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We propose a new control chart, the autoregressive moving average (ARMA) chart, based on 
monitoring an ARMA statistic of the original observations. It is shown that the special cause chart 
(SCC) of Alwan and Roberts and the EWMAST chart of Zhang are special cases of the ARMA 
chart. Simulation studies show that the ARMA chart is competitive to the optimal exponentially 
weighted moving average chart for iid observations and better than the SCC and EWMAST charts 
for autocorrelated observations. We develop an informal procedure to determine the appropriate 
parameter values of the proposed chart based on two signal-to-noise ratios. Two real examples are 
discussed to demonstrate the advantages of the new chart. 

KEY WORDS: Average run length; Control chart; Quality control. 

The statistical control chart is an effective tool for achiev- 
ing process stability. For monitoring autocorrelated obser- 
vations, various control charts have been developed to de- 
tect shifts in the mean of the process. Among those that 
have been widely discussed are the special cause chart 
(SCC) (Alwan and Roberts 1988; Wardell, Moskowitz, and 
Plante 1994) and the EWMAST chart (Schmid 1997; Zhang 
1998; Adams and Tseng 1998; Lu and Reynolds 1999a,b). 
The basic idea of the SCC chart involves filtering tech- 
niques to whiten an autocorrelated process (if the process 
parameters can be accurately estimated) and then monitor- 
ing the residuals by traditional control charts. This chart is 
shown to be effective when detecting large shifts. On the 
other hand, the EWMAST chart applies the exponentially 
weighted moving average (EWMA) statistic directly to the 
autocorrelated process without identifying the process pa- 
rameters and is shown to be efficient in some parameter 
regions. 

Taking the autocorrelation structure into account, this ar- 
ticle proposes a new charting technique based on an auto- 
regressive moving average (ARMA) statistic, the ARMA 
chart. This new chart provides a more flexible choice of pa- 
rameters to relate the autocorrelation structure of the statis- 
tic to the chart performance and includes the SCC chart and 
the EWMAST chart as special cases. It is shown that an 
ARMA chart with appropriate parameter values will outper- 
form both the SCC and EWMAST charts for autocorrelated 
processes. In Section 1, two real examples are presented to 
illustrate the problem under consideration. In Section 2, we 

explain the model of the proposed ARMA chart and illus- 
trate it with an iid example. In Section 3, we discuss the ap- 
plication of the proposed chart to autocorrelated processes. 
In Section 4, we present the results of simulation studies for 
both iid and autocorrelated observations. In Section 5, we 
revisit the previous examples by the proposed ARMA chart 
and demonstrate the design procedure of the new chart for 
a given process. Finally, new research directions are dis- 
cussed and concluding remarks are given in Section 6. The 
appendix contains a Markov chain approach to evaluate the 
run-length distribution of the ARMA chart for iid observa- 
tions. 

1. MOTIVATING EXAMPLES 
As motivation for this work, the following two real exam- 

ples demonstrate circumstances under which the proposed 
method is applicable. The first example is taken from Pandit 
and Wu's (1983, pp. 491492) book, which presents the mi- 
crometer readings in the quality-control inspection of two 
diameters on the same machined part manufactured on a 
single-spindle automatic screw machine. Figure 1 shows the 
last 360 observations (deviations from target) of Diameter 
2. Based on the process knowledge and the data, the system 
is considered to be in a stable state in the first period of 120 
observations in the dataset, and the objective of SPC tools 

? 2000 American Statistical Association 
and the American Society for Quality 

TECHNOMETRICS, NOVEMBER 2000, VOL. 42, NO. 4 

399 

This content downloaded from 185.44.78.129 on Sat, 21 Jun 2014 10:52:56 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


WEI JIANG, KWOK-LEUNG TSUI, AND WILLIAM H. WOODALL 

: r01111 I 1t 
..- 

Time 
Figure 1. Observation Deviations: The First Example. 

is to detect any departure from this stable state. 
Figure 1 also presents the 3a control limits applied to the 

dataset (traditional Shewhart X chart). The process stan- 
dard deviation is estimated as ?x = 12.43 using the av- 
erage moving range (the moment estimate is 12.49). It is 
found that the process mean may have increased in the sec- 
ond period of 120 observations since the X chart signals 
at observations 144, 145, 146, and 148. To investigate this 
possibility, the first 120 observations were used to fit an 
ARMA process. Box-Pierce's x2 test (Box, Jenkins, and 
Reinsel 1994) shows that the following ARMA(3, 2) process 
is appropriate: Xt + .9202Xt_1 + .8851Xt_2 - .0976Xt_3 = 
at + .9677at_1 + .9133at_2, where at is the white noise 
with ,a - 11.95. Figure 2(a) shows the SCC chart with 3a 
limits applied on the residuals of the fitted ARMA(3, 2) 
model. Like the X chart, the SCC chart signals at observa- 
tions 144, 145, and 146, indicating a possible increase of 
the process mean. 

For comparison, an EWMAST chart is also applied to the 
original data. Figure 2(b) shows the EWMAST chart with 
A = .2 recommended by Zhang (1998) [the control limits 
are adjusted to ?2.572a so that the in-control average run 
length (ARL) is maintained at 370]. The EWMAST chart 
signals a mean shift at observation 123, which indicates that 
the EWMAST chart may be more sensitive than the SCC 
chart in detecting the shift in this example. 

