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A B S T R A C T

Background and objective: In the medical field, data volume is increasingly growing, and traditional methods

cannot manage it efficiently. In biomedical computation, the continuous challenges are: management, analysis,

and storage of the biomedical data. Nowadays, big data technology plays a significant role in the management,

organization, and analysis of data, using machine learning and artificial intelligence techniques. It also allows a

quick access to data using the NoSQL database. Thus, big data technologies include new frameworks to process

medical data in a manner similar to biomedical images. It becomes very important to develop methods and/or

architectures based on big data technologies, for a complete processing of biomedical image data.

Method: This paper describes big data analytics for biomedical images, shows examples reported in the litera-

ture, briefly discusses new methods used in processing, and offers conclusions. We argue for adapting and

extending related work methods in the field of big data software, using Hadoop and Spark frameworks. These

provide an optimal and efficient architecture for biomedical image analysis. This paper thus gives a broad

overview of big data analytics to automate biomedical image diagnosis. A workflow with optimal methods and

algorithm for each step is proposed.

Results: Two architectures for image classification are suggested. We use the Hadoop framework to design the

first, and the Spark framework for the second. The proposed Spark architecture allows us to develop appropriate

and efficient methods to leverage a large number of images for classification, which can be customized with

respect to each other.

Conclusions: The proposed architectures are more complete, easier, and are adaptable in all of the steps from

conception. The obtained Spark architecture is the most complete, because it facilitates the implementation of

algorithms with its embedded libraries.

1. Introduction

The term “Big Data” has become a buzzword in recent years, with its

usage frequency doubled each year within the last decade according to

common search engines [1]. Big data is often defined by three major

characteristics called the “3V”: volume (amount of data generated),

variety (data from different categories) and velocity (speed of data

generation) [2–8]. Nowadays, we have two more “V”: variability (in-

consistency of data) and veracity (quality of captured data) [4,5]. Thus

big data problems are now identified by the “5V”. Big data is not a new

term. The big data application is applied in many fields of science in-

cluding health [1–4], agriculture [9,10], internet with social network

[11], etc.

Big data in health is concerned with meaningful datasets that are

too big, too fast, and too complex for healthcare providers to process

and interpret with existing tools [1,12]. Data are daily generated at

unprecedented rates from different heterogeneous sources (e.g., la-

boratory and clinical data, patients' symptoms uploaded from distant

sensors, hospitals operations, and pharmaceutical data) [7]. In biome-

dical imaging, the techniques that are well established within clinical

settings to capture an image are [3]: computed tomography, magnetic

resonance imaging, x-ray, molecular imaging, ultra sound, photo-

acoustic imaging, fluoroscopy, and positron emission tomography -

computed tomography (PET-CT). These techniques take the medical
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images with high definition and large sizes. The advanced analysis of

biomedical image datasets has many beneficial applications. It enables

to personalize remotely radiological services (e.g., doctors can monitor

online image of patients in order to provide a prescription). However,

specialized doctors are very few and cannot diagnose all these millions

of images generated. With this rise of biomedical image data, new de-

mands to Artificial Intelligence (AI) for machine learning (ML) systems

to learn complex models are made. ML is used as the primary me-

chanism for distilling structured information and knowledge from raw

data, turning them into automatic predictions and actionable hy-

potheses for diverse applications [13].

In this paper, we will focus specifically on biomedical imaging with

Big Data technologies, along with Artificial Intelligence (AI) for ma-

chine learning. An architectural workflow describes the optimal algo-

rithm and method reported in the literature. We will present a work-

flow performing the steps of acquisition of biomedical image data,

analysis, storage, processing, querying, classification, and automatic

diagnosis of biomedical images. We describe the importance of ap-

plying compressed biomedical images in a big data architecture. Two

main big data architectures are proposed. The one is based on

MapReduce in Hadoop and the other is based on Spark. The two pro-

posed architectures will be compared. The paper is organized as fol-

lows: section 2 reviews published methods in the field. In section 3,

these methods are exploited theoretically throughout our work. Section

4 presents the design and construction of the architectures. Results are

analyzed and discussed in section 5. A conclusion and future work are

provided in section 6.

