and promising results were demonstrated.
Fiore et al. [106] reported a study using the VIRMISI technique (400-1000 nm) to detect fungal
infection of corn kernels. The authors first exagdirthe system’s feasibility in identifying fungalexies
inoculated with conidial suspensions on PDA medinrRetri dishes and incubated for 7 days. It was
found that each species showed an increasing absmispectral signal during the growth. To evaluate
the changes induced by fungal contamination on kernels in spectral profiles, artificial contantina
assays with different fungal specids flavus 3357,A. parasiticus 2999,A. niger 7096 orFusarium
graminearum 126) were carried out with 12 commercial maizerhig(Z. mays L.). The infected corn
kernels were incubated for a total of 10 days, \aack taken out for imaging on dayl, day 2, dayay, 41
day 7 and day 10. By performing PCA analysis, the fvavelengths of 410, 470, 535 and 945 nm were
selected as taking the highest factor loadings.athiors found that for corn kernels inoculatedhwit
flavus 3357, the Fisher's least significant differencalgsis of spectra between the categories of
uninoculated (control) and day-2 infected corn dasplready showed significant differences at 410 o
470 nm, which demonstrated the possibility of ughmgVis/NIR HSI technique in discriminating fungus
infected corn kernels from uninfected kernels. Thius Vis/NIR HSI could provide an alternative

technique for early detection of fungal infectidrcorn samples. More recently, another work witnco
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772  samples was carried out by Zhao et al. [107] incvlthe NIR HSI technique over the spectral range of
773  921-2529 nm was utilized to identify fungus-infettmrn kernels. The infected corn kernels were

774  artificially infected with 16 spores/mL ofA. parasiticus suspension, and incubated at 30 °C for 1-7 days.
775  Mean reflectance spectra were first extracted fitoerROls, and different spectral pre-processing

776  methods including SG smoothing, moving average shiog (MAS), normalization, SNV and MSC

777  were performed on the extracted spectra indiviguallin combination. The performance of different

778  spectral pre-processing methods was compared basthe yielded SVM classification results. The

779  obtained results showed that the spectral pre-psitg method of “MAS+SNV” performed best when
780  categorizing the kernels into four groups of colnay 1-day 2, day 3-day 4 and day 5-day 7. Based
781  that, the overall classification accuracies of 9%6and 84.38% were achieved with all germ-up kernel

782  (germs towards camera) and mixed germ-up (50%yant-down (50%) kernels, respectively.

783 In addition to corn samples, studies using the td&tnigue to detect fungal infection have also been
784  reported with date fruit, pistachio nuts, pulsed peanuts. Teena et al. [108] published a study

785  employing NIR HSI over the region of 960-1700 nntkassify fungus-infected date fruit. In this work,
786  the date fruit samples were treated as three grampsated control (UC), sterile control (SC) faue

787  sterilized, rinsed and dried) and inoculated sam(ig) (surface sterilized, rinsed, dried and inaimd

788  with A. flavus suspension), and all the samples were imaged d@&hyafter inoculation for a total of 10
789  days using an area-scan HSI system. By perform@W, Fhe top four most significant wavelengths

790  corresponding to the highest factor loadings offitts¢ PC, namely, 1120, 1300, 1610 and 1650 nnewer
791  first selected and then a total of 64 featuresf¢bfures from each selected wavelength) were dgtiac
792  and applied to build the LDA and quadratic discriamit analysis (QDA) classifiers. The classification
793  accuracies for IS were compared with UC and SCragglg using six-class model (control, infected day
794 2, day 4, day 6, day 8 and day 10), two-class m@agitrol vs infected (all stages of infection tthg))
795 and a pair-wise model (control vs each stage efiidn). The mean accuracy (LDA and QDA) for

