
Sustainable Cities and Society 64 (2021) 102532

Available online 7 October 2020
2210-6707/© 2020 Published by Elsevier Ltd.

Robust optimization of renewable-based multi-energy micro-grid 
integrated with flexible energy conversion and storage devices 

Amir Aris Lekvan a, Reza Habibifar b, Mehran Moradi a, Mohammad Khoshjahan c, 
Sayyad Nojavan d, Kittisak Jermsittiparsert e,f,* 
a Department of Electrical and Computer Engineering, Tarbiat Modares University, Iran 
b Electrical Engineering Department, Sharif University of Technology, Iran 
c Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA 
d Department of Electrical Engineering, University of Bonab, Bonab, Iran 
e MBA School, Henan University of Economics and Law, Zhengzhou, China 
f Political Science Association of Kasetsart University, Bangkok, Thailand   

A R T I C L E  I N F O   

Keywords: 
Multi-energy microgrid 
Wind energy 
Electrical vehicle 
Hybrid robust/stochastic approach 
Power-to-gas 
Demand response 

A B S T R A C T   

This paper presents a new model for optimal scheduling of renewable-based multi-energy microgrid (MEM) 
systems incorporated with emerging high-efficient technologies such as electric vehicle (EVs) parking lots, 
power-to-gas (P2G) facility, and demand response programs. The proposed MEM is equipped with wind energy, 
multi-carrier energy storage technologies, boiler, combined heat and power unit, P2G, EVs, and demand response 
with the aim of total operational cost minimization. Meanwhile, the system operator can participate in three 
electricity, heat, and gas market to meet local demands as well as achieve desired profits through energy ex-
changes. The proposed MEM is exposed to high-level uncertainties due to wind energy, demand, the initial and 
final state of charge of EVs, arrival and departure times of EVs, as well as power price. A hybrid robust/stochastic 
framework is used to capture all random variables and distinguishes between the level of conservatism in the 
decision-making procedure. The electricity price uncertainty is addressed by a robust approach, while a sto-
chastic framework models other uncertainties of the system. Simulations are provided for different cases, which 
results revealed that the integrated scheduling of MEM in the presence of emerging technologies, incorporated 
with vehicle-to-grid (V2G) capability, reduces the total operational cost by 14.2 %.   

1. Introduction 

1.1. Motivation 

Reasonable operations of multi-carrier energy systems will be able to 
offer the high-efficiency utilization of renewable energy sources (RES), 
as well as the reliability improvement of energy supply. Multi-energy 
microgrids (MEMs) integrated by multiple energies can provide high 
energy supply flexibility for not only electrical end-users but thermal or 
gas consumers. The emerging of the flexible sources in a MEM can 
facilitate the integration of high penetration of RES and offer significant 
benefits from technical and environmental points of view. EVs are 
regarded as the main element of the modern energy system to reduce the 

emission pollution, as well as mitigate the fluctuation nature of RES via 
mobility capability. Incorporating the MEM with EV parking lot lets to 
multiple benefits such as operation cost and emission minimization, load 
management, and high integration of RES. Meanwhile, the power to gas 
(P2G) technology as a highly efficient gas storage technology links the 
electricity and natural gas (NG) sectors in the MEM. The P2G converts 
surplus power produced by RES into the NG via the electrochemical 
process. The produced NG saved and injected into the MEM to supply 
local NG load, utilize as primary fuel for the NG-based generation units 
such as boiler unit and combined heat and power (CHP), or sold to the 
NG network. Also, demand response (DR) as one of the key flexible 
resource offers more flexibility for the power system (Robert, Sisodia, & 
Gopalan, 2018). The load-shifting capability led to increasing interests 
in DR program, which enable the MEM’s operator to schedule demand at 
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peak hours and save energy to minimize total operation cost. Incorpo-
rating P2G, DR program based on shiftable loads, as well as EV parking 
lots in MEM while provides an appropriate framework to supply elec-
trical, gas and thermal loads, creates an opportunity for the operator to 
participate in multi-carrier markets and exchange power, heat and NG 

with corresponding networks. However, RES based wind energy power 
output, electrical demand, as well as power price uncertainties impose 
the operation of MEM and should be captured via a useful approach. 
Furthermore, the arrival and departure time, as well as the state of 
charge of EVs parking lots should be modeled to achieve a more realistic 

Nomenclature 

Index 
i Index of EVs 
m Categories of EVs 
s Index of scenarios 
t Index of times 

Parameters 
CDR Cost of demand response program based shiftable 

capability 
CES Electrical storage operation cost for discharge mode 
CGS Gas storage operation cost for discharge mode 
NT Number of time horizon 
NM Number of EV’s categories 
Ni Number of EVs 
Narr

m Number of EVs from category m which arrived to the 
parking lot 

Pmin
chp/Pmax

chp Min/max power produced by CHP unit 
PA

chp/PB
chp/PC

chp/PD
chp For power generation points of CHP in the 

corresponding operation region 
HA

chp/HB
chp/HC

chp/HD
chp For heat generation points of CHP in the 

corresponding operation region 
M The large auxiliary number 
RUp

chp/RDn
chp Ramp up/ramp down rate of CHP 

UTchp/DTchp Minimum up/down times of CHP 
em Electrical vehicle from category m 
ηi The CHP efficiency 
ηBoil The boiler efficiency 
Hmin

Boil/Hmax
Boil Min/max produced heat by boiler unit 

PD,minPD,max Min/max power discharged by electrical storage 
PCH,min /PCH,max Min/max power charged by electrical storage 
esCH/esD Efficiency coefficient for Charging/discharging mode 
ESmin/ESmax Min/max energy capacity of electrical storage 
HD,min/HD,max Min/max discharged heating by heat storage 
HCH,min/HCH,max Min/max charged heating by heat storage 
ehCH/ehD Efficiency coefficient for charging/discharging modes of 

heat storage 
eh The heat loss coefficient for heat storage 
HSmin/HSmax Min/max energy capacity of heat storage 
ηP2G The efficiency of P2G 
PP2G,max Max power consumed by the P2G during charging 
GD,max Max produced natural gas by the P2G during discharging 
GSmin/GSmax Min/max energy capacity of the P2G 
Smax

m Max state of charge of EV’s battery 
PDis,max

em 
Maximum power discharging of EV from category m 

PCh,max
em 

Maximum power charging of EV from category m 
Emax

e Maximum energy capacity of EV 
ηch

e /ηDis
e Charging/discharging efficiency of EV 

Cbi Investment cost of batteries of EV to grid services 
Lc Life cycle of EV Battery 
Eb Average capacity of EV battery 
Ddod Depth of discharge of battery 
Δt Sampling time to count available EV in the parking lot 

λg
t NG price at time t 

Variables 
OF Objective function 
λe

t,s Hourly electricity price at time t and scenario s 
PP2G

t,s Inlet electricity into P2G at time t and scenario s 
dt,s Electricity demand at time t and scenario s 
Pchp,t,s/Pchp,t− 1,s The generated power by CHP at time t /t-1 
PD

t,s/PCH
t,s The electricity discharged/charged value by ESS at time t 

and scenario s 
DRt,s The value of demand which participate in DR program at 

time t and scenario s 
GCt,s The value of consumed NG by CHP unit at time t and 

scenario s 
GBt,s T he value of consumed NG by boiler unit at time t and 

scenario s 
GLt,s The natural gas load at time t and scenario s 
GD

t,s/GCH
t,s The value of discharged/charged heating by heat storage at 

time t and scenario s 
Ichp,t,s Binary variable for CHP operation at time t and scenario s 
Hchp,t,s The produced heat by CHP at time t and scenario s 
IBoil,t,s Binary variable for boiler operation at time t and scenario s 
HBoil,t,s The produced heat by boiler at time t and scenario s 
IeD

t,s/IeCH
t,s Binary variable for discharging/charging mode of 

electrical storage at time t and scenario s 
ESt,s/ESt− 1,s Energy capacity of electrical storage at time t/t-1 and 

scenario s 
IhD

t,s/IhCH
t,s Binary variable for discharging/charging mode of heat 

storage at time t and scenario s 
HD

t,s/HCH
t,s The discharged/charged heating by heat storage at time t 

and scenario s 
HSt,s/HSt− 1,s Heat volume of heat storage at time t/t-1 and scenario s 
GSt,s/GSt− 1,s P2G energy capacity at time t/t-1 and scenario s 
Et,s The amount of power purchased from electricity market at 

time t and scenario s 
Gt,s The amount of NG purchased from gas market at time t and 

scenario s 
HLt,s The heating load at time t and scenario s 
DRup

t,s/DRdown
t,s The value of load which participate in DR program at 

time t and scenario s 
PDis

e,t,s The amount of power discharging of EV at time t and 
scenario s 

PCh
e,t,s The amount of power charging of EV at time t and scenario 

s 
Ee,t,s/Ee,t− 1,s The energy capacity o EV at time t/t-1 and scenario s 
Earr

e,t,s The increased energy related to entering the EVs to the 
parking lot at time t and scenario s 