2. State of the art

In medicine, the data encountered are mainly obtained from pa-

tients. These data consist of physiological signals, images, and videos.

They can be stored or transmitted using appropriate hardware and

techniques. One of the services used in medicine for the storage and

transmission of image data is the Picture Archiving and Communication

System (PACS). PACS are popular for delivering images to local display

workstations, which is accomplished primarily through existing proto-

cols like digital image communication in medicine (DICOM). However,

data exchange with a PACS is highly standardized [14], and this system

relies on using structured data solely to retrieve medical images rather

than leveraging the unstructured content of the biomedical images [6].

Many works have been performed in managing and analyzing struc-

tured and unstructured data images using the concept of big data and

artificial intelligence (AI).

AI is now used more intensively in medicine. Indeed, AI is required

to automate the decision and diagnosis of diseases [15,16]. In medicine,

AI can be used to develop a classification algorithm [17,18], make

decisions [13,19,20] and for predictive analysis [13]. Therefore we

need to develop a solution that can analyze and assist with diagnosis

using these images. Hence, it is necessary to implement ML algorithms

in order to automate decision-making in the diagnostic system of

medical images. Human physicians may not be replaced by machines in

the future, but AI can definitely assist physicians to make better clinical

decisions or even replace human judgment in certain functional areas of

healthcare (e.g., radiology) [16]. Concerning the radiology domain, we

propose within this work to develop an architecture that implements AI

to diagnose or make decisions concerning a biomedical image. It is

worth mentioning that several papers have been published concerning

big data and AI in biomedical imaging. In that way, Istephan et al. in

Ref. [6] implemented and examined the feasibility of having a frame-

work to provide efficient querying of unstructured data in unlimited

ways. Their proposed framework is used to evaluate a query in two

phases. In phase one, structured data are used to filter the clinical data

warehouse, while in phase two, feature extraction modules are exe-

cuted on the unstructured data in a distributed manner via Hadoop, to

complete the query. However, their work was only limited to Hadoop,

which does not include many libraries such as Machine Learning, SQL,

etc. In 2017, Yang et al. examine two important aspects that are central

to modern big data bioinformatics analysis – software scalability and

validity [5]. They discussed how state-of-the-art software testing tech-

niques that are based on the idea of multiple executions, such as me-

tamorphic testing, can be used to implement an effective bioinformatics

quality assurance strategy. Dilsizian and Siegel in Ref. [15] showed the

importance of AI, big data, and massively parallel computing in med-

icine and cardiac imaging to personalize diagnosis and treatment. Al-

though their works forecast future application of AI systems in medi-

cine, they did not provide an explicit big data architecture for these

implementations.

To the best of our knowledge, none of the existing researches pre-

sent a complete workflow to manage biomedical images. This drawback

is the main interest of this paper. Indeed, we have designed a workflow

implementing optimal algorithms combining AI and ML to efficiently

manage (acquire, analyze, process, share …) biomedical images.

Therefore, we propose a complete and optimal workflow based on big

data technology and optimal algorithms (AI and ML) drawn from the

literature, to manage biomedical images. The classification step within

the proposed optimal flow will be considered as a study case im-

plementing big data analysis technology (Hadoop and Spark) and can

be customized to all remaining steps.

3. Methods

Medical imaging supplies important information on organ function

and anatomy in order to detect the state of diseases. We propose a

workflow to handle the steps of image processing. The main goal of the

workflow is to give in each step the optimal method that we have to

implement so as to have an optimal big data architecture solution.

In this section, a conceptual framework was developed to provide a

systematic method necessary for analyzing big data in biomedical

imaging from patient data. The conceptual framework proposed is

summarized in Fig. 1. This figure shows the parts of big data processes

for biomedical image processing. We rely on results of recent

Fig. 1. Big Data workflow for biomedical image processing. Only classification step will be designed with Hadoop/Spark framework.
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publications to design optimal algorithms or methods for each big data

processing step.