796  discriminating the IS samples from the SC samplas 91.5%, 91.0% and 99.0% using the six-class,
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two-class and pair-wise model, respectively. Sirhyiladhe accuracy was 92.4%, 100.0% and 99.6% when
identifying the IS samples from the UC samples gi$ite six-class model, two-class model and pairwise
model, respectively. Another study reported clgssif pistachio kernels infected by two different
isolates ofA. flavus, KK11 and R5, which are aflatoxin-producing and+adlatoxin-producing fungal
strains, respectively [109]. The infected samplesewmaged every 24 h after inoculation for a tofal
days by HSI over the spectral range of 900-1700Bwth the LDA and QDA classifiers were established
in this work and their obtained results showed thatQDA performed better than the LDA. The QDA
model could yield 100% classification accuracy istidguishing healthy (control) samples from KK1rl o
R5 infected samples at all stages, while the dleaibn accuracy dropped to 94.4% when considering
infected fungal species. More recently, Karuppighal /110] reported a work on the detection ofgah
infection in five different pulses using NIR HSItlveen 900 and 1700 nm. The five pulses of chiclspea
green peas, lentils, pinto beans and kidney beans artificially infected withA. flavus andPenicillium
commune by spraying with fungus-inoculated water, andithages of healthy and fungal-infected
kernels were acquired at 2-week intervals (0, B, 8 and 10 weeks from artificial inoculation).tBahe
LDA and QDA classifiers were established in six-whgalthy vs the five different stages of infecjion
and two-way (healthy vs every stage of infectiomdels, and the results showed that the LDA classifi
could identify both types of fungal infections wl3-94% accuracy when using the six-way model, and
with 98-100% accuracy when using the two-way mott#lsil five types of pulses, The QDA classifier
also showed promising results as it gave 85-90%racyg for the six-way model and 96-100% accuracy
for the two-way model. Also, the authors identif@gdnificant wavelengths from the first and secél

factor loadings for different types of pulses itéstbyA. flavus andPenicillium commune in this study.

Additionally, Pearson and Wicklow [86] also testhd capability of MSI in transmittance mode in
identifying the fungus-infected corn kernels wittxtensive discoloration” symptoms from asymptomatic
kernels. They used 11 pass bands of the interferiters which were centered at 780, 830, 870, 880

890, 905, 920, 930, 960, 980 and 1020 nm with arbGull width in this work, and their results shalve
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that using 3 determined features determined byssepdiscriminant analysis, the classification
accuracies of 93% and 90% could be achieved fanpgymatic and “extensive discoloration” groups,
respectively. The 3 selected features were % 78pirets < 112, % 920 nm pixels < 208, and % 1020

nm pixels < 128.

4. Conclusions and future prospects

This review summarized the recent research progfedsee important optical techniques, namely FS,
NIRS and HSI techniques in rapid and non-destraatistection of aflatoxin contamination and fungal
infection in a wide variety of agricultural prodsgcand promising results from the reported studes
demonstrated the capabilities of such optical-basetthods. Depending on their detection principles a
hardware components, each optical technique hasvitscharacteristic properties in detecting aflatox
and fungal contaminations. In detail, due to thectffir occurrence of fluorescence phenomenon, S ca
show high sensitivity and specificity when detegtaflatoxin contamination compared with the otlves t
optical techniques. However, the background flumeaselements from the tested sample can oftentaffe
the obtained aflatoxin fluorescence spectra, reguih mixed wide or shifted fluorescence peaksaAs
result, it seems more important to employ suitablemometric techniques for handling fluorescence
spectral data in order to obtain accurate modelddtecting aflatoxins. NIRS, as a classical optica
method, has shown great capabilities in detectidoth aflatoxin contamination and fungal infection
different varieties of agricultural products, amare researchers even developed an automatic fmrter
removing high concentrations of aflatoxin-contantaacorn kernels based on this technique. The
significant reductions in average aflatoxin concatiin of entire lots using NIRS technique haverbee
verified in several studies. However, due to itsir@of “point” detection and the possible inhontogjey
of aflatoxin and fungal contamination on differenmmodities, the accuracy of NIRS may be limited on
detection of the inhomogeneous distribution ofdbetaminations. Thus, multi-point detection may be
required for NIRS to achieve a better predictiothef overall contamination level of the test samiple

addition, it was observed from the reported stuthias most of the work on aflatoxin detection using
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NIRS was based on the sample preparation methodtofal fungal infection or artificial inoculatiaf
aflatoxigenic fungus, which therefore involve threqesses of fungal growth and metabolic activities
may cause interior and/or external changes ofasted samples. Therefore, the underlying prinaple
such detections using NIRS still needs to be ingattd. Other than the spectroscopic methods warieh
generally considered to be based on point-detedi&h fuses the merits of traditional imaging and
spectroscopy techniques, and thus enables the ngappcontaminations within the tested sample, Wwhic
is especially useful for the uneven distributiorcohtaminants, such as aflatoxin. However, the $tig|
remains an expensive technique, and it is stilfrfamn introducing industrial HSI sensor to applioat in
the automatic sorting lines. It appears that duaecigh dimensionality of data and time constsafor
image acquisition and subsequent image analyses udieg the HSI technique, it would be more
practical to seek the most sensitive wavebandsad\SI| systems can be built. Development of more
cost-effective and user-friendly MSI instrument egs to be the logical trend for real-time appiars

of HSI.