A different example, however, also taken from Pandit and 
Wu's book, shows that the EWMAST chart may not always 
detect shifts earlier than the SCC chart. Figure 3 (for illus- 

40- 
. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 
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Time 
(a) 

tration, only the last 60 observations are displayed) shows 
the observations (deviation from target) from a mechani- 
cal dynamic system consisting of a mass, a dashpot, and 
a spring (Pandit and Wu 1983, p. 291). The model esti- 
mated using the first 100 observations is an ARMA(2, 1) 
process, Xt - 1.4385Xt_1 + .6000Xt_2 = at + .5193at_1, 
where &x = 9.130 and 6a = 2.212. A mean shift of lax 
is manually added to the last 30 observations; neither the 
process with nor the process without the shift exhibits out- 
of-control signals when the X chart is applied (Fig. 3). The 
SCC chart with 3ar control limits and the EWMAST chart 
with A = .2 and adjusted control limits ?2.556a for an in- 
control ARL of 370 are applied to the data and shown in 
Figure 4. In this case, we find that the EWMAST chart can- 
not detect the shift, but the SCC chart signals at the first 
observation after the shift. 

Although the average performance of a control chart can- 
not be compared based on a single set of data, the pre- 
ceding examples illustrate that the chart performance may 
differ for different underlying processes. As explained in 
subsequent sections, relative performance of the EWMAST 
chart and the SCC chart critically depends on the parame- 
ters of the underlying process. In this article, we propose 
a new control chart, the ARMA chart, which includes the 
EWMAST and SCC charts as special cases and allows us 
to optimize the chart performance based on the process pa- 
rameters. 

2. AUTOREGRESSIVE MOVING AVERAGE CHART 
We now introduce the new ARMA chart for monitoring 

the mean of a stochastic process. Independent, identically 
distributed (iid) processes are considered in this section, and 
autocorrelated processes will be discussed in the next sec- 
tion. 

Suppose that we are monitoring an iid process, a1, a2,..., 
with normality, an in-control mean of 0, and variance or. 
We wish to detect shifts in the mean of the process. The suc- 
cessive values to be plotted on an ARMA chart are defined 
to be the result of a generalized first-order autoregressive 
moving average [ARMA(1, 1)] process applied to the iid 
process; that is, 

Zt = Ooat - Oat-1 + ?Zt-1 
= 0o(at- 3at-i)+ OZt-1, 

................................................. .... 
i 

Time 
(b) 

(1) 

Figure 2. Residual Chart Versus EWMAST Chart (the first example): (a) SCC Chart; (b) EWMAST Chart. 
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Figure 3. Observation Deviations: The Second Example:--- 
Without Shift; , With Shift. 

where 3 = 0/00 and 00 is chosen so that the sum of the 
coefficients is unity when Zt is expressed in terms of at's; 
that is, 

0o - OB _0 - 0 
1- bB B=1 1 - 0 

where B is the backshift operator, Bat = at-_. Thus, 
0o = 1+ 0 - -. To guarantee that the monitoring pro- 
cess is reversible and stationary, we have the constraints 
that Il3 < 1 and 1\4 < 1. The ARMA chart signals when 
Ztl > Luz. Note that the ARMA chart reduces to the 
EWMA chart when 0 = 0 with 0 = 1- A. Thus, the ARMA 
chart can be considered as an extension of the EWMA chart. 

By denoting Wt = Zt/0o, which is a standard ARMA(1, 
1) process, it is easy to show that the steady-state variance 
and the first-lag autocovariance of the monitoring statistic 
are 

2- -=2(0- )(1+0) 2 (2) 
CTZ 1+-- +1a (2) 

and 

((1) + 0)(1 -)( 0) 2 (3) 
1+O 

Furthermore, it can be shown that, for a given 0, the 
variance of the monitoring process is minimized at q- - = 
1 + 0; that is, 0 = -(1 - )/2. It is interesting to note that 
this is the condition for a positive first-lag autocovariance 
y(l). The autocorrelations of the monitoring process are 
P1 =- - o000/a and Pk = ok-lpl(k > 1). 
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Suppose that there is a step shift [ in the mean of the 
original process at occurring at to. Then the corresponding 
mean shift on the monitoring process becomes 

/Ato - 00t, /to+k = (00 - 0)/L + </ftto+k-1, k > 1. (4) 

The simulated example from Lucas and Saccucci (1990) 
illustrates the construction of the ARMA chart. Table 1 
shows the iid observations, the EWMA chart statistics, and 
the corresponding ARMA chart statistics. The target value 
and the standard deviation are chosen to be 0 and 1, re- 
spectively. The process is in control for the first 10 obser- 
vations, and the mean shift occurs at the 11th observation 
(see Fig. 5). 

The parameters of the EWMA chart are chosen to be 
optimal in detecting one standard deviation of mean shift 
with an in-control ARL of 500. According to Lucas and 
Saccucci (1990), the parameters are A = .15 and L = 2.913, 
giving actual control limits of ?.829. 

For the ARMA chart, the parameters are chosen as q = 
.85, which corresponds to A = .15 of the EWMA chart, and 
0 = -.03 (the choice of parameters will be discussed in Sec. 
4). The control limits ?.725 are chosen so that the in-control 
ARL remains at 500. It follows that 00 = 1- .03 - .85 = 
.12 in this example. Therefore, the ARMA statistic can be 
calculated as Zt .85Zt_1 + .12at + .03at_l. For example 
(see Table 1), the ARMA statistic of the 7th run is computed 
as Z7 = .85Z6+.12a7 +.03a6 = .85 x (-.311) +.12 x 1.5+ 
.03 x (-1.2) - -.120. 

To see how the ARMA and EWMA charts react to mean 
shifts, we know a shift of one standard deviation occurs at 
the 11th run. As shown in Table 1 and Figure 6, the ARMA 
chart and the EWMA chart both signal at the 16th run. 