EDep
e,t,s The decreased energy related to departing the EVs from the 

parking lot at time t and scenario s 
Sli,s The initial energy of the EV when arrived into the parking 

lot at time t and scenario s 
wi,t,s Binary variable for EV status: equals to 1 if EV connected to 

grid at time t at time t and scenario s, otherwise is 0  
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model. 
Although, the integrated multi- energies microgrid provides multiple 

advantages for end-users and utility, coordination of different energy 
carriers coupled with new energy production and conversion compo-
nents such as EVs, P2G, DRP, and multi-carrier energy storage in MEM 
will cause a lot of complexity in terms of scheduling and management. 
Furthermore, the fluctuation of load demand, power price, wind power 
output, and EVs behavior imposed the optimal operation of MEM, which 
needs further development. 

1.2. Related works 

The combination attitude of multiple energy carriers has been 
studied in different dimensions. Co-optimization of energy networks, 
including electrical and NG systems, was first studied by Geidl and 
Andersson (2007). In this framework, the optimal operation of the in-
tegrated energy system considering operational constraints related to 
voltage limitation, as well as gas pressure, has been investigated. The 
different energy sectors can be simultaneously produced through highly 
efficient co-production units like the combined cooling, heating, and 
power (CCHP) (Cho, Smith, & Mago, 2014; Liu, Shi, & Fang, 2014). 
Once deployed in the energy storage technologies, distribution energy 
networks, CCHP plant and the RES units can form a multi-energy 
microgrid. In Li and Xu (2018), The optimally coordinated energy 
dispatch of MEM in both islanded and grid-connected modes, including 
fuel-cell, boiler, CHP, wind, and solar energy to minimize operational 
cost, was investigated. The stochastic optimal operation of MEM 
considering RES and parking-lots based EVs uncertainties was devel-
oped in Shafie-khah et al. (2019). The proposed MEM integrated with 
both electrical and thermal generation units, such as the CHP unit 
incorporated with the DR program. A mixed-integer linear programming 
(MILP) optimization model to determine the technology placement and 
energy dispatch of MEM was developed in Mashayekh, Stadler, Cardoso, 
and Heleno (2017), considering the limitations of electrical and heat 
transfer. The integrated MEM considering line rating and market con-
dition with the aim of operational cost minimization was investigated by 
Markov and Rajaković (2019). The main focus of this work has therefore 
been placed on MEM connection with the power market through the 
additional line. The optimal energy dispatch between energy hub sys-
tems decomposed into different sub-problems and solved via the 
branch-and-bound method in Moeini-Aghtaie, Dehghanian, 
Fotuhi-Firuzabad, and Abbaspour (2013). The comprehensive model of 
NG network based on the transient model was developed in Zlotnik, 
Roald, Backhaus, Chertkov, and Andersson (2016). According to NG 
price variation and its effects on NG fired-units operation, the integrated 
NG and electricity systems co-optimized. The stochastic scheduling of 
coordinated NG and electricity systems was developed in Zhang, Che, 
Shahidehpour, Alabdulwahab, and Abusorrah (2016). The DR program 
is incorporated with a multi-carrier energy system as a virtual genera-
tion unit while the load demand and RES power output are considered as 
uncertain parameters. The optimal scheduling of electrical and NG dis-
tribution networks coupled via interconnected energy hub systems 
based on the stochastic approach was developed by Jin et al. (2016). In 
Amir and Azimian (2020), the economic dispatch of MEM deployments 
under multiple uncertainties, including electrical and thermal demands, 
power price, and solar irradiation was investigated. The proposed 
MCMS incorporated with dispatchable and non-dispatchable generation 
units, energy storage devices, and DR program. Authors in Khaloie et al. 
(2020), proposed a novel bidding strategy framework for an integrated 
energy system in the deregulated electricity market. The proposed 
approach consists of two objective functions, the first one copes with 
profit maximization, while the second minimize the emission pollution. 

The emergence of high-flexible technologies such as the P2G facility 
makes the interconnection between NG and electricity systems. The P2G 
facility converts surplus power into NG; after that, the produced NG 
stored and injected into the NG network at higher NG prices. Using 

excessive RES into NG results in a reduction of power curtailment pro-
duced by the unpredictable generation unit (Zeng, Fang, Chen, Li, & 
Zhang, 2016; Zeng, Zhang, Fang, & Chen, 2017). Authors in Clegg and 
Mancarella (2015) evaluated the effects of the P2G facility in a 
multi-carrier system. The main objective of the proposed model is to 
utilize the appropriate potential of P2G to facilitate the integration of 
high penetration of RES. In Shabanpour-Haghighi and Seifi (2015), a 
robust strategy for the daily scheduling of coordinated power and NG 
networks in the presence of a P2G facility was developed. Authors in 
Lyseng et al. (2018) investigated the potential of P2G to diminish the 
curtailment of RES. In addition, the co-optimize capacity sizing of solar 
and wind energy, and electrolyzer was investigated in this paper. Nu-
merical results show that the integration of P2G with RES leads to the 
reduction of RES curtailment. In Nazari-Heris, Mirzaei, 
Mohammadi-Ivatloo, Marzband, and Asadi (2019), P2G technology is 
developed to offer the high integration of wind energy in the distribution 
networks. The interconnection of electricity and NG networks via P2G 
and NG-based generation power plant is presented as a two-stage mul-
ti-objective programming with the aim of minimize the environmental 
pollution and operational cost. The optimal strategy of integrated 
scheduling of the P2G and NG –based generation plants in the regulation 
market, based on the stochastic programming approach, was developed 
by Li et al. (2018). 

Demand response (DR) as emerging flexible technology has an 
important role in the optimal management of multi-energies systems. 
Generally, DR programs are categorized into two primary groups, con-
sists of price-based and incentive-based DR programs (Jordehi, 2019). In 
Neyestani, Yazdani-Damavandi, Shafie-Khah, Chicco, and Catalão 
(2015), the optimal operation of a smart energy hub under the stochastic 
demand response was investigated. The interval optimization approach 
for a multi-energy system considering an integrated DR program was 
developed by Su, Zhou, and Tan (2020). The dynamic switching of 
energy-carrier, including NG and power to respond to the power price 
considering load demand and solar power uncertainties, were investi-
gated in the presented strategy. In Haghifam, Dadashi, Zare, and Seyedi 
(2020), optimal scheduling of smart distribution networks in the pres-
ence of DR aggregators and microgrid utilities based on the Game theory 
was proposed. The dynamic economic dispatch model of a multi-flexible 
energy system incorporated with price-based DR was developed by Niu, 
Tian, Zhu, and Yue (2020). Integrated DR with the proposed 
multi-energy system offers multiple ancillary services for the power grid. 
Authors in Li, Roche, Paire, and Miraoui (2019), proposed a price de-
cision approach for multiple MEM based on a MILP model integrated 
with the DR program. Each MEM can purchase or sell the power to 
another. The energy management model of the smart multi-energy 
system based microgrid considering DR programs was investigated by 
Wang et al. (2018). In Wang, Zhong, Ma, Xia, and Kang (2017), the 
comprehensive concept and key factors of integrated DR programs in the 
multi-energy systems considering electricity, thermal and gas sectors 
was investigated. The renewable and CCHP-based microgrid in the 
presence of DR program was developed by Saberi, Pashaei-Didani, 
Nourollahi, Zare, and Nojavan (2019). The proposed model is formu-
lated as a multi-objective problem with the aim of operational cost and 
emission minimization. 

