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Spectral sensitivity of ALOS, ASTER, IKONOS, LANDSAT
and SPOT satellite imagery intended for the detection of archaeological

crop marks

Athos Agapiou*, Dimitrios D. Alexakis and Diofantos G. Hadjimitsis

Department of Civil Engineering and Geomatics, Cyprus University of Technology,
Limassol, Cyprus

(Received 13 November 2011; final version received 6 March 2012)

This study compares the spectral sensitivity of remotely sensed satellite images, used
for the detection of archaeological remains. This comparison was based on the
relative spectral response (RSR) Filters of each sensor. Spectral signatures profiles
were obtained using the GER-1500 field spectroradiometer under clear sky
conditions for eight different targets. These field spectral signature curves were
simulated to ALOS, ASTER, IKONOS, Landsat 7-ETM�, Landsat 4-TM,
Landsat 5-TM and SPOT 5. Red and near infrared (NIR) bandwidth reflectance
were re-calculated to each one of these sensors using appropriate RSR Filters.
Moreover, the normalised difference vegetation index (NDVI) and simple ratio (SR)
vegetation profiles were analysed in order to evaluate their sensitivity to sensors
spectral filters. The results have shown that IKONOS RSR filters can better
distinguish buried archaeological remains as a result of difference in healthy and
stress vegetation (approximately 1�8% difference in reflectance of the red and NIR
band and nearly 0.07 to the NDVI profile). In comparison, all the other sensors
showed similar results and sensitivities. This difference of IKONOS sensor might be
a result of its spectral characteristics (bandwidths and RSR filters) since they are
different from the rest of sensors compared in this study.

Keywords: RSR filters; spectral sensitivity; archaeological remains; crop mark
detection; spectroscopy

1. Introduction

1.1. Crop marks

Vegetation crop marks may be formed in areas where vegetation overlay near-surface

archaeological remains. These features retain soil moisture with different percentage

of moisture compared to the rest of the crops of an area. Depending of the type of

feature, crop vigour may be enhanced or reduced by buried archaeological features

(Winton and Horne 2010).

For instance, if vegetation grows above buried ditches or moat, then the crop

growth is likely to be enhanced. This is due to the topsoil which holds more moisture

than in the surrounding context (especially during periods when water stress

develops). This phenomenon can be recorded from any airborne and spaceborne

platform and is referred to as a positive crop mark (Stanjek and Fabinder 1995,
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Sharpe 2004, Jonson 2006, Lasaponara and Masini 2007). However, in cases

where there is not enough moisture in the retentive soil and there is lack of available

water for evapotransporation (e.g. vegetation grown above building remains or

compacted ground), the developed marks are characterised as negative crop marks.
These are less common than the positive ones (Riley 1979, Sharpe 2004, Jonson

2006, Lasaponara and Masini 2007). Comparing the two different kinds of marks,

the positives are normally taller with darker green and healthy foliage than the

negative crop marks. On the other hand, the negative crop marks tend to be paler

green with lighter coloured appearance when monitored from the air (Sharpe 2004,

Jonson 2006).

Furthermore, recent studies argue that there are many complex factors involved

in the capturing of crop marks. Several researches (Mills and Palmer 2007, Winton
and Horne 2010), have found that the evolution of crop mark can be a combination

of different factors and parameters such as moisture availability, the availability of

dissolved nutrients to the crops (at crucial growing times and periods for the plant),

the crop, the soil type itself and finally the soil depth.

For example, Sharpe (2004) argues that archaeological crop marks in England are

recorded in cereal crops especially during warm and dry summer months while

Ciminale et al. (2009) mentions that for the Mediterranean region, crop marks are

better visible from the beginning of spring up to the half or end of May.

1.2. Remote sensing in archaeology

Several researchers, over the last decades, showed that multispectral images can be used

in different archaeological environments in order to detect subsurface remains (Bewley

2003, Altaweel 2005, Beck 2007, Alexakis et al. 2009, 2011) or even to monitor

archaeological sites (Agapiou and Hadjimitsis 2011; Hadjimitsis et al. 2011, 2009).