To illustrate the difference between the two charts, we 
consider a smaller mean shift of .75 standard deviations. As 
shown in Table 1 and Figure 6(a) and (b), the EWMA chart 
signals the shift at the 18th observation, but the ARMA 
chart detects the shift at the 17th. Although in this example 
the ARMA chart is more sensitive in detecting a small mean 
shift, this does not imply that the average performance of 
the ARMA chart is better. In general, for iid processes, al- 
though the ARMA chart can sometimes be more efficient 
than the EWMA chart, the ARL performance of the two 
charts is comparable in most cases. For autocorrelated pro- 
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Figure 4. Residual Chart Versus EWMAST Chart (the second example): (a) SCC Chart; (b) EWMAST Chart. 
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Table 1. The Comparison of EWMA and ARMA Charts 

Obs. EWMA ARMA Obs. EWMA ARMA 

Obs. no. lJa shift .75ra shift 

1 1.0 .15 .12 1.0 .15 .12 
2 -.5 .053 .072 -.5 .053 .072 
3 0.0 .045 .046 0.0 .045 .046 
4 -.8 -.082 -.057 -.8 -.082 -.057 
5 -.8 -.190 -.168 -.8 -.190 -.168 
6 -1.2 -.341 -.311 -1.2 -.341 -.311 
7 1.5 -.065 -.120 1.5 -.065 -.120 
8 -.6 -.145 -.129 -.6 -.145 -.129 
9 1.0 .026 -.008 1.0 .026 -.008 

10 -.9 -.113 -.085 -.9 -.113 -.085 
11* 1.2 .084 .045 .95 .047 .015 
12 .5 .147 .134 .25 .077 .071 
13 2.6 .515 .441 2.35 .418 .350 
14 .7 .543 .537 .45 .423 .422 
15 1.1 .626 .609 .85 .487 .474 
16 2.0 .832 .791 1.75 .676 .639 
17 1.4 .917 .900 1.15 .747 .733 
18 1.9 1.065 1.035 1.65 .883 .856 
19 .8 1.025 1.033 .55 .833 .843 

* Mean shift starts. 

cesses, however, the ARMA chart outperforms the EWMA 
chart in many situations. Next we discuss how the ARMA 
chart can be applied to autocorrelated processes. 

3. ARMA CHART FOR AUTOCORRELATED 
PROCESSES 

3.1 Variance and Covariance Structure 
In this section, we investigate the performance of the 

ARMA chart applied to a known process model. Now con- 
sider the application of the ARMA chart (with parameters q 
and 0) to a stationary process. [Following the same notation 
of the EWMAST chart proposed by Zhang (1998), we de- 
note this control chart as the ARMAST chart.] Assume that 
the underlying process Xt is characterized by the autocor- 
relation structure p(T) with p(r) = 7(r)/7(O) and 7y() = 
cov[Xt, Xt+T]. It follows that the ARMA statistic Zt can be 
represented by 

t-l 

Zt = 0oXt + a k- 
Xt-k, 

k=l 

where a = 000 - 0. 

3 

C 
0 

L- 

.0 
0 
n a 

2 

1 

0 

-1 

Similar to the derivation of Zhang (1998), the covariance 
of Zt can be obtained as 

cov[Zt, Zt+ ] 

cov 0oXt 
t-1 

+ CE k-1Xt_k, 
k=l 

t+T-1 

+ 0oXt+r + a E k- 

kl= 

= 0OY(T) + o0a 

-t-1 t+7-1 

X E k-17(T + k)+ E k-1y( 
_k=l k=l 
t-1 t+7-1 

+ a22 E E i+J-2y(r- j +i) 
i=1 j=l 

JXjOPLr "k 1p(T?k-t-1 
= 2 

o2p() + 0oa E k-pp(T + k) 
_k=l 

t+T-1 

+ 5 qk-l (T 
k=l 

-Xt+r_-k 

k) 

k) 

t-1 t+Tr-1 

+ a2E E i+j-2p(T 
i=l j=l 

j + i) 

When 7 = 0, this reduces to the variance of the monitoring 
process Zt, 

( t-1 
=2 + 20oa -lp(k) 

k=l 

t-I t-1 

+ C 2EE i+j-2p(j 
i=l j=l 

i)} x. 

Similarly, the steady-state variance is 

-2 
- o2 + 200oa qk-lp(k) 

k=l 

oo oo 

+2a2E qi+j-2p(j 
i=l j=l 

( k=oo 

k=l 

i) 2 

2 oo oo 
+ a2(0) + 2a2q-2 Zk p(k) 5 21 k = 1 1i = 

-lp(k)} 
? { 

2 + (a2 k 

k=(l 

-2 
Run 

Figure 5. lID Example: --- --, 
Shift. 

1 Sigma Shift; - - - -, .75 Sigma 

where E-kl ckp(k) converges because Ip(k)l < 1 (k > 
0). Note that the preceding steady-state variance reduces to 
Equation (2) when Xt = at and p(k) = 0. 

When the original process is an ARMA(1, 1) process with 
parameters u and v, the steady-state variance can be sim- 
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Figure 6. EWMA Chart Versus ARMA Chart: (a) EWMA Chart; (b) ARMA Chart. 

plified in terms of the parameters of the process. Suppose 
that the underlying process is Xt - uXt-i = at- vat_l 
with Jul < 1 and Ivl < 1. It follows that the variance and 
first-lag correlation coefficient are 

2 1 - 2uv + v2 2 0'2 -2 
aX = 1 - U2 Ta 

and 

2/u 2 p(l) =u- vva2ax, 

respectively, and p(k) = up(k- 1) (k > 2). By substituting 
these terms into the steady-state variance, we have 

4= {0+ 
a2 +2 0oo _,2 p(l) 2I. 

1_ 2 +2( 
oa 

? _ 2) 1 _ U ax. 

