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� Deep learning results to a higher precision and dice score than threshold method.
� Geometry of cracks are better preserved by the deep learning method.
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Reliable methods for detecting pixels that represent cracks from laboratory images taken for digital image
correlation (DIC) are required for twomain reasons. Firstly, the segmented crackmaps are used as an input
for someDICmethods that are based ondiscontinuous fields. Secondly, detected crack patterns can serve as
inputs for predictive empirical models to obtain the level of damage to a body. The aim of this paper is to
compare the performance of two approaches for crack segmentation on grayscale images acquired from
two experimental campaigns on stone masonry walls. In the first approach, a threshold is applied to the
maximumprincipal strainmap calculated using post-processed DIC results. In the second approach, a deep
convolutional neural network is used. The two methods are compared in terms of standard segmentation
criteria, namely precision, dice coefficient and sensitivity. It is shown that the precision and dice coefficient
obtained from the deep learning approach aremuch higher than those obtained from the thresholdmethod
(by almost 47%and34%, respectively). However, the sensitivity computed from thedeep learningmethod is
slightly (~4%) lower than the thresholdmethod. These results show that the deep learningmethod can bet-
ter preserve the geometry of detected crack patterns, and the prediction in terms of pixels belonging to a
crack is finally more accurate than the threshold method.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access articleunder the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Digital image correlation (DIC) is an optical measurement tech-
nique widely used in experimental mechanics to compute the
deformation of a body [1,2]. For the local subset DIC, images of a
sample are compared at a regular time interval. In this process, a
small group of pixels called subset is tracked [2] by comparing
the reference image that is taken from the undeformed body with
later images of the deformed body taken at intervals of time. To
perform this procedure, called matching, a correlation error func-
tion that describes the difference between the subset in the refer-
ence image and the image taken at a later stage is minimized (refer
to [2,3] for suggested error functions). However, the correlation
process might fail if a crack passes through a subset; in this case,
the user must exclude such areas in advance before the matching
phase [4]. Additionally, multiple cracks crossing the sample can
divide its surface into segregated areas, for which initial seed
points—the initial pixels considered for the matching—must be
defined separately. This can make it a cumbersome process to ana-
lyze the hundreds of sets of images usually taken during an exper-
iment [4]. To tackle this problem, Helm [4] proposed using a cutoff
on the correlation values obtained for each subset and discarding
the subsets with error values higher than this cutoff. However,
the threshold value must be defined by the user.
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Detecting crack pixels on images could help automate the gen-
eration of the initial seed point in the local subset DIC method for
segregated regions and to remove noisy results around the discon-
tinuities [4]. Automated crack detection would also be useful for
assessing the damage state of structural elements, because a
pixel-wise segmentation of cracks, i.e., classifying all pixels of the
image whether they belong to a crack or not, can be an important
input for the damage assessment of a structural element [5–11].
This is particularly relevant for elements made of quasi-brittle
materials, like concrete and masonry, for which cracks are the
key damage feature.

In the present study, two approaches for crack segmentation are
compared using images that were taken during two experimental
campaigns conducted at École Polythecnique Fédérale de Lausanne
(EPFL) [12,13]. The two approaches are: (i) crack segmentation by
applying a threshold to the maximum principal strain map and (ii)
crack segmentation using deep learning. To evaluate and compare
the performance of each method, standard segmentation criteria in
the computer vision domain, namely precision (PC), sensitivity
(SE), and dice coefficient (DC) are used. The sensitivity of the
threshold method to the subset size, which is an input parameter
for performing the local DIC, is also explored. Furthermore, the
effect of using a pre-trained encoder in the deep learning network
is investigated. In what follows, previous studies on crack detec-
tion are reviewed in Section 2. A brief description of the conducted
experimental campaigns is included in Section 3. Thereafter, the
image dataset and the segmentation metrics are mentioned in Sec-
tion 4. The segmentation methods are detailed in Section 5 and 6,
and finally, the performance of the methods is compared in
Section 7.
2. Related research studies