It is also apparent from this review that generhdly levels of aflatoxin contamination and earlgggs
of fungal infection may not be accurately detecwutieavors are still needed to improve it in thark
The substantial advancement of hardware and s@&tafathe instrumental systems may provide
improved performance through increased efficierfaphe detection system. Further, the development of
novel chemometric techniques including extractirepmngful and relevant information from the
overlapped and superimposed spectra of complexrfaidces may open a new practical way for
detection of aflatoxin contamination in agriculiyseoducts. The information fusion of different
technigues can also be a promising way for highedliptive accuracy. Moreover, developments that
make the instrument compact, and therefore portable provide a decent signal-to-noise ratio (SNR),
will increase the applicability of the optical inginents for on-site analysis of aflatoxin and funga

contaminations of different commodities. With thevdlopment of optical hardware and chemometrics,
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the optical-based method will become an alterndatieéfor the detection of aflatoxin and fungal

contamination in agricultural products to ensuradfand feed safety.
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Figure Captions

Figure 1. Chemical structures of aflatoxins: (a) AFBb)AFB,, (c) AFG, (d) AFG..

Figure 2. Mean fluorescence emission spectra of controlcamtaminated corn with aflatoxin threshold
of (A) 20 ng/kg, (B) 100 pg/kg [62].

Figure 3. Scatter plots created by the first two canonitsdriminant scores derived from normalized
spectra of FT-NIRS of corn kernels [46].

Figure4. Plots of mean absorbance spectrA.dfavus-infected corn kernels from different categories
[86].

Figure5. Mean spectra of infected (solid line) and unitéedashed line) almonds: (A) original
absorbance spectra, (BY 2lerivative absorbance spectra [94].

Figure 6. Contamination map of the PLS-DA model for corn ska®pl103].

48



H ( OMe

(@) (b) (©) (d)
Figure 1. Chemical structures of aflatoxins: (a) AFBo)AFB,, () AFG, (d) AFG..

49



500 7

400 A

[
(=]
(=]

[
[=]
[=]

Fluorescence

100 A

(A) _&— 467nm
w—— Control
Contaminated
481 nm =20Pe0)
400 500 GO0 700

Wavelength (nm)

Fluorescence

500 1

400 1

300 A

200 A

100 1

(B) & 470nm
m— Conitrol
Contaminated
(>= 100 ppb)
484 nm
400 500 600 700

Wavelength (nm)

Figure 2. Mean fluorescence emission spectra of controlcamtiaminated corn with aflatoxin threshold

of (A) 20 pg/kg, (B) 100 pg/kg [62].

50



6 | /,.---.“""--.\
4 ‘\
:=’ 1
S 4 I‘\\t L] v .,l
© ® at e
! 2 -—= »
S o 3™~ e ] *\
= Y ) ° °& \
~ . < % ’ 1 C A
= 0 '~ 00 - 1 O "o o 1
P S, o %% 20 o
o
* .
# . 4
2 i *e Y Group 1 (< 20 ug/kg) "‘-.._ P
- ~ -
'-..._0 W B ® Group 2 (20-200 ug/kg) S ————
i ,,' Group 3 (300-450 ug/kg)
4 4 . + Group 4 (550-700 ug/kg)
- & . ;
¢ Group 5 (= 850 ug/'kg)
-H + - + - -
& 4 -1 [ 2 4 6 B 10 12

Can 1 (78.9 %)
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Table 1. Recent publications on qualitative/quantitativeedébn of aflatoxin contamination in different agritural products using the three optical methods.