In addition, it can be shown that the application of the 
ARMA chart to an ARMA(1, 1) process will result in a 
generalized ARMA(2, 2) process; that is, 

7 0 - OB 
Zt = X t 

0o - B 1-vB 
1- B 1-uB 

(= ( + u)Zt_l - (uZt-2 + Ooat 

- (O + Oov)at_l + Ovat_2. (5) 

Whenever a step shift u occurs at t = to in the underlying 
process Xt, the shift pattern of the monitoring process Zt 
after the occurrence follows from Equation (4). Solving this 
difference equation, the shift pattern following to is 

to0+k = [1 + (0- _)?k]j, k > 0. 

It is interesting to note that this shift pattern depends only 
on the shift size and the charting parameters 0 and 0. 

In general, because the autocorrelation structure of the 
ARMA chart on an ARMA(1, 1) process depends on the pa- 
rameters of the charting process (0 and 0) as well as those 
of the original process (u and v), the performance of the 
ARMA chart depends on all four parameters. It is therefore 
hard to characterize the performance of the ARMA chart. 

The performance of a special class of ARMA charts has 
actually been studied extensively in the literature, however. 
As shown in Equation (5), if the parameters of the ARMA 
chart are chosen as 0 = v and 3 = 0/00 = u, then the mon- 
itoring process reduces to Zt = Ooat. In addition, the mean 
shift pattern of the monitoring process is given in Equation 
(6) with q = v and 0/0o = u. By comparing the monitoring 
process and the mean shift pattern of the class of ARMA 
chart with those of the SCC chart of Alwan and Roberts 
(1988) and Wardell et al. (1994), they are essentially the 
same except for a scaling constant 00. Therefore, the per- 
formance of the ARMA chart with 0 = v and 0/00 = u is 
identical to the performance of the SCC chart applied to an 
ARMA(1, 1) process with parameters u and v. 

As pointed out in Section 1, another special class of 
ARMA charts is the EWMA chart ( = 1 - A and 0 
0). The performance of the EWMA chart applied to an 
ARMA(1, 1) process was first studied by Wardell et al. 
(1992, 1994) and further investigated and denoted by the 
EWMAST chart of Zhang (1998). Schmid (1997) and Van- 
Brackle and Reynolds (1997) also investigated the appli- 
cation of the EWMA chart to autocorrelated processes. 
Wardell et al. (1992) showed that the performance of the 
SCC chart is better than the EWMAST chart (which was de- 
noted by EWMA in their article) in some cases, but worse 
in others. Relative performance critically depends on the 
parameters of the original process (u and v), and neither 
chart is uniformly better than the other. Because both the 
SCC and EWMAST charts are special cases of the ARMA 
chart, it is possible to derive an ARMA chart with appro- 
priate parameter values (0 and 0) that outperforms both the 
SCC and EWMA charts. 

Theoretically, the parameters of the ARMA chart (X and 
0) can be chosen to optimize the ARL performance of the 
monitoring process. It is difficult to derive the optimal pa- 
rameters analytically, however. We propose a heuristic strat- 
egy to choose appropriate ARMA chart parameters in prac- 
tice. 

3.2 Choosing ARMA Chart Parameters 
As mentioned previously, the shift pattern on the charting 

process Zt after the time of the shift to follows Equation (6); 
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Figure 7. Parameter Design of ARMA Charts. 

that is, the transient shift is IAT = Oopi and the steady-state 
shift is tps = -p. We thus define the transient and steady- 
state signal-to-noise ratios as 

RT = IT/O-Z 

respectively. When the shift magnitude is measured in 
terms of the standard deviation of Xt, these two ratios 
become 

RT = P-T / 
a-2 

2 
A2(a\ 

+ 
) 

- 

1=l 
and 

RS = pS//az, (8) (9) 
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and 

Rs=is 0/ i 2 - 2 2 oa+ c2) k-1p(k). 
k=1 / 

0~ 
+ 1-? 2o c=1 

(10) 

When the underlying process is ARMA(1, 1), the equations 
reduce to 

RT=/PT V02 + l 25+2 + 1-2 

and 

Rss /s + 
a2 1a2 ) - 02 ( 

p(l) 
1 - ?u 

p(l) 
1 - qU 

It is believed that these two ratios are critical to choosing 
appropriate parameters of an ARMA chart for autocorre- 
lated processes. The transient ratio measures the capability 
of the chart to detect the shift in the first few runs and is 
more appropriate for detecting large shifts. If the chart fails 
to signal the shift in the early runs, the steady-state ratio 
becomes important for detecting the shift efficiently in later 
runs. 

From our experience, if the transient ratio can be tuned 
to a high enough value (say 4 to 5) by choosing appropriate 
ARMA chart parameters, the corresponding chart will be 
able to detect the shift quickly. On the other hand, if this 
ratio is smaller than 3, the shift will likely be missed at the 
transient state and needs to be detected in the later runs. In 
this case, the steady-state ratio becomes more important for 
detecting the shift efficiently at the steady state. The steady- 
state ratio should not be tuned too high, however, because 
it may result in an extremely small transient ratio and make 
the transition of the shifts (6) from the transient state to the 
steady state very slow. To make the chart detect the shift 
efficiently in the steady state, a balance is needed to make 
a trade-off between the transient ratio and the steady-state 
ratio when choosing the charting parameters. Generally, a 
value of Rs around 3 is appropriate for balancing the values 
of RT and Rs. Based on these guidelines, we have devel- 
oped a heuristic algorithm to choose appropriate ARMA 

chart parameters, which is given in Figure 7. This algo- 
rithm is used to determine the parameters in the simulation 
study for autocorrelated processes in Section 4. 

It is important to note that the implementation of the al- 
gorithm relies on two quantities of interest, the shift level , 
and the ratio ax/az through (9)-(10). The ratio ax/az can 
be calculated based on the process parameters and charting 
parameters ($, 0). In practice, the process model is often 
unknown and needs to be estimated. Then this ratio can be 
estimated based on process parameter estimates. Alterna- 
tively, we can estimate ax and az directly from the original 
in-control trial data and the ARMA statistics and then cal- 
culate the ratio using sample standard deviations. Therefore, 
as long as the process is stationary, it is not necessary to 
identify and estimate the underlying process to implement 
the algorithm for choosing appropriate charting parameters 
in practice. We will illustrate the design procedure step by 
step in Section 5. 