2.1. Crack segmentation by post-processing of DIC results

In some research, crack detection is integrated directly into the
DIC method [4]. In the structural engineering community, how-
ever, it is addressed in post-processing results derived from DIC
measurements, such as strain maps or displacement fields. Destre-
becq et al. [14] tested a reinforced concrete beam under four-point
bending. They verified the crack patterns obtained from the DIC
method by comparing it to a visual inspection performed during
the experiment. The criteria used for this verification was the loca-
tion and width of cracks. Tung et al. [15] observed that the cracking
of a 45 degrees brick wall under compression loading could be bet-
ter depicted using the von Mises strain map than horizontal and
vertical strain maps. However, this work did not include a quanti-
tative justification for the accuracy of crack detection by applying a
threshold on the von Mises strain maps. Ghorbani et al. [16] stated
that visualizing the maximum principal strain (e1) can detect
cracking of confined masonry walls tested under cyclic shear-
compression loading. They compared a colored map of the maxi-
mum principal strain with the hand-drawn crack patterns at the
ultimate state depicted during the experiments. They observed
that masonry cracking can be captured by visualizing e1 maps,
though again, a quantitative comparison was not mentioned. Sim-
ilarly, Korswagen et al. [17,18] studied crack propagation in
masonry walls using post-processed DIC results. Hoult et al. [19]
used the horizontal strain map, defined as the horizontal displace-
ment of adjacent subsets divided by the step size (i.e., the initial
distance between subsets), to detect cracking of six reinforced con-
crete beams tested under four-point bending. Morgan [20] studied
the initiation, propagation and coalescence of cracks using the DIC
method by conducting several compression tests on Opalinus shale
specimens. In this study, they applied a threshold to the horizontal
strain exx to obtain crack maps. By qualitatively comparing crack
maps sketched during experiments and those obtained using the
results of the DIC method, they concluded that the DIC analysis
is capable of detecting more cracks than visual inspection. Cinar
et al. [21] proposed a sequence of image processing algorithms to
identify crack patterns, including phase congruency and active
contour segmentation on the displacement field obtained from
DIC measurements. They tested this method using both synthetic
and laboratory data, but the efficiency was not verified for speci-
mens with multiple cracks. Recently, Gehri et al. [22] proposed a
pipeline to compute automatically the crack opening and slipping
using the DIC measurements. They used the principal tensile strain
to localize cracked area. They qualitatively evaluated the perfor-
mance of crack detection by overlying the principal tensile strain
map over the region of interest.

2.2. Crack segmentation using deep learning

Deep learning methods have been successfully applied to detect
and segment cracks on natural images, such as asphalt, concrete,
masonry and steel surfaces [23–32]. Generally, two approaches,
namely classification and segmentation, have been used in the lit-
erature for crack detection. In the first method, small patches of an
image are classified as crack or non-crack. In the second approach,
every pixel is classified as a crack or non-crack.

Using the first methodology, Zhang et al. [33] proposed a shal-
low network to classify patches of road images as crack or non-
crack. They observed that extracting hierarchical features using a
convolutional network resulted in higher precision, recall, and
F1-score (refer to Section 4.2 for the definition) compared to using
hand-crafted features and designing an SVM (Support Vector
Machine) or Boosting classifier. Cha et al. [34] classified patches
by training a convolutional neural network using 40 k images of
concrete surfaces (train/validation) with a resolution of
256 � 256 pixels. They achieved a classification accuracy of around
98%. Wand and Hu [35] trained a CNN (Convolutional Neural Net-
work) to classify crack vs. non-crack patches using two patch sizes
of either 32 � 32 pixels or 64 � 64 pixels. With the larger patch
size, they observed an increase in the precision, recall and F1-
score. To classify image blocks as background, crack or sealed crack
on road images, Kaige et al. [36] trained a CNN utilizing the concept
of transfer learning. In a second step, they trained a linear model to
find an optimum threshold for each image block to segment the
crack pixels. Finally, they used tensor voting [37] to connect bro-
ken crack fragments. Gopalakrishnan et al. [27] extracted features
from pavement images using a pre-trained VGG16 (VGG: Visual
Geometry Group at the University of Oxford) truncated deep net-
work. They used five classifiers to classify image patches as crack
or non-crack, including a single neural network layer, random for-
est, extremely random trees, support vector machines and logistic
regression. It was observed that the single-layer neural network
had the highest prediction accuracy, precision, recall, F1-score
and Cohen’s Kappa score. To detect cracks on metallic surfaces in
video frames, Chen and Jahanshahi [38] proposed a CNNwith naive
Bayes data fusion.

Using the second methodology, i.e., pixel-level crack detection,
Yang et al. [23] proposed a fully convolutional network to segment
crack pixels on different surfaces. The proposed network consisted
of a down-sampling part, wherein they used VGG19, and an up-
sampling part. They achieved around 98% accuracy, 82% precision,
79% recall and an 80% F1-score. Zou et al. [39] proposed a hierar-
chical encoder-decoder architecture called ‘‘DeepCrack”, in which
a prediction map is created at multiple convolution stages by fus-
ing feature maps from the encoder and decoder path. All fused
maps are concatenated and fused to produce a multi-scale output.
They stated that DeepCrack outperforms other crack segmentation



(a)                                                      (b)

Fig. 2. Tests on wallettes: (a) simple-compression test and (b) diagonal compres-
sion test. The images show the plastered side of the wallettes.
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methods such as CrackForest [40] and CrackTree [41]. Liu et al. [42]
proposed a variant of U-Net to predict crack pixels on concrete sur-
faces. They reported that U-Net requires only 57 images for train-
ing and validation, and it achieved an F1-score of 90%. Ji et al. [62]
used DeepLabv3+ [43] to segment crack pixels on asphalt images
followed by an algorithm to quantify crack maps in terms of length,
mean width, maximum width, area and ratio.