The appropriate potential of electrical vehicle parking lot to facilitate 
the integration of RES, and emission pollution reduction has attracted 
more attention in energy systems. The incentive mechanism for EVs 
participation in the DR programs based on a contract theory approach 
was developed by Zhou, Wang, Guo, and Zhang (2019). The contract 
optimization problem falls into the category of the difference of convex 
programming and the iterative convex-concave procedure algorithm 
was applied to solve it. The environmental and economic evaluation of 
optimal scheduling of renewable-based microgrid in the presence of EVs, 
wind and solar energy was investigated by Liu et al. (2020). The 
modified harmony search algorithm was applied to solve the 
multi-objective problem. The integrated energy system including group 
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of grid-connected islands in the presence of EVs incorporated with a DR 
to provide storage capacity for electrical energy from RES was presented 
in Pfeifer, Dobravec, Pavlinek, Krajačić, and Duić (2018). The results 
revealed that the interconnections between islands increased the share 
of energy from RES while vehicle to grid (V2G) capability enables uti-
lization of cooperation between energy sectors. To mitigate the fluctu-
ations of wind farms power output, authors in Raoofat et al. (2018), 
investigated a power smoothing service using the DR program of EVs 
connected to the neighboring systems. The results of this study 
demonstrated the effectiveness of the proposed approach in the miti-
gating of wind power fluctuations as well as charging the EVs. In Jabari, 
Jabari, Mohammadi-ivatloo, and Ghafouri (2019), the optimal 
short-term integration of combined desalination, heating and power 
considering DR programs based on real-time pricing for multiple loads 
in the presence of the participation of aggregated PEV for different cases 
has been investigated. The bi-level optimization model for the optimal 
scheduling of a smart distribution utility integrated with the EV parking 
lots, as well as wind and solar energy has been investigated by Sadati, 
Moshtagh, Shafie-khah, Rastgou, and Catalão (2019). A new method-
ology for EVs operation problem with multiple vehicle types in public 
transport system was developed by Yao, Liu, Lu, and Yang (2020). Nu-
merical results of the proposed method show annual operational costs 
reduction by 15.93 % compared with the conventional model. In Hab-
ibifar, Lekvan, and Ehsan (2020), a risk-constrained optimal operation 
of EV’s aggregators to participate in freuencyy regulation and energy 
markets was evaluated considering load and price uncertainty. 

The penetration of RES, along with the energy price and energy 
consumption fluctuations, imposed the optimal scheduling and man-
agement of integrated energy systems. There are multiple uncertainty 
modeling which are captured in the literature to mitigate the challenges 
caused by uncertain parameters. The comprehensive decision making 
under uncertainty in modern energy systems was investigated by 
Hemmati, Mohammadi-Ivatloo, and Soroudi (2020) and Soroudi and 
Amraee (2013). Authors of Habibifar, Khoshjahan, and Ghasemi (2020), 
focused on the optimal day-ahead scheduling of multi-carrier energy 
system based on the energy hub concept, considering wind, load, and 
energy price uncertainty. The proposed energy hub can participate in 
gas and day-ahead energy market to supply electrical, gas, and thermal 
loads. The optimal operation of energy hub consists of cooling, heating, 
and electrical demands incorporated with DR program and RES was 
investigated by Rakipour and Barati (2019). To handle system un-
certainties, including three types of consumption: cooling, heating, and 
electrical, and RES power production, the stochastic programming 
method was implemented. In Najafi, Falaghi, Contreras, and Ramezani 
(2016), the optimal stochastic operation of energy hub was studied 
where the hourly electricity price, and wind energy are captured as 
uncertain parameters. The risk-based optimally energy management 
model of energy hub systems based on a MILP model was developed by 
Soroudi and Keane (2015). The main goal of the proposed model is to 
minimize the total operation costs. The optimal stochastic scheduling of 
the RES-based residential energy hub incorporated with EVs and solar 
systems was investigated by Bahrami, Toulabi, Ranjbar, Moeini-Aghtaie, 
and Ranjbar (2017). The chance-constrained optimal operation of smart 
reconfigurable microgrid in the presence of wind, solar, and load un-
certainties has been evaluated by Hemmati, Mohammadi-Ivatloo, Aba-
pour, and Anvari-Moghaddam (2020). A two-stage stochastic operation 
of coordinated electricity and NG network considering compressed air 
storage system and DR program was developed by Mirzaei et al. (2019). 
The risk-based two-stage stochastic scheduling of renewable-based 
reconfigurable microgrids in the presence of wind and power price un-
certainties with the aim of profit maximization was investigated by 
Hemmati, Mohammadi-Ivatloo, Ghasemzadeh, and Reihani (2018). 

1.3. Contribution and novelty 

The development of distributed energy sources will increase the 

dependency of energy carriers, like heating, gas, and power. On this 
basis, the cross-impact of multiple energy carriers should be developed 
under the concept of MEM under the integrated and comprehensive 
model. However, the integration of emerging flexible technologies like 
EVs parking lots, DR program, and P2G facility with considering multi- 
energy market (thermal, gas, and electricity markets) with the hybrid 
optimization approach has rarely been studied in the literature. There-
fore, this paper evaluates the optimal operation of MEM integrated with 
P2, EVs parking lot, and DR program based on the hybrid robust/sto-
chastic approach. The proposed model is associated with multiple 
random variables, consists of wind energy, load demand, power price, 
arrival and departure times, and state of charge of EVs. The scenario- 
based stochastic approach is used, while a robust optimization strat-
egy is applied to model the power price uncertainty. The comprehensive 
scheduling model, considering the multi-energy market concept for the 
system operator to purchase the required energy which has been ignored 
in the literature. Briefly, the main contributions of this paper are out-
lined as follows: 

1 Proposing a novel multi-energy microgrid incorporated with multi-
ple generation and consumption sectors.  

2 Integrating the power-to-gas facility as a connection point between 
power and NG grids to increase the flexibility of the operator’s de-
cision-making.  

3 Evaluating the comprehensive model of EVs parking lot as a mobile 
load or generation unit in MEM.  

4 Proposing the hybrid robust/stochastic framework to address high- 
level uncertainty, including wind energy, load demand, EVs 
behavior, as well as price fluctuation. The hybrid framework uses the 
advantages of both methods simultaneously to address the un-
certainties of the system.  

5 Considering responsible demand to participate in the DR program as 
a flexible resource. which provides the more flexibility for the 
operator contributing the higher economic benefits.  

6 Establishing the MEM connection and participation in electrical, 
thermal, and gas markets. The MEM’s operator can participate in 
both markets to purchase the required energy. 

1.4. Paper organization 

The rest of this paper is organized as follows: Section 2 presents the 
problem description and P2G concept. The problem formulation of MEM 
scheduling integrated with multiple components contains objective 
function and constraints related to multiple are represented in Section 3. 
Section 4 presents the hybrid robust/stochastic strategy to address sys-
tem uncertainties and reformulated the proposed MEM operation model. 
Numerical results and investigates the performance of the proposed 
model are given in Section 5. Finally, Section 6 concludes the paper. 

2. Problem description 

The optimal operation of a multi-energy microgrid system in the 
presence of multiple flexible and conventional resources imposed by 
high-level uncertainty. Firstly, for more information about the P2G 
mechanism of P2G and its operation in the energy system is developed. 
Secondly, the main problem of MEM operation with the aim of opera-
tional cost minimization will be described. 

2.1. P2G mechanism 

The P2G storage, as a flexible emerging resource, makes a connection 
between multiple energy sectors. The surplus produced energy by wind 
is given to P2G when the power price reaches a lower value. The P2G 
converted the electricity into the NG and saved it in the tanks. When the 
NG prices reach high values, P2G releases the converted NG to the 
system and causes the operator unwanted to buy the NG from the 
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upstream network. The conversion mechanism of power to the NG by 
P2G facility consists of two main processes. Firstly, the electrolyzer 
process breakdown water to oxygen and hydrogen by consumed the 
electricity as a chemical reaction: 2H2O→O2 + 2H2. Secondly, the 
generated hydrogen in the mentioned reaction is combined with carbon 
dioxide and formed the mechanization reaction as: 
4H2 + CO2→2H2O + CH4. In addition to NG production in whole pro-
cess, the generated hydrogen in the first reaction is used singly. It should 
be noted that the generation of hydrogen is more impressive than the 
whole operation process of the P2G. The generated hydrogen can be 
applied in the hydrogen-based industries and hydrogen market. Fig. 1 
shows the overall schematic of the P2G facility, gas and hydrogen 
application in grids. The P2G operation modeling and integration with a 
multi-energy system will be described in future sections. 