4. SIMULATION STUDIES 

4.1 lID Observations 
We will first study the performance of the ARMA chart 

under iid processes. Lucas and Saccucci (1990) showed that, 
for iid processes, the optimal choice of the parameter A 
depends on the size of the mean shift to be detected. Ac- 
cording to their table 4, for example, the optimal A value 
for a mean shift of one standard deviation is .15. This A 
value corresponds to 0 = 1 - A = .85 for the ARMA chart. 
Therefore, in our simulation study, we focus on how the 
value of 0 affects the performance of the ARMA chart for 
the given optimal value of 0. Table 2 shows the ARL of 
ARMA charts for various values of 0. The ARL's were ob- 
tained based on 250,000 simulation runs with control limits 
placed at L standard deviations so that the in-control ARL 
is approximately 500. The simulation error (shown inside 
the parentheses) is negligible. 

In the simulation study, the EWMA chart (with 0 = 0) is 
found to be very close to optimal in terms of minimizing the 
out-of-control ARL's. For example, as shown in Table 2, for 
the detection of a mean shift of one standard deviation, the 
optimal choice of 0 = -.03 gives an ARL = 9.99, which is 
only slightly better than the EWMA chart with 0 0. For 

Table 2. ARMA Charts Compared with the Corresponding Optimal EWMA Chart (q = .85) for Detecting Mean Shift of 1.0ra 

ARMA 
Charts EWMA A = .15 0 -.075 -.05 -.03 .03 .10 .30 

L 2.913 2.832 2.843 2.867 2.952 3.023 3.080 = .0 502 502 501 501 500 500 498 
.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) = .5 35.5 35.0 34.9 35.0 36.4 39.9 62.6 
(.06) (.06) (.06) (.06) (.06) (.07) (.15) = 1.0 10.06 10.12 10.02 9.99 10.19 10.8 15.1 
(.01) (.01) (.01) (.01) (.01) (.01) (.03) = 2.0 3.92 4.19 4.06 3.98 3.88 3.84 4.16 
(.00) (.00) (.00) (.00) (.00) (.00) (.01) = 3.0 2.54 2.91 2.76 2.66 2.44 2.25 2.02 
(.00) (.00) (.00) (.00) (.00) (.00) (.00) = 4.0 1.96 2.37 2.21 2.10 1.83 1.57 1.27 
(.00) (.00) (.00) (.00) (.00) (.00) (.00) 
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Table 3. ARL Performance of ARMA Charts for Detecting fI = 1.0 

?/0 -.6 -.5 -.3 -.2 -.15 -.1 -.05 -.03 0 .05 .1 .3 

.95 46.0 38.4 25.0 19.2 16.8 14.3 12.2 11.6 11.2 11.4 11.9 16.2 

.85 29.0 22.2 14.4 12.0 10.3 10.2 10.02 9.99 10.03 10.23 10.8 15.1 

.63 22.4 18.0 13.2 12.3 12.2 12.3 12.7 13.0 13.3 14.2 15.4 24.0 

.30 23.2 20.3 18.8 19.9 21.0 22.6 24.7 25.6 27.3 30.4 34.1 55.3 

.05 26.3 24.7 27.3 31.9 35.7 38.8 43.2 45.2 48.6 54.3 61.2 92.6 

detection of shifts other than one standard deviation, the the EWMA chart. To verify this assumption for p = 1.0, a 
ARMA chart gives different ARL performance from the grid search was conducted over the joint space of 0 and 0. 
EWMA chart. When the shift is small, the ARMA chart The results are summarized in Table 3, which is consistent 
performs better than the EWMA chart. When the shift is with our assumption. Because this study is limited, more 
large, the reverse is true. Overall, the ARL is sensitive to work is needed to determine the optimal choices of X and 
the choice of 0. For 0 = .3, the ARL increases to 15.1 at 0 jointly. 
a shift of la, but decreases from 2.10 to 1.27 at a shift As shown in the appendix, a Markov chain approach can 
of 4ra. Nevertheless, the EWMA chart is nearly optimal be used to approximate the run-length distribution of the 
among all charts of the ARMA type for detecting a mean ARMA charts for iid observations and the approximation 
shift of la,. Similar comparison results are observed for accuracy is quite adequate. In summary, the performance of 
other optimal EWMA charts when detecting shifts in the the ARMA chart is very similar to that of the EWMA chart 
mean of .5, 2, 3, and 4 standard deviations (see Jiang 1999 when the parameters of both charts are optimized. The op- 
for detailed results). timal ARMA chart can be slightly better than the EWMA 

Note that the preceding simulation study was performed chart, but the difference is small. Although the EWMA 
under the assumption that the optimal choice of 0 (or 1 - A) chart is a special class of the ARMA chart, it seems that the 
for the ARMA chart is the same as the optimal A value in choice of the additional parameter 0 does not improve the 