Data management is the organization, administration, and govern-

ance of large volumes of both structured and unstructured data. The

goal of big data management is to ensure a high level of data quality

and accessibility for business intelligence and big data analytics appli-

cations [21].

• Clinical images acquisition. In biomedical imaging, the techniques

that are well established within clinical settings to acquire an image

are [3]: computed tomography, magnetic resonance imaging, x-ray,

molecular imaging, ultra sound, photo-acoustic imaging, fluoro-

scopy, positron emission tomography-computed tomography (PET-

CT). These techniques take the medical images in a higher definition

and large sizes. These methods generally give an internal image of

human body parts. However, if a patient suffers from a disease that

affects the skin, the technician can then use a camera or smartphone

to take the picture of the skin and port it into the system. This en-

ables smartphone cameras to act as acquisition devices. The cap-

tured data image is then transferred into the database of the big data

platform for processing.

• Extraction, Cleaning, and Annotation. Extraction refers to a technique

that enables to obtain useful biomedical images from the raw data

and, refines them so that they can be used in the following analytic

steps. Cleaning is the process that eliminates noise on acquired

images. At this stage, we just need a filter. Annotations rely on a

technique, which allows adding some information concerning the

patient on images.

• Integration and representation. This is the step which involves the

automatic clustering of images in the databases. Preview of images

is also possible at this level before analyses.

Concerning big data analysis and share, it is an entire program that

bears the development of theoretical, mathematical, artificial in-

telligence, statistical methods for analysis of biomedical images, clinical

diagnosis and patient monitoring.

• Modeling. The modeling step is based on mathematical models and

computational algorithms. This can be used to format images in a

way that is easier to understand. This step is not compulsory, and

depends upon the nature of the image. For example, a 3D image can

be modeled in 2D to facilitate its manipulation.

• Classification. Classification is one of the classical concerns in image

processing [22–24]. Classification is an example of pattern re-

cognition [25]. Classification in machine learning concerns a pro-

blem of identifying to which set of categories a new population

belongs. When category membership is known, the classification is

done on the basis of a training set of data containing observations.

An example would be to assign a given biomedical image into

“anatomic body part” or “biological systems” classes. It is worth

noticing that ML algorithms can be classified into three major ca-

tegories which are: supervised learning, semi-supervised learning,

and unsupervised learning. Supervised learning is suitable for pre-

dictive modeling via building some relationships between the pa-

tient traits (as input) and the outcome of interest (as output) [16].

Unsupervised learning is known as clustering for feature extraction

[16,26]. Semi-supervised learning is a hybrid between supervised

and unsupervised learning, which is suitable for scenarios where the

outcome is missing for certain subjects [16]. Thus, supervised

learning is used to classify, regress or estimate data processing tasks.

And unsupervised learning is utilized to do data processing tasks

such as clustering or prediction.

In our workflow, the classification steps are processed under a su-

pervised learning algorithm via a support vector machine (SVM). SVM

is chosen from several other supervised learning algorithms because

SVM and neural network are two well-known techniques used to clas-

sify biomedical image data. Indeed, in medical imaging, SVM and

neural networks take up to 42% and 31% respectively of the most used

algorithms [16]. This statistic shows the efficiency of the SVM algo-

rithm. SVM is mainly used for classifying the subjects into two groups,

where the outcome Yi is a classifier. Yi=−1 or 1 and represents

whether the ith considered patient belongs to group 1 or 2, respectively

[16,22]. SVM uses the learned features and patterns for application on

labeled data from a given source domain, resulting in a linear classifi-

cation model that outperforms other methods [27,28]. SVM is suc-

cessfully applied to biomedical images datasets as shown in Refs.

[16,28]. The classification step could be assistive to organize image

databases into image categories prior to retrieval or diagnostics. Hen-

ceforth, each specialist will see only the biomedical images of his

competence field.