2.2. Multi-energy microgrid operation 

The MEM’s operator seeks to minimize the total operation cost 
through optimizing the CHP, boiler, EVs, and multiple energy storage to 
meet local electrical, gas, and thermal loads. Furthermore, the operator 
sings the contract with responsible loads for participating in the 
incentive-based DR program and to smooth the load profile. In this way, 
the responsible loads in lieu of incentive in their bills, reduce load de-
mand at peak hours and enhance the economic benefits. Besides, the 
whole operation of MEM is imposed by high-level uncertainty caused by 
electrical price, load demand, wind power energy, and EVs behavior, 
including arrival and departure time, and state of charge (SoC) levels. 
Therefore, hybrid robust/stochastic is used in which electricity price is 
modeled via a robust approach while multiple scenarios generated for 
other uncertain parameters based on the stochastic approach. Fig. 2 
shows the overall view of the proposed MEM operation considering all 
components. The system operator in connection with multi-energy 
markets, including power, thermal, and NG markets to supply the 
required energy for the optimal operation of the MEM. EVs as a mobile 

load or generation, mitigate the wind energy integration. In addition, 
EVs can shifts the load from peak load consumption times to off-peak 
times. At off-peak hours, EVs are charged at parking, when the power 
price reaches maximum amounts, EVs are discharged and inject the 
power through power-to-grid capability and makes the operator un-
wanted to purchase power from the electricity network. Furthermore, 
the operator makes a contract with shiftable electrical loads via the DR 
program as shown in Fig. 2. Hence, relying on responsible loads, the 
operator shifted load from peak hours to off-peak intervals and satisfy 
the economic benefits. It should be noted that besides the responsible 
loads, the system’s operator can manage the energy consumption of EVs 
through optimal charging and discharging schemes. Also, thermally 
controllable devices are applied to provide more flexibility on the de-
mand side. The MEM central controller analyzes all the required input 
and forecasted data to find the optimal set points of generation units to 
meet the local electrical, gas, and thermal loads with the aim of opera-
tional cost minimization. Also, all the contracts between MEM’s oper-
ator with responsible loads, optimum set points of operation of multiple 
generation units as well as upstream networks have been evaluated by 
the central controller via the proposed model. 

All infrastructures in the proposed MEM in Fig. 2 are described as 
follows: 

2.3. Electrical demand 

The electrical demands are the main consumers in the MEM which 
are supplied through the electrical bus with the electricity infrastruc-
ture. As we know, there are multiple consumers in the system, including 
commercial, industrial, and residential consumers. The percentage of 
electrical loads consist of shiftable loads that can participate in the DR 
program. The electrical demand can be supplied by power purchased, 
wind energy, EVs, CHP, and electrical storage. 

Fig. 1. The overall schematic of P2G facility and its applications.  
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2.4. Gas demand 

The proposed MEM has gas loads besides electrical and thermal 
loads. The natural gas injected into the MEM to supply gas load, as well 
as a primary fuel for CHP, and boiler unit. Also, the P2G facility gen-
erates the gas to complete the gas infrastructure. 

2.5. Thermal demand 

Besides electrical and gas loads, there are thermal loads in the MEM. 
Thermal loads using heating energy supplied by thermal purchased, 
thermal energy storage, boiler, and heating output by the CHP unit. 

2.6. Energy storage technologies 

Electrical and thermal energy storage technologies are embedded in 
the MEM as a flexible source. The operator can serve the energy at off- 
peak hours in the electrical and thermal storage. Then, the stored 
heating and power in electrical and thermal storage are released at peak 
hours to meet local demand. It should be noted that electrical energy 
storage mitigates the fluctuation of wind energy. 

2.7. EVs parking lot 

EVs parking lot as an efficient type of vehicle can be supplied by an 
external power source through the embedded battery. EVs in the MEM 
can operate as mobile loads which can provide more flexibility via 
optimal charge and discharge scheme. During charging time, EVs can be 
charged in the parking, while discharging EVs inject power to the 
network via vehicle-to-grid (V2G) technology. 

2.8. DR program 

The DR program has been considered as an impressive and flexible 
tool in the modern power system. The basic concept behind DR is to 

motivate electricity end-users to reduce/manage/reschedule their con-
sumption by offering incentives and discounts on the electricity bills. 
The system operator encourages consumers to diminish energy con-
sumption in low wind energy periods which occur at peak hours and 
increase the energy consumption in high-value wind production. 

2.9. Natural gas-based units 

Gas boiler and CHP unit are two natural gas-based generation units 
that use the gas as an input. The CHP unit produces the power and heat, 
simultaneously based on its feasible operation region. The gas boiler 
uses the natural gas to generate the heating energy to serve the thermal 
load, that has a significant role in the MEM. 

2.10. Problem formulation 

The proposed MEM scheduling in the presence of multiple genera-
tion and consumption is formulated in this section. The main objective 
of the MEM’s operator is to minimize the total operation cost which 
represented by (1). The exchanged power, NG and heat cost between 
MEM’s operator and multi-energy markets are expressed by first, second 
and third terms of (1), respectively. The operation cost of electrical 
energy storage in the discharging mode is represented by the fourth term 
of (1). In the same way, the operation costs of P2G facility, heat storage 
and EVs parking-lots in the discharging mode are established by fifth 
and sixth terms of (1), respectively. The wind power curtailment cost is 
expressed by the seventh term. The MEM sings the contract with 
responsible consumers who participate in the DR program; the eighth 
term represents the DR cost. Finally, the degradation cost of EVs is 
expressed by the ninth term of the objective function (1) which is a 
function of the investment cost of EV’s battery, while it has an inverse 
connection with battery capacity, lifetime, and an average depth of 
discharge (DOD) (Cao et al., 2020). 

Fig. 2. The overall schematic of proposed MEM incorporated with multiple components.  
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OF=Min
∑NS

s=1
πs

⎛

⎜
⎜
⎜
⎜
⎝

∑Nt

t=1

(
λet Et,s+λgt Gt,s+λht Ht,s+CESPD

t,s+CGSGD
t,s+CHSHD

t,s

+CEVPEV,D
t,s +CWindPw,t,s+CDR(DRup

t,s+DRdn
t,s)+

1000Cbi

LcEbDdod

)

⎞

⎟
⎟
⎟
⎟
⎠

(1)  

2.11. Problem constraints 

The proposed optimal scheduling of MEM coupled with CHP, boiler, 
electrical and thermal storage, P2G facility, EVs parking lots, DR pro-
gram, and wind energy is restricted by multiple limitations related to the 
operation of components and energy networks which are presented in 
this section. 

2.11.1. CHP unit constraint 
CHP is one of the heat and power generation sources. The main idea 

of CHP unit operation is to employ waste heat during power generation. 
The CHP scheduling is expressed by feasible region operation, which 
makes a connection between the produced heat and power. Fig. 3 shows 
the feasible region for the CHP operation which makes a connection 
between produced heat and power. 

The main complexity of CHP operation is related to a feasible oper-
ation region (Nazari-Heris, Mohammadi-ivatloo, & Nazarpour, 2019). 
There are four boundary points that assign the value of generated heat 
and electricity by CHP. Constraints (2)–(6) are related to the feasible 
operation region of CHP, which restricted the power and heat value of 
four boundary points. The ramp-up/down power limitation are calcu-
lated in (7) and (8). Constraints (9)–(12) and (12)–(16) respectively 
express the minimum up and downtime restrictions. Constraint (17) 
interrelates the produced heat and electricity by the CHP. 