Table 4. Comparisons of ARL's: ARMAST, EWMAST, and SCC on ARMA(1, 1) Process 

Process parameters Charting parameters 

Shift u v f 0 ARMAST EWMAST SCC WBM 

.0 -.95 .0 .0 -.49 370 370 370 370 

.5 2.65 4.31 2.67 3.16(2) 
1 1.42 2.20 1.42 2.00(2) 
2 1.00 1.29 1.00 2.00(2) 
3 1.00 1.01 1.00 2.00(2) 
.0 -.475 .0 .9 .1 370 370 370 370 
.5 13.2 14.7 65.5 17.1(8) 
1 4.78 4.97 11.4 6.27(4) 
2 2.31 2.32 2.20 2.79(2) 
3 1.64 1.63 1.35 2.02(2) 
.0 .475 .0 .9 .1 370 370 370 370 
.5 65.6 83.3 253 65.6(32) 
1 20.3 22.4 118 25.5(16) 
2 6.61 6.17 22.6 9.78(8) 
3 3.67 3.40 4.20 5.50(4) 
.0 .95 .0 .92 .4 370 370 370 370 
.5 226 237 331 247(128) 1 102 108 139 136(64) 2 25.8 25.7 1.08 60.7(32) 
3 8.65 8.30 1.00 36.7(16) .0 .475 -.9 .9 .1 380 370 370 - 
.5 84.7 105 109 
1 25.4 29.8 22.8 
2 7.94 7.68 2.79 
3 4.29 4.02 1.01 
.0 .95 .45 -.9 .1 378 370 370 
.5 224 226 350 
1 95.4 97.5 275 
2 23.6 21.9 43.5 
3 5.14 7.15 1.30 
.0 .95 -.90 -.9 36.1 370 370 370 
.5 42.8 240 42.8 
1 1.00 110 1.00 
2 1.00 26.4 1.00 
3 1.00 8.48 1.00 
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Figure 8. Plots of Signal-to-Noise Ratios for u = .475, v = O, t = 1: (a) Value of RT; (b) Value of Rs. 

ARL performance of the EWMA chart significantly when 
the underlying process is iid. As we shall show, however, 
when the underlying process is autocorrelated the ARMA 
chart can be significantly better than the EWMA chart if 
the parameters are chosen appropriately. 

4.2 Autocorrelated Observations 
In this section we study how the ARMAST chart per- 

forms when applied to an autocorrelated process. Simu- 
lation studies by Wardell et al. (1992, 1994) and Zhang 
(1998) showed that the SCC chart and the EWMAST chart 
do not uniformly outperform each other. In general, the 
SCC chart performs better when the absolute value of the 
first-lag autocorrelation is higher and the EWMAST chart 
performs better when the absolute value is lower. In this 
study, we consider several typical autocorrelated processes 
in which the first four are AR(1) processes and the last 
three are selected from ARMA(1, 1) processes. When the 
shift is measured in terms of the standard deviation of 
the original ARMA process, Table 4 shows that the EW- 
MAST chart is much better than the SCC chart in some 
cases (e.g., = .475, v = 0) but much worse in some 
others (e.g., u = .95, = -.9). In the cases, for exam- 
ple, u = .95, v = -.0 and u = .475, v = -.9, either one 
is slightly better for smaller shifts and worse for larger 
shifts than the other. As explained in Section 3.2, because 
the EWMAST and SCC charts are special cases of the 
ARMA chart, it is possible to improve the chart perfor- 
mance by choosing the chart parameters (> and 0) appro- 
priately. Table 4 shows the comparison of the ARMAST 

Table 5. Comparison of ARL's of Alternative Charts for an 
AR(1) Process With u = .9 

Shift 

Charts L 0 1 2 3 

Shewhart of AR Residuals (SCC) 3.00 370 223 11 1 
CUSUM of AR Residuals, K = .5 4.78 370 130 17 1 
CUSUM of AR Residuals, K = .125 12.1 370 79 26 12 
Run sums 106 380 80 28 17 
EWMAST A = .2 2.4 389 84 20 7.3 
ARMAST ? = .9, 0 = .4 2.49 372 75 18.2 6.4 

chart with the EWMAST and SCC charts. The parameters 
of the ARMAST chart in Table 4 were determined based 
on the flow chart in Figure 7. The ARMAST chart with 
appropriately chosen parameters either outperforms or per- 
forms competitively with the better of the EMMAST and 
SCC charts, which is consistent with our expectation. In ad- 
dition, the performance of the ARMAST chart for the last 
case (? = .95, 0 = -.9) is exactly the same as that of the 
SCC chart as we expected because X = v and = 0/00 = u. 

To further understand the results, we investigate how 
the performance depends on the signal-to-noise ratios dis- 
cussed in Section 3.2. For the autocorrelated process with 
u = .475 and v = 0, Figure 8 shows the transient and the 
steady-state ratios for different charting parameters (? and 
/3) when t = 1.0. Figure 8 shows that the EWMAST chart 
with A = .2 (X = .8,3 = 0) has a lower transient ratio 
(.40) than that (1.14) of the SCC chart (q = 0,/3 = .475). 
The steady-state ratio of the EWMAST chart is 2.10, how- 
ever, which is much larger than that (.60) of the SCC chart. 
This may explain why the EWMAST chart outperforms 
the SCC chart. For the ARMAST chart with appropriately 
chosen parameters (O = .9,/3 = .5; i.e., 0 = .1), both the 
transient and steady-state ratios (.52 and 2.58, respectively) 
are higher than those of the EWMAST chart. As a result, 
the ARMAST chart significantly improves the efficiency of 
detecting small mean shifts. 

Other procedures have been proposed to handle autocor- 
related data. For example, the weighted batch mean (WBM) 
chart proposed by Runger and Willemain (1995) applies the 
idea of reducing autocorrelation among batch means and 
monitoring each batch mean using traditional control charts. 
Runger and Willemain (1995) provided a theoretical study 
of the optimal weights for AR(1) processes. Table 4 shows 
the performance of the WBM chart with optimal batch size 
indicated in parentheses. The WBM chart is not as com- 
petitive as the ARMAST chart in all AR(1) processes. For 
ARMA(1, 1) processes, it is difficult to derive the optimal 
batch size and weights for the WBM chart. Theoretically, 
time series modeling of the underlying process is needed to 
get the appropriate batch size and optimal weights. 