• Prediction and decision. Many computer-aided diagnoses have ex-

perience that is more intensive in the medical imaging field. These

methods are based on the ML algorithm. Deep Convolutional Neural

Network (CNN) is one of the most used to automate the process of

diagnosing symptoms from patient information. This is because the

CNN yields over 88% accuracy for diagnosis and treatment sug-

gestion [16,29]. For example, in 2017, Esteva et al. trained clinical

images taken by smartphones using CNN and identified skin cancer

[30]. Esteva et al. obtained a specificity and sensitivity over 91%,

which indicates the performance of CNN. Geert et al. applied CNN

on medical images dataset to detect automatically, symptoms like

cancer prostate or sentinel lymph node [31]. The CNN, which con-

sists of multiple layers of neuron-like computational connections

with step-by-step minimal processing, achieves significant im-

provements [32]. Given that our architecture has to work on very

large image data volumes, the CNN will be appropriate for the au-

tomatic diagnostic step. Further, a CNN requires a huge number of

training images (e.g., 1,000,000) to determine a large number of

parameters in the CNN [33].

• Validation. Validation is performed by calculating sensitivity and

specificity [30]:

= =Sensitivity
True positive

positive
Specificity

True negative

negative
;

where true positive is the number of symptoms correctly predicted on the

images, positive is the total number of symptoms shown, true negative is

the number of correctly predicted benign symptoms, and negative is the

number of benign symptoms shown.

• Transformation (Compression). This step provides transformation of

the images. Here transformation refers to compression. Compressing

data in big data architecture is important as we see in Refs. [34–36].

Indeed, big data compression techniques allow the taming of the

complexity of big data management tasks within such frameworks.

This beneficially influences all the other activities that are delivered

as services in a reference Cloud architecture [37]. The compression

method is representative of data reduction for big data analytics. In

fact, reducing the size of data makes them analytically computa-

tional, less expensive and thus faster, especially for the data through

putting to the system rapidly [34]. Basically in this step, the idea

behind big data compression consists of reducing the size of data

(images) to gain storage capacity, transmission time, management

efficiency and querying. In image compression, there are always

new approaches that are being tried and tested to improve the

quality of the reconstructed image. There are two types of com-

pression: lossless compression, where reconstruction data is iden-

tical to the original; and lossy compression, where there is a loss of

data. However, lossless compression is limited because compression

rates are very low [38]. The compression ratio of lossy compression

scheme is very high. Some biomedical images cannot tolerate
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distortions of the reconstructed image because the slightest in-

formation on the image is important. Thus we focused on lossless

compression in our architecture as in Ref. [36]. Lossless compres-

sion algorithms are achieved generally by entropy encoding, such as

the Shannon-Fano algorithm, Huffman coding, arithmetic coding,

Lempel-Ziv-Welch algorithm [38,39]. Huffman coding is chosen to

be implemented in our architecture because it is a compression al-

gorithm based on the frequency of appearance of characters in an

original document. Developed by David Huffman in 1952, the

method relies on the principle of shorter codes allocation for fre-

quent values and longer codes for less frequent values [38–42]. This

coding uses a table containing the apparent frequencies of each

character to establish an optimal binary string representation. The

procedure is broken up into three parts:

- First, the creation of the frequency appearance of character table

in the original data.

- Afterward, the creation of a binary tree according to the previously

calculated table.

- Finally, encoding symbols in an optimal binary representation.

• Share or storage. Big data applications commonly use Not Only SQL

(NoSQL) technologies as a database [43–46]. NoSQL refers to a

database category that appeared in 2009 which differs from the

relational databases [43]. Indeed, one of the recurring problems of

relational databases is the loss of performance when one should

process a very large volume of data. Moreover, distributed archi-

tectures provide the need to adapt solutions natively to replication

mechanisms of data and load management [43,47]. Cloud com-

puting technologies can also be used to facilitate sharing of data.