The literature review presented above shows that the previous
studies using the threshold method lack quantitative image-based
criteria to verify the quality of crack detection. In this study, how-
ever, the threshold method is evaluated by quantitative metrics.
With regard to the deep learning approach, all the conducted
research has focused only on ‘‘natural images”, i.e., images taken
from structural elements without the presence of small black dots
termed speckles. However, these approaches have never been
tested for images taken in the laboratory for use in DIC, in short
referred to as ‘‘laboratory images” in this article. One significant
difference between natural images and laboratory images is the
presence of speckles on the background (see Fig. 1 and Fig. 2),
which complicates the detection process compared to natural
images with a simpler background.
3. Description of the case studies

3.1. Experimental tests and procedures

As a case study, the data from two experimental campaigns
conducted at EPFL, wherein DIC was applied to measure the dis-
placement fields, were used in this work. These two experimental
campaigns are briefly described below.

3.1.1. Tests on stone masonry walls of typology A [12]
This testing campaign included six shear-compression tests

(specimen label: RS), three compression tests (specimen label:
RSC) and three diagonal-compression tests (specimen label: RSD).

The specimens for shear-compression tests (RS) were 160 cm
high, 160 cm long and 40 cm wide and were plastered on one side.
Fig. 1(a) and (b) show views of the faces with and without plaster
as well as views of the two stereo camera systems placed on either
side of the wall to measure the 3D displacement fields via DIC. Dur-
ing the tests, the horizontal red actuator applied cyclic horizontal
displacements while the vertical red actuators applied a constant
vertical load. For more details about the experimental campaign,
please refer to Rezaie et al. [12]. In addition to shear-
compression tests, three diagonal-compression and three simple-
compression tests were performed on wallettes that were 90 cm
(a)                                                        (b)             

Fig. 1. Test setup for shear-compression tests at EPFL. (a) view of the stone side withou
covered with random speckles.
high, 90 cm long (one of the wallettes tested under simple com-
pression load was 80 cm long) and 40 cm wide. Fig. 2(a) and (b)
show images taken from simple-compression and diagonal-
compression tests, respectively. As for the shear-compression tests,
displacement fields on either side of the wallettes were measured
by two sets of stereo cameras used in conjunction with DIC.
3.1.2. Tests on stone masonry walls of typology E [13]
Godio et al. [13] conducted six cyclic shear-compression tests

on stone masonry walls (specimen labels: SC) with regular typol-
ogy. The walls were 90 cm high, 90 cm long and 20 cm wide. In
addition to shear-compression tests, two simple-compression tests
were carried out on specimens labelled RSM, measuring 90 cm
high, 78 cm long and 20 cm wide and one diagonal-compression
test on a wall measuring 78 cm high, 78 cm long and 20 cm wide.
For a detailed explanation about the tests, please refer to Godio
et al. [13]. Just as for the tests performed on walls of typology A
by Rezaie et al. [12], the wall surfaces were speckled and two
stereo camera systems were used to measure 3D displacement
fields on either side of the walls.
3.2. Three-dimensional DIC setup

To use the DIC method, a number of preparatory steps were per-
formed in both campaigns. On the specimens, the regions of inter-
est (ROI) were first painted in white; then the wall surfaces were
covered with random speckle patterns with an average dimension
                                                       (c)

t plaster, (b) view of the plastered side and (c) a closed view of the plastered side
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of 2 mm. These black speckles were either sprayed using a paint
pistol (see Fig. 1(c)) or a printer gun (see Fig. 2(a)). Additionally,
stereo camera systems and lighting conditions were set up. Cam-
eras were mounted on a rigid bar and placed far enough from
the specimens to view the entire region of interest. They were
set up such that the centres of the two cameras pointed towards
the same location on the specimens. The average ratio of mm/pixel
for all tested specimens ([12,13]) was almost 0.4. On each side of
the walls, two LED lamps were placed to illuminate the regions
of interest. The cameras were calibrated by taking around 80 pairs
of images of a calibration board containing circular dots with
known dimensions. For a more detailed explanation about the nec-
essary preparation steps to use the DIC method, see previous work
on the topic [2,44]. During the experiments, pairs of grayscale
images were taken from both sides of the walls and wallettes at
specified time intervals. For testing walls, images with dimensions
of 4384 � 6576 pixels were acquired, while, for testing wallettes,
images with dimensions of 2192 � 3288 pixels were acquired.