In addition, the run-sums technique proposed by Wille- 
main and Runger (1998) is also compared with the 
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Table 6. Comparison of ARL's With Atienza et al.'s (1998) 
Approach for AR(1) Processes 

Shift 

Charts L 0 .5 1 2 3 

.00 ALS,max 3.41 373 31.4 9.87 3.26 1.83 
ALS 1.64 377 30.0 14.3 7.14 4.78 
ARMAST 2.76 370 30.7 9.46 3.82 2.59 
0 = .85, 0 = -.03 

.50 ALS,max 3.46 382 72.3 22.6 5.86 2.12 
ALS 1.64 378 54.0 24.8 11.5 7.42 
ARMAST 2.50 388 64.5 20.5 7.66 4.83 
) = .92, 0 = -.02 

.90 ALS,max 3.43 374 184 60.7 2.63 1.00 
ALS 1.14 381 151 65.5 26.8 14.9 
ARMAST 1.67 370 150 65.6 26.7 15.4 
0 = .99, 0 = .04 

ARMAST chart. Table 5 shows the comparison of the 
ARMAST chart with the charts given by Willemain and 
Runger (1998) for an AR(1) process with u = .9. The run- 
sums chart is competitive to the optimal cumulative sum 
(CUSUM) chart (K - .125) of residuals for small shifts 
(e.g., pt = 1) but is much worse than the SCC chart and 
the CUSUM chart of residuals with K = .5 for large shifts 
(e.g., p = 3). On the other hand, the ARMAST chart with 

- = .9, 0= .4 has the best performance for detecting small 
shifts and is better than the run-sums chart and the CUSUM 
chart (K = .125) of residuals for detecting large shifts. 
Nevertheless, the ARMA chart is worse than the SCC chart 
for detecting large shifts because the ARMA chart is de- 
signed to detect small shifts. 

It is important to note that the ARMA chart can be de- 
signed for detecting a particular level of shifts efficiently. 
Table 6 presents another comparison with the approach 
of Atienza, Tang, and Ang (1998), which is based on 
the time series procedure for detecting outliers and level 
shifts (LS) proposed by Tsay (1988). With each new ob- 
servation at time t, a least squares estimate of the shift 
at time d is computed and standardized as ALS,d. Then 
two monitoring statistics ALS,max = maxl<d<t ALS,d and 
ALS = Ed=l ALS,d/t are derived for testing if there is a 
level shift. Atienza et al. recommended using ALS,max be- 
cause it is sensitive in detecting small shifts. The ARMA 
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charts designed for detecting small shifts are found to be 
better than or competitive to their approach but worse in 
detecting large shifts. Actually the ARMA chart performs 
between that of the two charts based on ALS,max and ALS 
but has much simpler derivations. 

5. EXAMPLE REVISITED 
So far, our analysis focuses on the design and analysis of 

the ARMA chart when the model of the underlying process 
is known or can be accurately estimated. In practice, it is 
possible to design the ARMA chart without knowing the 
process model. We now use the second example in Section 
1 to illustrate the design procedure in Figure 7 when the 
process model is unknown. (Note that using real data can 
only provide clues to practical implementation, however, 
because the true underlying models are always unknown.) 

Given the first 100 stable observations from the process, 
our objective is to design an ARMA chart to quickly detect 
a mean shift of one standard deviation of the process. Recall 
that 

0= 1- ) and 00=. 

Following simple calculations, the standard deviation of 
the original process, ax, can be estimated by the sample 
autocovariance of the data, and the standard deviation of 
the charting process, az, can be estimated from the sam- 
ple autocovariance of the ARMA statistics. The ratio of 
ax/az can then be estimated and the two signal-to-noise 
ratios defined in Equations (7) and (8) can be obtained as 
RT = Ooax/az and Rs = ax/az. Figure 9 shows the two 
signal-to-noise ratios in different regions of the charting 
parameters. When X = -.8 and 3 = .75 (i.e., 0 = 5.4), the 
transient ratio can reach more than 3.8, while the steady- 
state ratio remains around .5. These parameters may have 
advantages to detect shifts larger than lax very quickly 
without loss of much efficiency when detecting smaller 
shifts. Figure 10(a) shows the plot of this ARMA chart with 
adjusted control limits (?2.998a). It signals the shift right 
after the shift occurrence as we expect. Its performance is 
quite similar to the SCC chart [Fig. 4(a)]. For comparison, 
the EWMAST chart with A = .2, which corresponds to the 
ARMAST chart with X = .8 and ,3 = .0, has ratios .30 and 
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Figure 9. Plots of Signal-to-Noise Ratios for the Second Example: (a) Value of RT; (b) Value of Rs. 
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Figure 10. ARMA Charts for the Examples: (a) Example 2; (b) Example 1. 

1.51. This may explain why the EWMAST chart has low 
detection capability and could not signal any shift within 
the following 30 observations. 

Figure 10(b) shows an ARMAST chart (with ?2.568 con- 
trol limits) that adds one more term (0) to the EWMAST 
chart, 0 = -.086, and may detect the possible increase one 
step before the EWMAST chart with the same ? value for 
the first numerical example. 

6. CONCLUSIONS AND FUTURE RESEARCH 

By extending the EWMA control chart, a general control- 
charting technique, the ARMA chart, is proposed in this 
article. The idea is to monitor the ARMA statistic of 
the underlying process. For monitoring iid processes, the 
performance of the proposed ARMA chart is found to 
be comparable to the optimal EWMA chart. For mon- 
itoring autocorrelated processes, the SCC chart and the 
EWMAST chart are found to be special cases of the 
ARMA chart. An informal strategy is developed to de- 
termine the appropriate parameter values. Based on some 
simulation studies, the ARMA chart with the appropri- 
ately chosen parameters outperforms the EWMAST, SCC, 
and other charts proposed for autocorrelated data in many 
cases. 