Product Tested Contaminated sample Whether Instrument used Measurement Spectral range  Data analysis Accuracy Reference
aflatoxin source needs sample mode (nm) method
pre-
processing
before
collecting
spectral data?
Pistachio nut Total Provided by nut No Fluorescence MSI Fluorescence 410, 440, 480,FSP-DF 92% [39]
aflatoxins  processor 520, 560, and
600
Cashew Total Provided by nut No Fluorescence MSI Fluorescence 410, 440, 480,FSP-DF 82% [39]
aflatoxins  processor 520, 560, and
600
Red chili AFB; Spiking with the No FT-NIRS Diffuse 780-2500 PLSR R=0.967 [45]
powder AFB; standard in reflectance (12800-3600 cm
methanol !
Corn Total Both naturally Yes FT-NIRS Reflectance 1000-2500 LDA, KNN, PLS- Classification: 60-96% in [46]
aflatoxins  contaminated and (4000-9999 cm DA; MLR validation;
field-inoculated b Quantification: R?% 0.60-0.88,
RMSEP: 106-194 pg/kg
Corn, barley, AFB; Induced by No Vis/INIRS Reflectance 400-2500 PLS-DA c&=0.80/0.85/0.92; [47]
corn+barley vaporization with SECV=0.211/0.176/0.142 for
water corn, barley and corn+barley,
respectivel
Corn, barley, AFB; Induced by No FT-NIRS Reflectance 1112-2500 PLS-DA R.v?=0.82/0.84/0.81; [47]
corn+barley vaporization with (9000-4000 cm SECV=0.201/0.183/0.203 for
water b corn, barley and corn+barley,
respetively
Corn Total Artificial inoculation  No Fluorescence HSI Fluorescence 400-600 SAM 866 20 ppb as the [58]
aflatoxins  of corn ears withA. threshold;
flavusin the field 88% with 100 ppb as the
threshold
Corn Total Artificial inoculation  No Fluorescence HSI Fluorescence 400-600 MLR/DA uatid R?=0.72; [59]
aflatoxins  of corn ears withA. classification accuracies: 84-
flavus in the fielc 91%
Corn Total Artificial inoculation  No Fluorescence HSI Fluorescence 400-600 GA-SPCR, P R.:0.80-0.82 [60]
aflatoxins  of corn ears withA.
flavusin the field
Corn Total Artificial inoculation  No Fluorescence HSI Fluorescence 400-600 GA-SVM 7%7vith 20 ppb as the [61]
aflatoxins  of corn ears withA. threshold;
flavusin the field 90.5% with 100 ppb as the
threshold
Corn Total Artificial inoculation  No Fluorescence HSI Fluorescence 400-900 ML andrpin  Validation accuracy: 80-88% [62]
aflatoxins  of corn ears withA. encoding
flavus in the fielc
Corn Total Artificial inoculation  No Fluorescence HSI Fluorescence 400-700 LDA 787 .2% with 20 ppb as [63]
aflatoxins  of corn ears witt the threshold; 94.4 and 91.7
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AF13 and AF38 in
the field