To perform the DIC method, the commercial software VIC-3D
version 8.2.4 [45] was used, which uses a local subset DIC approach
that divides the region of interest into subsets. The local subset DIC
method is formulated as an optimization problem using a cross-
correlation loss function [2,45]. As an illustration, Fig. 3 depicts a
subset in a reference image (green box) and the corresponding
deformed subset (red quadrilateral) in the deformed image. The
result of the DIC method is the 3D deformation of the centres of
each subset (the green circle shown in Fig. 3(a)), for which the cor-
relation problem is solved. The correlation problem is usually
solved for overlapping subsets, referred to as the step size. An
important parameter affecting the accuracy and spatial resolution
is the subset size [2,16,46,47]. One way to select a subset size is to
take several images at the beginning of a test when a specimen is
intact and investigate the standard deviation and bias of some
measurements, such as horizontal or vertical displacements [16].
In this study, the subset size is considered as a variable parameter
so that its influence on the segmentation metrics described in Sec-
tion 4.2 could be investigated.
4. Crack segmentation dataset and metrics

In this paper, crack segmentation is performed on a pixel basis,
i.e., by classifying each pixel as part of a crack or not. Two
approaches of crack segmentation are applied and compared in
this study: i) an approach based on a threshold applied on the prin-
cipal strain map that is derived from the displacement field mea-
sured using DIC, and ii) an approach by deep learning making
use of the images taken as input to DIC. Section 4.1 introduces
the dataset of images used in the two approaches, while the crite-
a

Fig. 3. Schematic illustration of DIC (a) reference and (b) deformed imag
ria used in the evaluation and comparison of the approaches are
defined in Section 4.2.
4.1. Training and test datasets

Small image patches were extracted from the full-size images
by sliding a 256 � 256 pixels window with a stride of 256 pixels
along the two directions (Fig. 4), which will be used as inputs to
the network.

For the training and validation data (dataset A), 17 full-size lab-
oratory images were selected from the specimens RSC2-3, RSD1,
RSD2, RSM2, SC1-7, RS1-3. The images taken during the experi-
mental campaigns illustrate the state of the plastered wall surfaces
under different loading levels and support conditions [12,13]. The
images that were selected as part of the training and validation
dataset cover a wide combination of crack widths, speckle patterns
and lighting conditions. In this way, the robustness of the crack
segmentation approaches tested in the paper is challenged. From
the 17 full-size images, 430 image patches were generated. The
crack pixels contained in the patches were manually annotated
by use of the open-source software ‘‘Pixel Annotation Tool” [48].
These manual annotations serve as ground truth.

For the test data (dataset B), three full-size images were
selected from specimens RS4 and RS6 at different loading levels
(see Fig. 5). To obtain a fair model, no images taken from speci-
mens RS4 and RS6 were included in the training/validation data
(dataset A). Using the sliding window with the same window size
and stride as for the training/validation data, 100 image patches
were generated, and the ground truth masks (binary images in
which crack pixels are annotated, i.e., crack pixels are set to one
and the background to zero) were annotated. These test image
patches were used to compare the performance of the two seg-
mentation approaches. All images and corresponding ground truth
masks are made publicly available at https://www.epfl.ch/labs/
eesd/data-sets/data_sets/.

Note that the manual labelling of the cracks was limited to what
was visible, and the minimum crack width visible on the images
from dataset B was about 0.1 mm. Moreover, perfect manual label-
ing was sometimes difficult, because speckles present on images
and crack pixels are both black; therefore, for situations where
the boundary of a crack is close to speckle pixels, the ground truth
might not be without error. To overcome this issue, relaxed seg-
mentation metrics [49] can be used; for instance, a buffer size of
3 pixels can be used to determine true crack pixels. In this study,
however, this buffer was not conisdered. Furthermore, because
the DIC results can be noisy around the border of the ROI, image
patches corresponding to these areas were discarded even if they
had cracks. Further explanation is provided in section 5. Fig. 6
b

e. The selected green subset is deformed into the red quadrilateral.

https://www.epfl.ch/labs/eesd/data-sets/data_sets/
https://www.epfl.ch/labs/eesd/data-sets/data_sets/


Fig. 4. Illustration of the sliding window used to obtain equally sized image patches
from the full-size laboratory image.
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depicts examples of image patches and the corresponding ground
truth masks.