Cloud computing is an on-demand computing model composed of

autonomous, networked IT (hardware and/or software) resources

[48]. Cloud computing is suited for big data bioinformatics appli-

cations as it allows for on-demand provisioning of resources with a

pay-as-you-go model, thus eliminating the need of purchasing and

maintaining costly local computing infrastructure for performing

analyses [5]. Cloud computing platforms use hypervisor technology

to provide dynamic access to virtualize computing resources. Vir-

tualisation is a technique that enables a single hardware resource to

host a number of the independent virtual machines, where each

virtual machine shares some of the hardware resources.

4. Results

In this section, we present the big data architectures to handle the

step of workflow described in Section 3. The main goal of these ar-

chitectures is to see how the data image is processed since im-

plementation. However, we base on Hadoop framework, and Spark

framework, and propose two architectures for classification step as

shown in Fig. 1. Indeed, the classification stage represents one of the

main parts of the proposed workflow. In fact, the classification step

groups each category of biomedical images (lunch cancer, pelvis, skin

image …) with each order. Finally, diagnostic and analysis time will be

minimized both for specialist or CNN algorithms. Henceforth, the

classification step has to be well-designed.

4.1. Hadoop architecture

Hadoop is an Apache open source framework based on parallel

programming. The Hadoop File System was developed using a dis-

tributed file system design and is called HDFS (Hadoop Distributed File

System) [7]. HDFS holds a very large amount of data, provides easier

access, and makes applications available for parallel processing. The

distributed file system is designed to process large amounts of data with

sequential read and write operation. Each file is broken into chunks,

and stored across multiple data nodes.

Hadoop implements MapReduce programming. MapReduce is a

processing technique and programming model done in a lateral and

scattered manner [7,49–51].

MapReduce programming is a special form of a directed acyclic

graph (DAG) which is applicable to a wide range of used cases.

MapReduce is organized in two functions [51,52]. The first one is a Map

function, which transforms an element of data into some number of

key/value pairs. The second is the Reduce function, which is used to

merge the values (of the same key) into a single result. The proposed

architecture is shown in Fig. 2. In this architecture, we can observe the

simplicity of the implementation of MapReduce programming. All of

the images resulting from the modeling step will be automatically

classified in each defined category. That will optimize the prediction

and decision methods to be applied to the images. Thus, we can use

Hadoop and apply a deep learning algorithm in each category resulting

from the classification step, in order to predict and make decisions

automatically on each image. The architecture of Fig. 2 can be custo-

mized and applied in all process of Fig. 1.

Hadoop is suited for processing large amounts of data. However,

others frameworks such as Spark, allows the achievement of real-time

processing, and is already implemented in several libraries which fa-

cilitate its usage and programming.

Fig. 2. Hadoop MapReduce pipeline for biomedical image classification.
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4.2. Spark architecture

Spark has a programming model similar to MapReduce but extends

it with a data-sharing abstraction called Resilient Distributed Datasets

(RDDs) [7,53]. RDDs are fault-tolerant collections of objects partitioned

across a cluster that can be manipulated in parallel [54]. Spark offers a

unified and complete framework to manage the different requirements

for big data processing with a variety of datasets (graph data, image/

video, text data, etc.) from different sources (batch, real-tome

streaming). In addition to Map and Reduce operations, Spark also

supports SQL queries, streaming data, machine learning and graph

processing data. With capabilities like in-memory data storage and near

real-time processing, the performance can be several times faster than

other big data technologies. Spark runs over the existing Hadoop Dis-

tributed File System (HDFS) infrastructure to provide enhanced and

additional functionalities. Users create RDD's by applying operations

called “transformations” (such as map, filter and groupBy) to their data.