with 100 ppb as the threshold

Corn Total Artificial inoculation  No Fluorescence HSI Fluorescence 398.77-700.82 VIA/ENN 86.67-93.33% [65]
aflatoxins  of corn ears withA.
flavus in the fielc
Corn Total Artificial inoculation  No HSI Reflectance 460.87-876.99 LS-SVM/KNN 90-94% [65]
aflatoxins  of corn ears withA.
flavusin the field
Corn Total Artificial inoculation  No Fluorescence and Fluorescence Fluorescence: LS-SVM/KNN 90-95.33% [65]
aflatoxins  of corn ears withA. normal HSI and reflectance 398.77-700.82
flavusin the field Reflectance:
460.8-876.9¢
Peanut AFB; Inoculation withA. Yes Luminescence Fluorescence 400-600 / cR0.99 between log (AFB; [66]
kernel flavus and then spectrometer concentration) and
incubatior logy (fluorescence intensity
Hazelnut Total Soaking inA. No Fluorescence MSI Fluorescence 400-510, 550, LDB-LDA 92.3% [67]
kernel aflatoxins  parasiticus 600
suspension and pure
water, and then
incubation
Groundred Total Obtained from the No Fluorescence MSI Fluorescence 400-510, 550, LDB-LDA 79.2% [67]
chili pepper  aflatoxins  market 600
Pistachio nut  Total / No Dual-wavelength Fluorescence 420, 490 Ll 4001 420) Total classification errors of  [70]
aflatoxins fiber optic 20.4,15.4,
photomete 4.0, and 13.9¢
Nutmeg AFBy, Uncontaminated Yes FF Fluorescence 200-800 PLSR P2 R.773, [76]
powder AFB,, samples spiked with SEP=1.0ug/L,
AFG; and aflatoxin standard
AFG;
Wheat AFB Purchased from Yes Spectrofluorimetry ~ Enhanced 390-490 PARAFAC R>0.99, [77]
markets fluorescence LOD=0.9pug/kg
Pistachio AFB Provided by a Yes Spectrofluorimetry ~ Enhanced Normal: 380- MLR, PCR, REP: 4.35-27.95% [78]
research lab fluorescence  480; PLSR
Synchronous:
300-430
Groundred Total Obtained from No Fluorescence MSI Fluorescence 400-510, 550, LDA/MLP 67.5-87.5% [83]
chili pepper  aflatoxins  market 600
Groundred Total Obtained from No Fluorescence HSI Fluorescence 400-720 LDA/MLRVSV The best classification [83]
chili pepper  aflatoxins  market accuracy=72.63%
flakes
Groundred  Total Obtained from No HSI Reflectance 400-720 LDA/MLP/SVM  The bestssidication [83]
chili pepper  aflatoxins  market accuracy=83.26%
flakes
Corn Total Wound-inoculation  No Vis/NIR Transmittance Transmittance: DA, PLSR Classification accuracy>95% [84]
aflatoxins  with A. flavusin the spectrometer /Reflectance  500-950, for groups of aflatoxins>100
field Reflectance: or <10 ppb; ~25% for
550-1700 10<afaltoxing100 ppb
Corn Total Wound-inoculation  No Vis/NIR Reflectance 400-1700 MD > 99% with kernels statipna [85]
aflatoxine  with A. flavusin the spectromete and 100 ppb as the thresh
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Corn

Corn

Paddy rice

Red paprika
powder

Corn

Corn

Corn

Corn

Corn

Corn

Corn

Corn

Total
aflatoxins

Total
aflatoxins

AFB

AFB,,
Total
aflatoxins
AFB

AFB

AFB,

AFB

Total
aflatoxins

Total
aflatoxins

AFB,

AFB,

field or naturally
infected
Wound-inoculation
with A. flavusin the
field or naturally
infected

Purchased from
markets and artificial
inoculation withA.
flavusin the field
Naturally and
artificially
contaminated by
adding water to the
samples induce the
AFB; productior
Naturally
contaminated

Artificial surface
contamination with
aflatoxin standard
dissolved in
methanol

Artificial surface
contamination with
aflatoxin standard
dissolved in
methanc

Artificial inoculation
of corn ears withA.
flavus in the fielc
Artificial inoculation
of corn ears withA.
flavusin the field
Artificial inoculation
of corn ears withA.
flavusin the field
Artificial inoculation
of corn ears withA.
flavusin the field
Artificial inoculation
of corn ears withA.
flavusin the field
Artificial surface
contamination with
AFB; solutions

Yes

No

No

No

No

No

No

No

No

No

High-speed optical
sorter

MS optical sorter

FT-NIRS

NIRS

HSI

HSI

HSI

HSI

HSI

HSI

HSI

HSI

Reflectance

Reflectance

Reflectance

Reflectance

Reflectance

Reflectance

Reflectance

Reflectance

Reflectance

Reflectance

Reflectance

Reflectance

750, 1200 Rejection

threshold

Nine distinct LDA
wavelengths
between 470 and

1550
1000-2500 PLSR
(4000-10000 cm ng/kg
Y
1100-2000 modified PLSR RMSEPA®ug/kg for
AFB;,/total aflatoxins
1000-2500 Stepwise FDA 88%
400-1000 Stepwise FDA 98%
1000-2500 SAM 92.3%
1000-2500 SAM 50-96.15%
400-900 DT 90%
700, 800 Pixel threshold 80%
based on ratio
image
1000-2500 SVM, Correlatior82.50%,
analysis Re?=0.70
1100-1700 PLS-DA 90.7-96.9%

Reduction in aflatoxins
averaged 82% with an initial
level of aflatoxins at >10 ppb;

38% at <10 ppb

83% reduction in total

aflatoxins

[85]

[87]

R?: 0.79-0.85, SEP: 3.21-3.62[88]

[89]

[97]

(98]

(99]

[100]

[101]

[101]

[102]

[103
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Table 2. Recent publications on detection of aflatoxigeniegfal infection in different agricultural productsing the three optical methods.