4.2. Segmentation metrics

Even though there is a broad range of options, one widely used
group of semantic segmentation metrics is pixel-wise metrics [49],
which can be divided into two categories: (i) evaluation of the seg-
mentation by comparison of the segmentation results to the
ground truth on a pixel-by-pixel basis, i.e., without skeletonization
of the cracks, and (ii) evaluation of the segmentation by skeletoniz-
ing the crack pattern. In this study, the former approach was cho-
sen. For this approach, three quantities were computed: the
precision (PC), the sensitivity (SE), also known as recall, and the
dice coefficient (DC), also known as F1-score, which is the har-
monic mean of PC and SE. These are defined as:

PC ¼ TP
TPþ FP

ð1Þ
(a)                                                                   (b)    

Fig. 5. Full-size images used to create test data (dataset B): (a and b) two images
SE ¼ TP
TPþ FN

ð2Þ
DC ¼ 2 ðSE� PCÞ
SEþ PC

ð3Þ

where TP; FP and FN are the number of true positive, false positive
and false negative pixels, respectively. The dice coefficient measures
the similarity between the predicted crack mask and the ground
truth. If the predicted mask and the ground truth are identical, DC
is equal to 1, while if the predicted crack mask and the ground truth
do not intersect, DC is equal to 0. Otherwise, DC is between 0 and 1.
5. Crack segmentation by threshold method

5.1. Method implementation

The DIC method gives as output the 3D displacement field at the
points for which the correlation problem is solved. This field was
extracted from the software VIC-3D, and a python code was devel-
oped for post-processing the results. The post-processing includes
generating a mesh of triangular elements (constant strain trian-
gles) and calculating the maximum principal strain e1 at the center
of each element. These strain values were then interpolated to
obtain the e1-value for each pixel, and a threshold was applied to
transform the obtained strain maps to binary crack masks.

To explore the effect of subset size on the crack segmentation
results, four DIC analyses were performed by choosing different
subset sizes, i.e., 15 � 15 pixels, 19 � 19 pixels, 23 � 23 pixels
and 33 � 33 pixels. For all analyses, the step size was set to
2 � 2 pixels, and the ratio mm/pixel was 0.43 (for specimens RS4
and RS6). There is a lower bound on the ideal subset size, because
when the subset size is too small, the subsets might contain too
few speckles, which finally decreases the accuracy of the DIC
method [2]. It is suggested that each subset should contain at least
3 � 3 speckle pixels [2]. Therefore, in this study, the subset size of
15 � 15 pixels (6.45 � 6.45 mm2) was selected as the minimum
subset size. Fig. 7 shows an example of the obtained e1-map for a
subset size of 19 � 19 pixels for a selected loading level of speci-
mens RS4 and RS6 (test dataset B).

To extract crack pixels, 25 threshold values were applied to the
e1 maps: 0.5%, 1.5%, 2.5%, 3.5%,. . . , 24.5%. For each of these thresh-
olds, the pixels with an e1 value larger than the threshold were
labeled as crack, and not if otherwise.
                                                                (c)

of specimen RS4 taken at two load steps, and (c) an image of specimen RS6.



(a)

(b)

Fig. 6. Examples of the crack image database: (a) images and (b) annotated ground truth masks.

(a)                                                                  (b)                                                                      (c)

Fig. 7. Maximum principal strain maps for specimen RS4 (a and b) and specimen RS6 (c) shown in Fig. 5; subset size = 19 � 19 pixels.
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5.2. Results

Fig. 8 shows the segmented cracks that were obtained by apply-
ing the smallest and largest threshold values to the strain map of
Fig. 7(c). In this figure, the boundary of the wall is plotted with a
dotted green line. It is evident from the figure that the extracted
crack pattern is very sensitive to the applied threshold value. The
(a)                                                               

Fig. 8. Segmented crack patterns obtained by applying threshold values of (a) 0.5% and
dashed box shows the boundary of the wall.
threshold value of 0.5% (Fig. 8(a)) resulted in a highly noisy crack
segmentation (see the ground truth mask Fig. 8(c)), which could
be reduced in a post-processing step using mathematical morphol-
ogy [50]. On the other hand, the crack map obtained by applying
the threshold value of 24.5% is far less noisy, but there are still
many pixels around the boundary of the ROI that are misclassified
as a crack (see the ground truth mask Fig. 8(c)). This is because
  (b)                                                           (c)

(b) 24.5% on the e1 map shown in Fig. 7(c); (c) manually annotated crack mask. The
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subset pixels are squares, and when the border of the ROI is curved,
part of the background falls into the subset, which causes errors in
the correlation step of the local subset DIC method [51]. Indeed,
this problem can be avoided by choosing a smaller ROI; however,
this comes at the cost of losing information, which is not desirable.
Moreover, by applying such a high threshold, some crack pixels are
wrongly misclassified as background, and the continuity of several
thin cracks is not preserved. Furthermore, in addition to the above-
mentioned qualitative reasons, the following analysis will show
that even with the optimum threshold value and subset size, the
results of the crack segmentation are poor.