Pmin
chpI

chp,t,s ≤ Pchp,t,s ≤ Pmax
chp I

chp,t,s (2)  

Pchp,t,s − PA
chp −

PA
chp − PB

chp

HA
chp − HB

chp
× (Hchp,t,s − HA

chp) ≤ 0 (3)  

Pchp,t,s − PB
chp −

PB
chp − PC

chp

HB
chp − HC

chp
× Hchp,t,s − HB

chp) ≥ − (1 − Ichp,t,s) ×M (4)  

Pchp,t,s − PC
chp −

PC
chp − PD

chp

HC
chp − HD

chp
× (Hchp,t,s − HC

chp) ≥ − (1 − Ichp,t,s) ×M (5)  

0 ≤ Hchp,t,s ≤ HA
chp × Ichp,t,s (6)  

Pchp,t,s − Pchp,t− 1,s ≤ RUp
chp (7)  

Pchp,t,s − Pchp,t− 1,s ≤ RDn
chp (8)  

UTchp = max
{

0,min
[
NT , (TOn

chp − XOn
chp,t=0)I

chp,t=0
]}

(9)  

∑UTchp

t=1
(1 − Ichp,t,s) = 0∀t = 1, ...,UTchp (10)  

∑
t+TOn

chp − 1

k=t
Ichp,k,s ≥ TOn

chp(I
chp,t,s − Ichp,t− 1,s) ∀t = UTchp + 1, ...,NT − TOn

chp + 1

(11)  

∑UTchp

k=t
(Ichp,k,s − Ichp,t,s + Ichp,t− 1,s) ≥ 0 ∀t = NT − TOn

i + 2, ...NT (12)  

DTchp = max
{

0,min
[
NT , (TOff

chp − XOff
chp,t=0)I

chp,t=0
]}

(13)  

∑DTchp

t=1
(1 − Ichp,t,s) = 0∀t = 1, ...,DTchp (14)  

∑
t+TOff

chp − 1

k=t
Ichp,k,s ≥ TOff

chp (I
chp,t,s − Ichp,t− 1,s) ∀t = DTchp + 1, ...,NT − TOff

chp + 1

(15)  

∑DTchp

k=t
(Ichp,k,s − Ichp,t− 1,s + Ichp,t,s) ≥ 0 ∀t = NT − TOff

i + 2, ...NT (16)  

GCt,s =
Pchp,t,s

ηi
(17)  

2.11.2. Boiler constraints 
The boiler unit has a major role to supply the heat demands, beside 

CHP unit. The boiler output heat is limited by the minimum and 
maximum values as (18). The relationship between produced heat and 
consumed NG by the boiler is represented by (19). 

Hmin
Boil × I Boil,t,s ≤ HBoil,t,s ≤ Hmax

Boil × IBoil,t,s (18)  

GBt,s =
HBoil,t,s

ηBoil (19)  

2.11.3. ESS constraints 
Electrical energy storage systems (ESS) are applied for multiple goals 

such as peak shaving, ancillary services, power quality, and etc., (Pal-
izban & Kauhaniemi, 2016). The ESS operation is exclusive by multiple 
limitations. For both charging and discharging modes, binary variables 
are considered to prevent simulations operation in charging and dis-
charging as (20). The charged and discharged power value of ESS are 
restricted by minimum and maximum amounts as expressed by (21) and 
(22), respectively. Eq. (23) expresses the capacity of ESS at t time, taking 
account the energy capacity at time t-1, minus charged power and plus 
the discharged and at t time (Hemmati et al., 2018). Constraint (24) 
limits the stored energy capacity in ESS by the upper and lower values. 
The equality condition for initial (t = 0) and final (t = 24) operation 
states is expressed by constraint (25). 

IeDt,s + IeCH
t,s ≤ 1 (20)  

PD,min IeDt,s ≤ PD
t,s ≤ PD,max IeDt,s (21)  

PCH,min IeCH
t,s ≤ PCH

t,s ≤ PCH,max IeCH
t,s (22)  

Fig. 3. Feasible operation region for CHP unit.  
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ESt,s = ESt− 1,s + esCHPCH
t,s −

PD
t,s

esD
(23)  

ESmin ≤ ESt,s ≤ ESmax (24)  

ESt=0 = ESt=24,s (25)  

2.11.4. Heat storage constraints 
Thermally activated systems have attracted much attention due to 

significant capabilities (Delgado, Ramos, Domínguez, Ríos, & Cabeza, 
2020). The HES as one of the thermal energy storage system can coupled 
with other thermal resources to manage the local thermal demands in 
MEM. The operation of HES is limited by multiple constraints. As the 
electrical energy storage, the HES for both charging and discharging 
modes, binary variables are considered to prevent simulations operation 
in charging and discharging modes which is expressed by (26). The Eqs. 
(27) and (28) respectively show the lower and upper amount of dis-
charged and charged heat by HES. Constraint (29) determine the current 
stored heat in the HES at time t. The amount of heat capacity is limited 
by upper and lower values as represented by (30). The equality 
constraint condition of initial (t = 0) and final (t = 24) operation states 
for HES is calculated by (31). 

IhD
t,s + IhCH

t,s ≤ 1 (26)  

HD,min IhD
t,s ≤ HD

t,s ≤ HD,max IhD
t,s (27)  

HCH,min IhCH
t,s ≤ HCH

t,s ≤ HCH,max IhCH
t,s (28)  

HSt,s = HSt− 1,s(1 − eh) + ehCHHCH
t,s −

HD
t,s

ehD (29)  

HSmin ≤ HSt,s ≤ HSmax (30)  

HSt=0 = HSt=24,s (31)  

2.11.5. P2G constraints 
The P2G storage converts power to NG and stores it into gas tanks. In 

the required conditions, the produced NG is injected to supply the NG 
consumption and primary fuel for the boiler and CHP operation. 
Constraint (32) shows conversion efficiency for P2G storage. The current 
NG capacity in P2G at time t is determined in (33). The value of con-
verted electricity and produced NG are limited by (34) and (35). The 
value of stored NG is limited by upper and lower values as described by 
(36). The equality constraint condition for initial (t = 0) and final (t =
24) operation states for P2G is calculated by (37). 

GCH
t,s = ηP2GP

P2G
t,s (32)  

GSt,s = GSt− 1,s + GCH
t,s − GD

t,s (33)  

0 ≤ PP2G
t,s ≤ PP2G,max (34)  

0 ≤ GD
t,s ≤ GD,max

t (35)  

GSmin ≤ GSt,s ≤ GSmax (36)  

GSt=0 = GSt=24,s (37)  

2.11.6. EVs constraints 
The EVs parking lot as mobile load generation can provide multiple 

advantages for MEM. However, the operation of EVs is restricted by 
different restrictions. The maximum and minimum values of charged 
and discharged power limits for each EV are expressed by (38) and (39). 
It should be noted that in this paper, there are six models of EV. Hence, 
constraints (40) and (41) show the maximum charged and discharged 

power of each EV (Cao et al., 2020). The maximum energy capacity of 
parking lot contains multiple EVs at time t is calculated in (42). To 
determine the increased (dropped) energy capacity of parking lot based 
on the energy of arrived EVs (EVs departing), Eqs. (43) and (44) are 
established. The total stored energy in the parking lot at t time equals the 
stored energy t-1, plus charged power from EV batteries, as well as the 
achieved energy by arriving EVs into the parking lot, minus the dis-
charged power of EV batteries, as well as the reduced energy caused by 
departing of EV from the parking lot, at the t time which is calculated in 
(45). Constraint (46) calculates the total stored energy of the parking lot 
limited by the upper and lower values. Finally, the equality condition for 
the initial and final operation states is shown by (47). 

0 ≤ PCH
e,t,s ≤ PCH,max

e,t (38)  

0 ≤ PDis
e,t,s ≤ PDis,max

e,t (39)  

PCH,max
t =

∑NM

m=1

∑Ni

i
PCH,max

em ,t wi,t,s (40)  

PDis,max
t =

∑NM

m=1

∑Ni

i=1
PDis,max

em ,t wi,t,s (41)  

Emax
e,t =

∑NM

m=1

∑Ni

i=1
Smax
m wi,t,s (42)  

Earr
e,t,s =

∑NM

m=1

∑N
arr
m,t

i=1

(
Smax
m − Sli,s

)
(43)  

EDep
e,t,s =

∑NM

m=1

∑N
arr
m,t

i=1
Smax
m (44)  

Ee,t,s = Ee,t− 1,s + Earr
e,t,s + ηche PCH

e,t,s × Δt −

(

EDep
e,t,s +

PDis
e,t,s × Δt
ηDis
e

)

(45)  

0 ≤ Ee,t,s ≤ Emax
e,t (46)  

Ee,t=0 = Ee,t=24,s (47)  

2.11.7. Demand response constraints 
The MEM’s operator can sign contract with responsible loads 

through DR programs as an emerging flexible source. The DR based on 
shifting capability of responsible loads is considered to participate in DR 
and provide advantages for both consumers and MEM’s operator. The 
limitations of the responsible loads amount at time t are represented by 
(48) and (49). The maximum allowed amount of the forecasted load 
consumption and load shifting of responsible loads are calculated by(50) 
and (51), respectively, where γDR is the coefficient that represents the 
participation level for responsible loads in the DR program equals to 0.1. 
The maximum allowable load interruption that shifted to the off-peak 
period is limited by (52). The total load demand of MEM, after 
applying the DR is calculated by (53). 