Product Infected sample source Instrumentused  Measurement Spectral range Data analysis Accuracy Reference
mode (nm)
Hazelnut kernel Soaking . parasiticus Fluorescence MSI  Fluorescence 400-510, 550, 600 -LDB 95.7% [67]
suspension and pure water, and
then incubation
Corn Artificial inoculation of corn Vis/NIRS Reflectance 550-1770 Stepwise DA 97-98%aemtifying the [86]
ears withA. flavus in the field “asymptomatic” samples; 85-91% in
identifying the “extensive
discoloration” samples
Corn Artificial inoculation of corn MSI Transmittance 780, 830, 870, Stepwise DA 93% and 90% achieved for [86]
ears withA. flavus in the field 880, 890, 905, asymptomatic and “extensive
920, 930, 960, 980 discoloration” groups, respectively
and 1020
Peanut Avrtificial inoculation witt. Spectrophotometer  Transmittance 700, 1100 Trareamoit Aflatoxin content reduced to 4-18%  [90]
flavus between the two seed ration threshold levels after segragation
leaves
Corn Wound-inoculation witi. NIRS Reflectance 904-1685 LDA, ANN LDA: 93%, 76%dar%, [91]
flavusin the field ANN: 81%, 86% and 68% for
uninfected, early and advanced stage
groups, respectively
Corn Artificial inoculation withA. NIRS Reflectance 1100-2500 PLSR RPD: 1.55-1.74vfasle grain in [92]
flavus and incubation determining the infected ratios;
RPD: 3.40-5.36 for ground grain in
determining the infected rati
Rice Artificial inoculation with NIRS Reflectance 950-1650 PLSR The besaitl SEP are 0.71 and [93]
different concentrations &. 28.07% for predicting the percentage
flavus without incubatio of total fungal infection, respective
Rice Artificial inoculation with NIRS Reflectance 950-1650 PLSR The besaitl SEP are 0.48 and [93]
different concentrations &. 17.93% for predicting the percentage
flavus without incubation of yellow-greenAspergillus infection,
respectivel
Shelled almond kernel  Artificial inoculation with NIRS Reflectance 800-2500 CDA The best and smatlessifiers [94]
flavus, A. parasiticus, and achieved total classification error rates
incubation of 0.09% and 0.26%, respectively
Dried fig Obtained from a fig co- FT-NIRS Reflectance 780-2500 LDC, LOGLC, Classification errors: 0.00-0.33% [96]
operative QDC, KNN,
PARZENC
Corn Artificial inoculation withA. HSI Reflectance 400-1000 Fisher's least The categories of uninoculated and  [106]
flavus, A. parasiticus, A. niger significant day-2 infected samples already showed
and incubation for different difference analysis significant differences at 410 or 470
times nm
Corn Artificial inoculation withA. HSI Reflectance 921-2529 SVM 67.71-91.67% [107]
parasiticus and incubation for
different time:
Date fruit Artificial inoculation withA. HSI Reflectance 960-1700 LDA, QDA LDA for classifig UC/SC and [108]

flavus

different stages of IS samples: 74-
97%/74+-94%
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QDA for classifying UC/SC and
different stages of IS samples: 97-
1009%/95-100%;

Pistachio kernel Artificial inoculation witA. HSI Reflectance 900-1700 LDA, QDA LDA accuracied Brclass [109]
flavus KK11 and R5 classification: 45.8-97.9%;
QDA accuracies in 15-class
classification: 70.8-100%;
QDA accuracies in classifying healthy,
samples infected b&. flavus KK11 or
R5 at all stages: 91.3-100%
Five pulses of chick Artificial inoculation withA. HSI Reflectance 900-1700 LDA, QDA LDA accuracie$ialass [110]
peas, green peas, flavus and incubation classification: 71.6-100%;
lentils, pinto beans and QDA accuracies in 6-class
kidney bean classification: 69.-100%
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Key optical methods for detecting aflatoxin and fungal contamination

Advantages of optical techniques over conventional detection methods

Advancesin optical method development for aflatoxin and fungal contamination
Applications of optica methodsin reducing aflatoxin contamination of commodities

Future trends and challenges for detection of aflatoxin and fungal contamination