The performance of the crack segmentation by application of a
threshold to the e1 map was evaluated quantitatively by analysing
100 images of the test data (dataset B) and computing and plotting
the segmentation metrics defined in Section 4.2 as a function of the
threshold value. The results are presented in Fig. 9. It can be seen
that for all subset sizes, as the threshold decreases, more pixels
are classified as cracks, which corresponds to a high SE in Fig. 9a.
However, the PC of segmentation is quite poor in Fig. 9b, which
also reduces the DC because it is a harmonic mean of the SE and
PC. By increasing the threshold value, though, the PC and DC are
slightly improved while the SE is reduced.

The subset size affects the resolution, and therefore the accu-
racy of the crack segmentation. By increasing the subset size, the
spatial resolution of the result decreases along with the SE, PC
and DC values. This is most pronounced for the subset size of
33 � 33 pixels. In general, as the subset size decreases, crack pixels
are more accurately classified.

The combination of subset size and threshold value that
resulted in the maximum DC is the subset size of 15 � 15 pixels
and the threshold value of 10.5%. Examples of the segmented crack
patterns obtained using these values for nine crack images and the
corresponding ground truth images are shown in Fig. 10(c). It is
clear that the segmented cracks are quite coarse, i.e., wider than
the width of the actual cracks (see for instance, ex. 1, 2, 5 of
Fig. 10), which increases FP and decreases PC and DC. Furthermore,
for very thin cracks of 1–2 pixels (such as ex. 3 in Fig. 10), the seg-
mented cracks are not continuous.
6. Crack segmentation by deep learning

6.1. Network architecture

A UNet-like architecture [52] called ‘‘TernausNet” [53,54] was
chosen for segmenting crack pixels. UNet-like architectures usually
consist of two parts: encoder and decoder paths. In the encoder
path, multiple blocks of operations, including stacks of convolu-
tional layers, activation functions and pooling layers, are applied
)b()a(

Fig. 9. Sensitivity (a), precision (b) and dice coefficient (c) of the threshold method as a f
for the test data (dataset B).
successively to the input of each layer. The in-plane size of the
input to each layer reduces due to the convolutional and pooling
operations deeper into the network. In the decoder path, the orig-
inal size of the input is recovered by up-sampling the feature maps
obtained in the encoder path. Moreover, to increase the localiza-
tion accuracy of the prediction, the feature maps in the encoder
path are copied into the decoder path via skip connections
[52,54]. For this study, the TernausNet architecture [53,54] was
chosen, which uses VGG16 [55] blocks as the encoder (see
Fig. 11). This network was chosen because (i) previous studies have
found that U-Net type architectures require few training examples
for a satisfactory performance [52], which is required for our prob-
lem, and (ii) the encoder block is the VGG16, which can be initial-
ized using the pre-trained weights on ImageNet. The detailed
network architecture is summarized in Table 1, as implemented
in PyTorch version 0.4.1. The table includes the number of filters
at each layer, stride, padding, activation function and the up-
sampling method.

6.2. Training setup and optimization scheme

As the goal was to obtain the highest performance in terms of
both SE and PC, the dice loss function, which was first proposed
by Milletari et. al. [56], was used to train models:

DiceLoss ¼ 1�
Pn

i¼12byiyi þ �Pn
i¼1byi þ

Pn
i¼1yi þ �

ð4Þ

where,yi and byi are the target (0 or 1) and predicted probability for
pixel i, respectively, n is the number of pixels in the image, and
� ¼ 1.

Out of 430 image patches, 301 (70%) and 129 (30%) images were
selected as training and validation data, respectively. The valida-
tion set guided the choice of learning rate and the best model (low-
est validation loss). The initial learning rate was halved every 20
epochs. To increase the size of the database, the data was randomly
augmented (with the probablity of 0.5). This was performed using
the transforms module of Torchvision version 0.2.1 and included:
a) random rotations with an angle equal to 90, 180 or 270 degrees;
b) horizontal and vertical flips and c) brightness and contrast
changes at a ratio of 0.2. The models were trained for 100 epochs
using the Adam optimizer [57] with a batch size equal to 1 on a
single NVIDIA Tesla P100 (12 GB) GPU. Apart from the learning
rate, other parameters of the optimizer were set to the default val-
ues defined in the PyTorch optimization module. Weights of the
encoder path were initialized using either model A or B. In model
A, the weights of the encoder path were initialized randomly using
the default method in PyTorch. For this case, a grid search led to
the initial learning rate of 9e-5. In model B, the encoder path was
)c(

unction of the threshold value on the maximum principal strain and the subset size
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Fig. 10. Results of crack segmentation by the threshold method. (a) images, (b) ground truth masks, and (c) segmented crack mask made by applying the threshold value of
10.5% to the maximum principal strain map (post-processing of DIC results).