0 ≤ DRup
t,s ≤ DRup,max

t,s (48)  

0 ≤ DRdn
t,s ≤ DRdn,max

t,s (49)  

DRup,max
t,s = γDRdt,s (50)  

DRdn,max
t,s = γDRdt,s (51)  

∑NT

t=1
DRup

t,s =
∑NT

t=1
DRdn

t,s (52) 
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dDR
t,s = dt,s − DRdn

t,s + DRup
t,s (53)  

2.11.8. Energy balance constraints 
MEM can provide all the electrical, thermal and gas loads demand 

through resources (dispatchable and RES), and purchasing/selling en-
ergy from/to the corresponding networks. However, for each energy 
carrier, the energy balance based on local generation and consumption 
and energy exchanging with the upstream networks must be established. 
The energy balance restriction of power, thermal and NG sector, are 
respectively expressed by (54)–(56). 

Et,s + Pt,s − PP2G
t,s + PD

t,s − PCH
t,s − dt,s + Pw,t,s = 0 (54)  

Ht,s + Hchp,t,s + HBoil,t,s + HD
t,s − HCH

t,s − HLt,s = 0 (55)  

Gt,s + GD
t,s − GCt,s − GBt,s − GLt,s = 0 (56)  

3. Hybrid robust/stochastic strategy 

The robust optimization strategy is a basic approach to solve opti-
mization problems associated uncertainty, especially in case of lack of 
full information or data on the uncertainty behavior. In this strategy, it is 
assumed that the random parameter belongs to an uncertainty set and 
the decision-maker tries to make an optimal decision imposed by the 
effects of the uncertain parameter. In other words, the decision variables 
will be found in such a way that the objective function remains optimum 
even if the random variable takes its worst-case amount. The concept of 
this approach was first introduced by Soroudi and Amraee (2013). In 
robust optimization, no specified probability distribution function (PDF) 
is not available to reveal the uncertain parameter behavior. 

In this section, a hybrid stochastic/robust is modeled to minimize the 
operation cost of the MEM by following the worst case of power price 
uncertainty. The stochastic model of the suggested technique was 
demonstrated in the previous part. The hybrid framework has benefits in 
comparison to the pure stochastic. In the hybrid model, the MEM 
operator has the opportunity to take various risk levels based on the 
system conditions. An integer parameter Γs is considered to model the 
conservatism level of the optimization problem. With the increment of 
Γs into the given interval of [0 : Nm], the MEM operator considers a more 

robust decision against the power price uncertainty in each scenario. 
Γs = 0 means that the power price uncertainty is ignored in scenarios 
and Γs = Nm means the mentioned parameter uncertainty is completely 
considered. The objective function of hybrid framework is as follows:   

The objective function of (57) has been formulated as a min-max 
structure. The min-max model of the objective function is associated 
with the point that while the outer part of the objective function mini-
mizes the operation cost of the MEM, the inner part of the objective 
function provides the worst-case condition of power price variabilities. 
The inner part of the objective function can be reformulated as follows: 

max
{m||ms |≤Γs}

∑

t∈ms

(λe,max
t − λe,min

t ).
⃒
⃒Et,s

⃒
⃒ = max

{
∑

t
(λe,max

t − λe,min
t )

⃒
⃒Et,s

⃒
⃒kt,s

}

(58)  

∑NT

t=1
kt,s ≤ Γs : αs (59)  

0 ≤ kt,s ≤ 1 : βt,s (60) 

By applying strong duality technique, the presented model in (58)– 
(60) can be rewritten as (61)–(66). 

min
∑

t
βt,s + αsΓs (61)  

βt,s ≥ 0 (62)  

αs ≥ 0 (63)  

αs + βt,s ≥ (λE,max
t − λE,min

t )Vt,s (64)  

Vt,s ≥ 0 (65)  

− Vt,s ≤ Et,s ≤ Vt,s (66)  

Where, αs and βt,s are defined as dual variables and Vt,s is stated as the 
auxiliary variable to provide a straightforward linear problem. So, 
hybrid framework can be expressed as:  

OF = Min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑NS

s=1
πs

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑Nt

t=1

(
λe,min
t Et,s + λgt Gt,s + λht Ht,s + CESPD

t,s + CGSGD
t,s + CHSHD

t,s

+CEVPEV,D
t,s + CWindPw,t,s + CDR(DRup

t,s + DRdn
t,s) +

1000Cbi

LcEbDdod

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+
∑Ns

s=1
πs

[

max
{m||ms |≤Γs}

∑

t∈ms

(λe,max
t − λe,min

t ).
⃒
⃒Et,s

⃒
⃒

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(57)   

OF = Min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑NS

s=1
πs

⎛

⎜
⎜
⎜
⎜
⎝

∑Nt

t=1

⎡

⎢
⎢
⎢
⎣

λe,min
t Et,s + βt,s + λgt Gt,s + λht Ht,s + CESPD

t,s + CGSGD
t,s + CHSHD

t,s

+CEVPEV,D
t,s + CWindPw,t,s + CDR(DRup

t,s + DRdn
t,s) +

1000Cbi

LcEbDdod

⎤

⎥
⎥
⎥
⎦

+αsΓs

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(67)   
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βt,s ≥ 0 (68)  

αs ≥ 0 (69)  

αs + βt,s ≥ (λE,max
t − λE,min

t )Vt,s (70)  

Vt,s ≥ 0 (71)  

− Vt,s ≤ PE,ex
t,s ≤ Vt,s (72)  

4. Simulation and numerical results 

In order to evaluate the proposed hybrid robust/stochastic model in 
previous sections, a multi-carrier microgrid test system, according to 
Fig. 2, is studied. The proposed MEM contains CHP, boiler, wind turbine, 
electrical, heat, and power-to-gas energy storage technologies, and 
interconnected EVs parking lots. The proposed MEM has the ability to 
participate in three markets: electricity, gas, and heat, in order to meet 
local electrical, thermal, and gas demands. The hourly electrical, heat, 
and NG demands, as well as the forecasted wind energy, are given in 
Table 1. Also, the daily energy prices, including power, NG, and heat 
prices are given in Table 2. 

All characteristics and data of embedded generation and conversion 
technologies can be found in Mirzaei et al. (2020). The proposed MEM 
scheduling is formulated as a MILP model and carried out in the GAMS 
software that solved by CPLEX solver. To handle the existing uncertain 
parameters a hybrid robust/stochastic approach was applied such that 
wind energy, electrical demand and EVs behavior (contains arrival and 
departure time, and initial and final SoC) were modeled using 
scenario-based stochastic strategy while the power price is handled via a 
robust optimization approach, needless any PDF. 

The forecasted error of wind power generation follows the Weibull 
distribution function with corresponding characteristics in Hemmati, 
Mohammadi-Ivatloo, Abapour et al. (2020). Also, the forecasted error of 
load demand follows the Normal distribution function with zero mean 
and 5 % standard deviation. Also, arrival and departure times, and 
initial and final state of charge of EVs are captured via Normal 

distribution with zero mean and 5 % standard deviation (Heydar-
ian-Forushani, Golshan, & Siano, 2017). The 1000 scenarios are 
generated using Monte-Carlo simulation which are reduced to 10 
appropriate scenarios using a backward selection approach in the 
SCENRED tool. 

To demonstrate the effectiveness of the proposed model, the 
following cases are studied: 

Case 1: Optimal operation of multi-energy microgrid considering 
wind energy, load demand and EV’s behavior while power price un-
certainty is neglected. 

Case 2: Case 1 while the hybrid robust/stochastic strategy is applied 
to handle price uncertainty, in addition to other random variables. 

Table 1 
The hourly electrical, heat and natural gas demands, as well as forecasted wind 
power.  