We use these properties to develop an architecture enabled to make the

classification using the Map and groupBy methods. Fig. 3 presents our

Spark architecture model for the classification of image data. In order to

calculate the number of images in each class, we used the method Re-

duceByKey proposed in the Spark framework. In Fig. 3, we used only

one ReduceByKey. However, depending on the processing, we can find

several ReduceByKey in a Spark architecture. Thus, in Fig. 3, the images

will be counted and formed into a matrix. In addition, we will be able to

locate an image in its original sample, thanks to this matrix. Fig. 4 (a)

explains how the analysis of the biomedical images can be done using a

big data architecture. Figs. 2 and 3 of classification architectures can be

represented in Fig. 4 (b) for a better comprehension. Fig. 4 (b) gives us

the essential points that we need, to classify our images by category and

prepare them for the next processing step.

5. Discussion

New imaging technologies give rise to new challenges in image

management. Imaging techniques produce huge amounts of structured/

unstructured data that require reliable and efficient algorithms and

methods for interpretation and analysis. This work proposed a work-

flow based on big data technology in biomedical image analysis. The

peculiarity of our workflow is that it gives us the optimal methods and

algorithms to use in each design step. By using big data technology and

AI techniques, we can automate the processes of acquisition, manage-

ment, processing/analysis, and sharing/storage of biomedical image

data. Thus, our proposed workflow does not only allow the exchange of

image data as in the case of conventional systems [14,54]. It is inter-

esting to mention that we have designed two architectures based on

Hadoop for the first one and Spark for the second one. Both proposed

architectures allow performing of the classification step. We specify

that these architectures proposed can be customized on all steps of

Fig. 1. With regard to our two architectures (Figs. 2 and 3), we notice

that Hadoop applications are easier to implement than Spark applica-

tions. However, Spark includes all libraries used to automate our image

workflow process. Therefore, for complete automation, we need to

work with the Spark framework. The proposed architecture can be

compared to the architecture proposed in Ref. [5]. Our Hadoop archi-

tecture for classification is almost the same type as in Ref. [5]. Spark

architecture proposed in Ref. [5] makes it possible to count the number

of genes in the processing system; however the proposed Spark archi-

tecture within this work groups together the counting of images and the

classification of images by categories. Thus, this architecture can be

considered as a valuable contribution compared with the results en-

countered in the literature. The implementation of these proposed ar-

chitectures are beyond the scope of this work, and will be addressed in

our future works.

The ability to easily adapt our architectures can be used to improve

or modify the end user's systems, such as electronic medical records or

PACS, with the evolution of imaging technologies, processing, and

storage. Our workflow based on the NoSQL database can support bio-

medical images available in other commonly used formats, and also

DICOM data. Our workflow provides another aspect to how this will be

structured for management systems and data analysis biomedical

images. Thus, it will enable the facilitation of tasks for remote diagnosis

and telemedicine.

6. Conclusion

Big data biomedical image was considered herein, including the

methods to generate, manage, represent, and analyze imaging in-

formation for biomedical application. In this paper, we proposed a

workflow for the management and analysis of biomedical image data

based on the tools of big data technology. To design our workflow, we

conducted a literature review to identify the best algorithms and

methods most suitable for the management and analysis of biomedical

images. Thus, we were able to give for each step of our workflow, a

method/algorithm to finally obtain an optimal architecture. Our pro-

posed workflow does not only allow the exchange of image data as in

Fig. 3. Spark Map Reduce pipeline for biomedical image classification and counting.
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the case of conventional systems, but it manages also from acquisition,

to the storage and sharing of images. In order to show the use of big

data framework in our workflow, we proposed and designed two ar-

chitectures to perform the classification step. The first architecture

proposed is based on the Hadoop framework and the second on the

Spark. We noted that the Spark architecture was the most complete

because it facilitates the implementation of algorithms with its em-

bedded libraries. Our proposed architectures are more complete, easier,

and are adaptable in all the steps of conception than those proposed in

literature. As future work, we should develop/implement a real appli-

cation of our workflow proposed in Fig. 1 with the Spark framework.

Fig. 4. (a) General big data architecture to automate biomedical image analyses (b) Classification architecture to group images by category using Hadoop or Spark.
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