The current study focuses on the first-order ARMA chart. 
It can be easily extended to higher-order ARMA mod- 
els. It can be shown that the EWMA chart applied to the 
residuals from the SCC chart (Lin and Adams 1996; Lu 
and Reynolds 1999b) can be modeled as a special case 
of the higher-order ARMA charts. The design of higher- 
order ARMA charts may involve too many parameters 
for tuning, however, which would make it too compli- 
cated for implementation. Among them, the AR(2) chart, 
which has only two parameters, is still promising for further 
investigations. 
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APPENDIX: RUN-LENGTH DISTRIBUTION OF THE 
ARMA CHART IN IID CASE 

For EWMA charts, run-length distributions have been 
studied extensively. Several approximation approaches have 
been proposed to analyze the ARL performance. Crowder 
(1987) applied the numerical method to solve an integral 
equation for the approximation. Lucas and Saccucci (1990) 
used a Markov chain model to investigate the ARL values 
and the design strategies. We shall approximate the ARL of 
the ARMA chart on an iid process using the Markov chain 
method. 

It is easy to see that the distribution of the ARMA(1, 1) 
statistic in Equation (1) depends on both Zt-1 and at_l; 
thus Zt does not have the Markov property. The random 
vector Wt = (Zt, at)' is a Markov chain, however, and it 
can be written as 

(A.1) 

where A = 1- and Yt = [(0oat - Oat-l)/A, (a - 
Oat-_)/A]'. To evaluate the ARL for the ARMA chart with 
control limits ?Lz, we need to set large control limits ?La 
for at so that the in-control region can be segmented within 
a two-dimensional rectangle, [-Lz, Lz] x [-La, La]. 

Following Lucas and Saccucci (1990) and Runger and 
Prabhu (1996), the in-control region is divided into M = 
tl x t2 = (2ml + 1) x (2m2 + 1) subregions of width (261) x 
(252). The control variable Wi = (Zi, a)' is said to be in 
transient state (j) at time (i) if SZj - 61 < Zi < SZj + 61 
and Saj- 62 < ai < Saj + (2, for 1 < j < M, where 
SZj and Saj are the partition points of the region. Then 
the transition probability matrix at each run becomes 

(RoT 
R)- 1) 
1 J 

where the submatrix R contains the probabilities of going 
from one transient state to another, I is the identity matrix, 
and 1 is a column vector of ones. To simplify the calcula- 
tions, shift magnitudes and control limits are scaled in terms 
of process standard deviation. When the process mean is u, 
the transition probabilities can be calculated as 

Pjk Pr{going to Sklin Sj} 

Pr{SZk - 1 < Zt < SZk + 61, Sak- 62 
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< at + A < Sak + 62Zt-l = SZj,at-i = Saj} 

= Pr{SZk - 61 < OSZj + Ooat - OSaj + o0u 

< SZk + 6,Sak - 62 < at + I < Sak + 62} 

Pr{min[bu,max(b, CL)] < at 

< max[b, min(bu, cu)]}, 

where bL - (SZk - OSZj + Saj o - o - 0)/0o,bu 
(SZk - )SZj + 0Saj - Oo0t + 61)/0o, and CL = Saj - - 
62, cu = Saj - f + 62 With this notation and the same 
arguments of Lucas and Saccucci (1990), both the in-control 
and out-of-control ARL's can be evaluated as ARL = pT 
(I - R)-1 1, with the means being 0 and /, respectively. 

Similarly to Runger and Prabhu (1996), the algorithm is 
implemented in SAS/IML on a UNIX Workstation, where 
the control limits for at are chosen as ?4.0 because Zt 
would likely go outside the control limits whenever at ex- 
ceeds these limits. The results from this implementation 
agree with the simulation results quite well. Table A.1 
shows the analytical results when 0 = .85. Compared with 
Table 2, the discrepancies are within 3% of the simulated 
ARL's. 

The approximation accuracy of the algorithm depends 
critically on the capability of the memory. When mi and m2 
increase, the transition matrix can become quite large and 
a large memory is needed. To achieve better precision with 
limited memory space, ARL(m) = ARL(ml, m2) is evalu- 
ated for m = mi = m2 = 10,12,14,16, and 18. Following 
the method of Brook and Evans (1972), the continuous- 
state ARL is approximated as the least squares estimate 
of the intercept of the quadratic equation ARL(m) = 
ARL(oo) + B/m + C/m2. 

Note that the Markov chain approximation for the 
MEWMA charts considered by Runger and Prabhu (1996) 
and that for the univariate ARMA chart here are different. 
For the MEWMA chart, the control limit is defined for plot- 
ting T2, which is a quadratic form of the variables. For the 
ARMA chart, the control limits are defined as IZt > Lzaz 
and latl > LavTa. The consequence is that their grids are 
inside a circle, whereas our grids are defined in a rectan- 

Table A. 1. ARMA Charts Compared With the Corresponding Optimal 
EWMA Chart (q = .85) for Detecting tf = 1.0: Analytical Results 

EWMA ARMA 
Charts A= .15 0 -.075 -.05 -.03 .03 .10 .30 

L 2.913 2.832 2.843 2.868 2.952 3.023 3.080 
t = .0 499 503 498 496 501 503 508 
p = .5 36.2 35.8 35.5 35.9 36.7 40.6 62.0 
= 1.0 10.3 10.3 10.2 10.1 10.8 11.0 15.6 

p = 2.0 3.97 4.25 4.11 4.01 3.92 3.85 4.16 
p = 3.0 2.56 2.94 2.78 2.69 2.47 2.25 2.00 
pt = 4.0 2.01 2.31 2.22 2.11 1.86 1.58 1.25 

gle. More memory space is needed for implementing our 
algorithm. 

[Received October 1998. Revised December 1999.] 
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