Fig. 11. TernausNet architecture [53,54].
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initialized with parameters pre-trained on the ImageNet database
[58]. For this case, a grid search led to the initial learning rate of
2e-4. Weights of the decoder path, however, were initialized ran-
domly using the default method in PyTorch. All layers of the net-
work were trained with a single learning rate.

The dice loss was evaluated on the training and validation data,
and the trends are shown in Fig. 12 for both considered models (A
and B). The plot of loss function vs. epoch shows that both training
and validation losses decreased, while in higher epochs, the train-
ing loss became slightly lower than the validation loss due to over-
fitting. Therefore, the best model for each case was selected based
on the validation loss. By comparing plots of loss function vs. epoch
of both models, it can be observed that the dice loss over validation
data converged faster (epoch = 67) and to a lower value (loss =
0.21) in model B compared to model A (epoch = 91, loss = 0.23).
6.3. Results

TernausNet (model B) was then used to predict the crack pat-
terns in the images shown in Fig. 10(a). Fig. 13 depicts the pre-
dicted crack patterns. The figure shows that the trained
TernausNet could detect cracks with a large width range, from very
thin cracks to cracks of several pixels in width. In this set of exam-
ples, the continuity of the cracks is also well preserved. In Section 7,
the TernausNet performance is quantitatively compared with the
threshold method. In spite of the satisfactory prediction by Ter-
nausNet, there are some images in which the model fails to cor-
rectly predict crack pixels. Some examples are shown in Fig. 14.
The yellow boxes in Fig. 14(b) and (c) highlight crack pixels that
are not detected by the model (FN) and pixels that are incorrectly
classified as a crack (FP).



Table 1
Details of operations in TernausNet.

Layer name Operation Kernel size Number of kernels Stride Padding

conv1 Conv.*-ReLU** 3 � 3 64 1 1
Conv.-ReLU 3 � 3 64 1 1

conv2 Conv.-ReLU 3 � 3 128 1 1
Conv.-ReLU 3 � 3 128 1 1

conv3 Conv.-ReLU 3 � 3 256 1 1
Conv.-ReLU 3 � 3 256 1 1
Conv.-ReLU 3 � 3 256 1 1

conv4 Conv.-ReLU 3 � 3 512 1 1
Conv.-ReLU 3 � 3 512 1 1
Conv.-ReLU 3 � 3 512 1 1

conv5 Conv.-ReLU 3 � 3 512 1 1
Conv.-ReLU 3 � 3 512 1 1
Conv.-ReLU 3 � 3 512 1 1

center Conv.-ReLU 3 � 3 512 1 1
TransConv.***-ReLU 4 � 4 256 2 1

dec5 Conv.-ReLU 3 � 3 512 1 1
TransConv.-ReLU 4 � 4 256 2 1

dec4 Conv.-ReLU 3 � 3 512 1 1
TransConv.-ReLU 4 � 4 256 2 1

dec3 Conv.-ReLU 3 � 3 256 1 1
TransConv.-ReLU 4 � 4 64 2 1

dec2 Conv.-ReLU 3 � 3 128 1 1
TransConv.-ReLU 4 � 4 32 2 1

dec1 Conv.-ReLU 3 � 3 32 1 1
final Conv. 1 � 1 1 1 1

* Conv. = convolution/ ** ReLU stands for the ‘‘Rectified Linear Unit” and is defined as max(0, the input of the function). / *** TransConv. = Transposed Convolution

(a) )b(AledoM Model B 

Fig. 12. Dice loss vs. epoch over training and validation data: (a) encoder weights initialized using random initialization, and (b) encoder weights initialized with pre-trained
values.

Fig. 13. Segmented cracks on examples images in Fig. 10(a) by TernausNet (model B).
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7. Comparison of the methods

The performance of the two crack segmentation methods con-
sidered in this article, i.e., (i) the segmentation by applying a
threshold value on the e1 map and (ii) the deep learning approach,
on the test data is summarized in Table 2. For both methods, the
best performing model was used for the comparison. This means
that for the segmentation by applying a threshold value on the e1
map, the model with a subset size of 15 � 15 pixels and a threshold
value of 10.5% was used. For the deep learning method, model B
was used, wherein the parameters of the encoder path were initial-
ized using pre-trained values on the ImageNet database. Regarding
the SE value, the application of a threshold on the e1 maps slightly
outperformed the deep learning approach. However, the PC value
of the detection was quite poor (0.350) compared to that obtained
by the deep learning approach (0.819). Similar performance indices
were obtained for the DC metric, which was considered the most
relevant metric and which served as the criterion for choosing
the best parameter combination for each class of model—either
the best combination of subset size and threshold value or the loss



a

b

c

Fig. 14. Illustration of erroneous segmented crack pixels using TernausNet (model B). (a) Images, (b) ground truth masks, and (c) prediction.