Time 
(h) 

Electric 
demand (kW) 

Heat demand 
(kWh) 

Gas demand 
(kW) 

Wind power 
generation (kW) 

1 175.19 158.4 155.53 32.78 
2 165.15 158.4 148.81 21.06 
3 158.67 158.4 142.22 17.38 
4 154.73 158.4 144.43 16.58 
5 155.06 158.4 146.65 35.84 
6 160.48 160.0 148.87 33.7 
7 173.39 147.20 172.24 35.28 
8 190.4 134.40 173.23 26.68 
9 205.56 142.40 190.58 36.4 
10 217.2 140.80 193.38 35.68 
11 228.61 140.80 193.37 31.72 
12 236.1 132.80 190.59 39.28 
13 242.18 147.20 190.47 29.86 
14 243.6 155.20 190.59 23.52 
15 248.86 155.20 186.62 18.48 
16 255.79 155.20 190.77 20.28 
17 256 155.20 200.97 22.16 
18 246.74 152.00 200.78 25.4 
19 245.97 152.00 200.95 32.9 
20 237.35 152.00 193.31 37.24 
21 237.31 153.60 183.35 32.16 
22 227.14 152.00 166.46 36.08 
23 201.05 150.40 146.66 38.1 
24 196.75 148.80 148.88 35.36  

Table 2 
The hourly electrical, heat, and gas market prices.  

Time 
(h) 

Power market price 
(cent/kWh) 

Heat market price 
(cent/kWh) 

Gas market price 
(cent/Btu) 

1 3 2.25 2.1 
2 2 1.875 2.1 
3 3 2.25 2.1 
4 2.5 1.875 2.1 
5 2.5 1.875 2.1 
6 3.1 2.325 2.1 
7 4.5 3.375 3.9 
8 4.7 3.525 3.9 
9 4.9 3.675 3.9 
10 6.2 4.65 3.9 
11 9 6.75 3.9 
12 13 9.75 3.9 
13 16 12 3.9 
14 8.5 6.375 3.9 
15 8.2 6.15 3.9 
16 7 5.25 3.9 
17 8 6 3.9 
18 6.5 4.875 3.9 
19 5.5 4.125 2.1 
20 6.5 4.875 2.1 
21 7.5 5.625 2.1 
22 5 3.75 2.1 
23 4.5 3.375 2.1 
24 3.5 1.875 2.1  

Table 3 
The optimal hourly operation of CHP and boiler units.  

Time 
(h) 

Heat generated by 
CHP (kWh) 

Heat generated by 
boiler (kWh) 

Power generated by 
CHP (kW) 

1 0 0 0 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0 
6 0 0 0 
7 0 0 0 
8 0 0 0 
9 0 0 0 
10 0 80 0 
11 87.5 80 83.938 
12 87.5 80 231.444 
13 87.5 80 231.444 
14 87.5 80 83.938 
15 87.5 80 83.938 
16 87.5 80 83.938 
17 87.5 80 83.938 
18 0 80 0 
19 87.5 80 83.938 
20 87.5 80 231.444 
21 87.5 80 231.444 
22 87.5 80 83.938 
23 87.5 80 83.938 
24 0 0 0  
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Fig. 4. The hourly energy exchanging between MEM and three markets.  

Fig. 5. Optimal charging and discharging scheme of multi-carrier energy storage systems.  

Fig. 6. Optimal state of charge of multi-carrier energy storage.  
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4.1. Case 1 

In this case, the optimal scheduling of MEM without considering the 
price uncertainty (Γ = 0) is evaluated. Table 3 represents the optimal 
operation of CHP and boiler units while the price uncertainty is 
neglected. It can be seen from Table 3 that due to the higher electricity 
price values at hours 12, 13, 20, and 21 p.m. CHP unit operates on the 
maximum power generation set point according to the feasible opera-
tion region. Meanwhile, at other times, between 11 a.m.–23 p.m. when 
the operator seeks to participate in the thermal market and heat prices 
reach higher values, he adjusts the CHP operation on the minimum 
power generation set point to produce heat with the maximum possible 
capacity. In the same way, the boiler unit is committed at 10 a.m.–23 p. 
m. due to the higher heat price values. 

Fig. 4 depicts the energy exchange including electricity, heat, and gas 
between MEM and corresponding markets for Case 1. According to 
Fig. 4, when the electricity prices reach lower values (e.g. hours 1 a. 
m.–10 a.m.), the operator prefers to supply the required power by pur-
chasing from the electricity market. At higher electricity prices (e.g. 12, 
13, 20, and 21 p.m.) MEM’s operator sells power to the electricity 
market. This procedure is established for other energies exchanges. At 
higher heat prices, operator sells the heat to the thermal market and vice 
versa. Furthermore, according to Fig. 4, at some hours like 12. 13, 20, 
and 21 p.m. due to the NG consumption by CHP and boiler units to 

supply desired heat and power, the amount of purchased NG has 
increased. 

Figs. 5 and 6, represent the charging and discharging scheme as well 
as the state of charge of multi-energy storage systems, respectively. It 
can be seen from Fig. 5 that the electrical storage system is charged at 
low power price hours and then the energy stored at high power price 
hours (e.g. 11 p.m.–16 p.m.) is injected into the network. This procedure 
is established for thermal energy storage. At low heat prices hours, 

Fig. 7. The effects of DR program on the load profile, as well as power exchange.  

Fig. 8. The hourly charging/discharging scheme and state of charge of EVs parking lot.  

Table 4 
Comparison of total operation cost of MEM in the presence of multiple high- 
efficient technologies.   

– ESS+HSS +
P2G 

ESS+HSS +
P2G + DR 

ESS+HSS +
P2G + DR +
EV2G 

Power 
operation 
cost (cent) 

15519.273 13602.273 11203.172 9503.551 

Gas operation 
cost (cent) 

30989.322 31482.322 31482.322 31482.322 

Thermal 
operation 
cost (cent) 

2994.293 1531.793 1531.793 1531.793 

Total operation 
cost (cent) 

50351.920 45465.420 44217.287 42517.666  
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thermal storage is charged and operates in discharging mode when the 
heating price reaches higher values. The P2G converts the electricity to 
NG at low power price hours, at higher gas prices, the stored NG in P2G 
tanks is injected into the system to meet required NG. 

Fig. 7 shows the effect of the DR program on the network load profile 
and the amount of power exchanged between the MEM and the elec-
tricity market. As can be seen, the electricity demand has shifted from 
the hours with high electricity prices to the hours with low electricity 
prices. During the hours when the electrical load has been interrupted, 
the selling power has increased or the purchasing power from the 
electricity market has decreased, which has resulted in a reduction of 
total operation cost of the MEM. 

The optimal charging/discharging scheme, as well as the available 
energy level of EVs parking lot, are depicted in Fig. 8. According to 
Fig. 8, not EVs have entered into the parking lot until 5 a.m. At 7 a.m., 
the energy level of the parking lot gradually increased, due to the entry 
of EVs into the parking lot and purchasing the power from the grid via 
the grid-to-vehicle (G2V) capability. At 12 and 13 p.m. level of energy in 
the parking lot has been mainly reduced. When power price reaches 
higher values at 12 and 13 p.m. the parking lot is discharged and injects 
power to grid via the V2G capability, results in the reduction of the 
energy level of the parking lot. Hence, the V2G capability at such periods 
offers an appropriate economic opportunity for MEM’s operator to 
diminish daily operation costs. 

Table 4 demonstrates the daily operation cost of MEM in the pres-
ence of emerging high-efficient technologies. According to Table 4, 
incorporating the MEM with these technologies under an integrated 

stochastic optimization framework (Γ = 0), the total operation cost has 
mainly reduced. 

4.2. Case 2 

In this case, the optimal operation of the MEM under the hybrid 
robust/stochastic approach considering price uncertainty besides other 
ones is investigated. In order to evaluate the uncertainty nature of 
electricity price under a conservative approach, Γ has been increased 
from 0 to 24 with eight steps. Fig. 9 shows the effects of Γ changes in the 
energy exchanges between MEM and the upstream network. By 
increasing the Γ which increases the level of conservation of the system’s 
operator, the power exchanges decreased. In fact, with an increasing Γ 
coefficient, the electricity price has been increased during the hour of 
purchasing power, and has been decreased during the hours of selling 
power to the grid. This results in the reduction of operator inclinations to 
exchange power with the upstream network. 

The effects of the increasing Γ coefficient on total operation cost is 

Fig. 9. The effect of increasing the level of conservatism of operator on power exchanges between MEM and upstream network.  

Fig. 10. The effect of increasing the level of conservatism of the operator on 
the cost of operation of MEM. 

Table 5 
The effect of increasing the Γ on each of the costs of electricity, gas and heat.   