Table 2
Comparison of the performance of the two segmentation methods on test data.

Segmentation method SE PC DC

Apply a threshold to maximum principal strain map (Subset size = 15 � 15 pixels, threshold value = 10.5%) 0.873 0.350 0.481
Deep Learning (TernausNet) Encoder weights Random initialization 0.827 0.801 0.810

Pre-trained weights on the ImageNet database 0.834 0.819 0.821
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function to optimize. Note that the SE of the deep learning
approach could be increased by choosing another loss function,
such as Tversky loss [59] wherein the weights associated with FP
and FN pixels can be tuned (in the dice loss, they are weighted
equally) [59].

Although applying a threshold on the e1 map could detect the
majority of the crack pixels, many more pixels were also incor-
rectly classified as cracks (false positive values). Therefore, the
geometry of crack patterns was not well preserved by this method.
Conversely, the deep learning approach proved a promising alter-
native method to the threshold method, as most of the crack pixels
were segmented correctly and the precision of detection for crack/
non-crack pixels was much higher than for the threshold method.
For this reason, the deep learning method outperformed the crack
segmentation obtained by applying a threshold value on the e1
map.
8. Conclusions

This study compares the performance of two methods—(i) the
threshold and (ii) the deep learning method—for detecting crack
pixels on laboratory images, i.e., grayscale images used as inputs
for the local DIC method. The image database was selected from
images taken from two experimental campaigns on stone masonry
walls that were plastered on one side [12,13]. The DIC measure-
ments discussed in this paper were obtained from this plastered
side.

In the first approach, DIC analyses were performed by setting
the subset size to 15 � 15 pixels, 19 � 19 pixels, 23 � 23 pixels,
and 33 � 33 pixels (step size = 2 � 2 pixels, mm/pixel = 0.43) using
VIC-3D software [45]. Then, from the resulting 3D displacement
fields, the maximum principal strains were computed. Different
threshold values were chosen (0.5%, 1.5%, 2.5%, 3.5%, . . . , 24.5%)
to produce a binary crack mask from the maximum principal strain
maps. In the second approach, a deep convolutional neural net-
work called TernausNet was adopted to perform pixel-wise crack
segmentation. TernausNet is an encoder-decoder architecture that
uses VGG16 convolution blocks as the encoder and is initialized
either using random initialization (model A) or pre-trained values
on the ImageNet (model B).

The performance of the two approaches was examined in terms
of sensitivity, precision and dice coefficient. It was shown that the
deep learning model B, in which the encoder parameters were ini-
tialized using the pre-trained values on the ImageNet database,
converged faster and to a lower loss compared to model A, where
the encoder weights were initialized using the default PyTorch ran-
dom initialization method. Additionally, it was found that the
threshold method resulted in higher sensitivity (0.873) than the
deep learning model B (0.834). However, the precision of the pre-
dictions made by the threshold method was quite poor (0.350)
compared to the deep learning model B (0.819). Consequently, this
led to a low dice coefficient of 0.481 for the threshold method,
while the corresponding value for deep learning model B was
0.821. The high dice coefficient showed that the deep learning
approach could detect the majority of the visible cracks and that
the detection was precise. The higher sensitivity for the threshold
method revealed that more cracks could be detected compared to
the deep learning method, but as the precision of the detection was
quite low, there were many pixels incorrectly labeled as cracks. It
was observed that in the threshold method, detected pixels were
fragmented for very thin cracks. In other words, the continuity of
the crack was not preserved. Moreover, the detected cracks were
wider than the actual cracks in this method. Conversely, the deep
learning method better preserved the geometry of cracks.

Possible directions for future studies to improve the perfor-
mance of the deep learning method include implementing an iter-
ative refinement of predictions [49], increasing the size of the
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database, and adding loss functions to consider the topology of the
crack maps [49]. Post-processing of the predicted crack maps could
also be performed to both remove the noisy outputs and connect
the gaps between crack segments, which could be done by imple-
menting methods such as tensor voting [36,37]. Furthermore, the
deep learning approach can be used as a pre-processing step to
detect crack pixels before the DIC analysis. This can be useful for
automating the initial seed generation in the segregated areas.
The crack geometry can also be used as an input for DIC methods
that are based on discontinuous rather than continuous displace-
ment fields [60,61].
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