Γ = 0 Γ = 8 Γ = 16 Γ = 24 

Power operation cost 
(cent) 

12554.334 12075.156 12054.095 12623.838 

Gas operation cost (cent) 31482.322 30738.580 30891.69 31188.568 
Thermal operation cost 

(cent) 
1531.793 1105.230 1105.230 1105.230 

Total operation cost 
(cent) 

42517.666 43918.96 44554.844 44917.636  

Table 6 
Comparison of operational costs under a hybrid robust/stochastic approach for Γ 
= 8.  

Γ = 8 – ESS+HSS +
P2G 

ESS+HSS +
P2G + DR 

ESS+HSS +
P2G + DR + EV 

Power 
operation 
cost (cent) 

14678.148 12582.555 11407.760 1105.230 

Gas operation 
cost (cent) 

31971.401 32589.361 32591.151 30738.580 

Thermal 
operation 
cost (cent) 

2567.730 1105.230 1105.230 1105.230 

Total operation 
cost (cent) 

51217.279 46277.146 45104.141 43918.966  
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shown in Fig. 10. As can be seen, increasing the Γ, total operation cost 
increases and the operator raises the level of his conservatism. Table 5 
reveals the effects of the increasing Γ coefficient on each electricity, gas, 
and thermal operation costs, separately. According to Table 5, when Γ =

8 the heat and gas operation cost decreases, while electricity cost in-
creases. The main reason for the reduction of heat and gas operation 
costs is related to less utilization of CHP, and more utilization of the 
boiler unit, conversely. With the further increases of Γ, thermal opera-
tion cost is constant, while the NG operation cost due to less utilization 
of the P2G facility increases. 

Table 6 indicates the effects of multiple technologies on uncertainty 
management under the hybrid robust/stochastic approach for Γ = 8. It 
can be seen under the hybrid robust/stochastic strategy, the emerging 
technologies play an appropriate role in reducing the total operation 
cost of MEM. In fact, in the presence of such technologies, MEM’s 
operator under a lower operational cost, achieves his desired level of 
conservatism. 

5. Conclusion 

In this paper, the optimal operation of the renewable-based multi- 
energy microgrid incorporated with emerging high-efficient technolo-
gies was presented. The power-to-gas storage, demand response based 
shiftable loads, and electrical vehicle parking lot have been embedded in 
the multi-energy microgrid as high-efficiency components. In addition 
to EVs, P2G, and DR program, the proposed MEM has been integrated 
with wind energy, multi-carrier energy storage (heat, electrical, and gas) 
systems, boiler, combined heat, and power, with the aim of total daily 
operational cost minimization. Furthermore, bilateral energy exchanges 
between MEM and electricity, heat, and gas markets were considered to 
offer active participation of the system operator in three markets to meet 
local demands as well as achieve desired profits through energy ex-
changes. The proposed model was formulated based on mixed-integer 
linear programming under a hybrid robust/stochastic approach to 
handle existing high-level uncertainties, including wind power output, 
electricity demand, arrival and departure times, and initial and final 
state of charge of EVs in a parking lot, as well as electricity prices. 

Simulations have shown the following results:  

• Deployment of the proposed hybrid/stochastic strategy enables the 
operator to take advantage of both stochastic and robust approaches 
simultaneously, as well as to differentiate between the level of 
conservatism of system uncertainties.  

• Multi-carrier energy storage systems integrated with power-to-gas 
technology reduced the daily operation by 9 %.  

• Taking into account the demand response program, along with 
multi-carrier storage systems, the MEM operator was able to reduce 
the operational costs by up to 13 %.  

• Integrated optimal scheduling of MEM in the presence of emerging 
technologies, incorporated with vehicle-to-grid (V2G) capability, 
reduces the total operational cost by 14.2 %. 

The efficiency of the proposed MEM operation will be further 
improved by considering district heating networks, hydrogen storage, 
fuel-cell, solar energy in the presence of other uncertainty modeling 
approaches like information gap decision theory were are left for future 
works. 
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Delgado, M. G., Ramos, J. S., Domínguez, S.Á., Ríos, J. A. T., & Cabeza, L. F. (2020). 
Building thermal storage technology: Compensating renewable energy fluctuations. 
Journal of Energy Storage, 27, 101147. 

Geidl, M., & Andersson, G. (2007). Optimal power flow of multiple energy carriers. IEEE 
Transactions on Power Systems, 22, 145–155. 

Habibifar, R., Khoshjahan, M., & Ghasemi, M. A. (2020). Optimal scheduling of multi- 
carrier energy system based on energy hub concept considering power-to-gas 
storage. 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies 
Conference (ISGT), 1–5. 

Habibifar, R., Lekvan, A. A., & Ehsan, M. (2020). A risk-constrained decision support tool 
for EV aggregators participating in energy and frequency regulation markets. Electric 
Power Systems Research, 185, 106367. 

Haghifam, S., Dadashi, M., Zare, K., & Seyedi, H. (2020). Optimal operation of smart 
distribution networks in the presence of demand response aggregators and microgrid 
owners: A multi follower Bi-Level approach. Sustainable Cities and Society, 55, 
102033. 

Hemmati, M., Mohammadi-Ivatloo, B., Ghasemzadeh, S., & Reihani, E. (2018). Risk- 
based optimal scheduling of reconfigurable smart renewable energy based 
microgrids. International Journal of Electrical Power & Energy Systems, 101, 415–428. 

Hemmati, M., Mohammadi-Ivatloo, B., Abapour, M., & Anvari-Moghaddam, A. (2020). 
Optimal chance-constrained scheduling of reconfigurable microgrids considering 
islanding operation constraints. IEEE Systems Journal. 

Hemmati, M., Mohammadi-Ivatloo, B., & Soroudi, A. (2020). Uncertainty management in 
decision-making in power system operation. Decision making applications in modern 
power systems (pp. 41–62). Elsevier. 

Heydarian-Forushani, E., Golshan, M., & Siano, P. (2017). Evaluating the benefits of 
coordinated emerging flexible resources in electricity markets. Applied Energy, 199, 
142–154. 

Jabari, F., Jabari, H., Mohammadi-ivatloo, B., & Ghafouri, J. (2019). Optimal short-term 
coordination of water-heat-power nexus incorporating plug-in electric vehicles and 
real-time demand response programs. Energy, 174, 708–723. 

Jin, X., Mu, Y., Jia, H., Wu, J., Xu, X., & Yu, X. (2016). Optimal day-ahead scheduling of 
integrated urban energy systems. Applied Energy, 180, 1–13. 

Jordehi, A. R. (2019). Optimisation of demand response in electric power systems, a 
review. Renewable and Sustainable Energy Reviews, 103, 308–319. 

Khaloie, H., Abdollahi, A., Shafie-Khah, M., Siano, P., Nojavan, S., Anvari- 
Moghaddam, A., et al. (2020). Co-optimized bidding strategy of an integrated wind- 
thermal-photovoltaic system in deregulated electricity market under uncertainties. 
Journal of Cleaner Production, 242, 118434. 

Li, Z., & Xu, Y. (2018). Optimal coordinated energy dispatch of a multi-energy microgrid 
in grid-connected and islanded modes. Applied Energy, 210, 974–986. 

Li, Y., Liu, W., Shahidehpour, M., Wen, F., Wang, K., & Huang, Y. (2018). Optimal 
operation strategy for integrated natural gas generating unit and power-to-gas 
conversion facilities. IEEE Transactions on Sustainable Energy, 9, 1870–1879. 

Li, B., Roche, R., Paire, D., & Miraoui, A. (2019). A price decision approach for multiple 
multi-energy-supply microgrids considering demand response. Energy, 167, 
117–135. 

Liu, M., Shi, Y., & Fang, F. (2014). Combined cooling, heating and power systems: A 
survey. Renewable and Sustainable Energy Reviews, 35, 1–22. 

Liu, C., Abdulkareem, S. S., Rezvani, A., Samad, S., Aljojo, N., Foong, L. K., et al. (2020). 
Stochastic scheduling of a renewable-based microgrid in the presence of electric 
vehicles using modified harmony search algorithm with control policies. Sustainable 
Cities and Society, 102183. 

Lyseng, B., Niet, T., English, J., Keller, V., Palmer-Wilson, K., Robertson, B., et al. (2018). 
System-level power-to-gas energy storage for high penetrations of variable 
renewables. International Journal of Hydrogen Energy, 43, 1966–1979. 
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