Bewley (2003) reported that more than 50% of all known archaeological sites in the UK
were revealed from airborne platforms. Both high and very high resolution satellite

sensors give the opportunity to examine and study crop marks related to sub-surfaces

anomalies, using different spectral and spatial characteristics (Lasaponara and Masini

2001, Parcak 2009). For example, very high resolution satellite imagery (B 4 m spatial

resolution) such as IKONOS and QuickBird have been used in the past for the detection

of archaeological remains based on vegetation marks as shown by Lasaponara and

Masini (2005, 2006, 2007) and Altaweel (2005). Masini and Lasaponara (2007) used

multispectral Quickbird images for the detection of archaeological remains in Italy. Beck
(2007) used IKONOS satellite images for the case of Homs in Syria, while Laet et al.

(2007) have extracted archaeological features using the same satellite sensor for a case

study in Turkey. In addition to the aforementioned, data based on low spectral and

spatial resolution imagery has also been used from Clark et al. (1998), Sarris and Jones

(2000) and Tripathi (2000).

Although very high imagery data-set provide many advantages to researchers

compared to high resolution imagery (B 30 m spatial resolution), sometimes the

high cost can be prohibitive to be used for archaeological research. Indeed,
multispectral high resolution satellite imagery has been used for the detection of

sub-surface archaeological remains in many case studies. Altaweel (2005) has

employed ASTER satellite images in the archaeological context of Mesopotamia.

Alexakis et al. (2009, 2011) used both high and very high resolution satellite images
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(ASTER, Landsat TM and IKONOS) for the detection of archaeological remains in

the Thessalian plain in Greece. Finally, Agapiou and Hadjimitsis (2011) used freely

distributed Landsat TM/ETM� satellite imagery and ground spectroradiometric

measurements for monitoring phenological cycle of barley crops over the archae-
ological area of Palaepaphos, in Cyprus.

1.3. Ground spectroscopy

Field spectroradiometric measurements have been used in many of remote sensing

applications including, vegetation canopy reflectance modelling, spectral mixture

analysis, classification techniques and predictive modelling (Peddle et al. 2001). Field

spectroradiometers may be used in order to record the reflectance amount of crops

over archaeological areas as shown by Agapiou et al. (2010, 2012) and Agapiou and

Hadjimitsis (2011). Spectroradiometers can measure the amount of energy (radiance)

reflected from a ground area (e.g. crops) and then converted to reflectance using

calibration panels (Peddle et al. 2001).
Field spectroradiometers can be used to give calibrated measurements since such

instruments are often accompanied by calibrated Lambertian surface panel. Milton

et al. (2009) emphasises that a critical factor for reliable results is the calibration of the

panel. Indeed, as Milton and Rollin (2006) mentioned, in cases where ‘single-beam’

measurements are taken within one minute, the radiation is actually unchanged. The

radiation is also affected by the zenith angle of the sun and the coordinates of the area

of interest (Milton 1987). One way to eliminate these errors is to measure the before

and after of the special calibration target. This may be true in most cases but in
the presence of cloud cover or a sudden change of the weather this can be incorrect (see

Milton 1987). Such considerations have been already taken into account for the

purpose of this study.

1.4. Spectral sensitivity of satellite sensors

Chander et al. (2009) mentioned that the detection and quantification of change (e.g.

crop marks) in the earth’s environment, depends on the satellite’s characteristics

(mainly spectral and spatial). Teillet et al. (2007) highlighted that data from the

various imaging sensor systems must be on a consistent radiometric calibration scale

and hence, sensor radiometric calibration is of critical importance. The methods and

measurements involved in sensor radiometric calibration can be grouped into three
domains (Teillet et al. 2007):

� on the ground prior to launch, onboard the spacecraft post-launch, including

reference to lamp sources and/or solar illumination (e.g. Markham et al. 1997)

or

� lunar illumination using radiative codes to simulate Top of Atmosphere signal

(e.g. Trishchenko et al. 2002) and

� approaches using earth scenes images captured in-flight (e.g. Teillet et al. 2007).

However, as Trishchenko et al. (2002) stated, the total relative uncertainties of

calibration are within 5% for satellite sensors. Although spectral uncertainties have

been examined elsewhere (Trishchenko et al. 2002, Teillet et al. 2007, Trishchenko
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2009), there is a lack of literature regarding the different spectral profiles provided

from multispectral satellite sensors used for the detection of sub-surfaces anomalies.

The detection of buried archaeological remains is based mostly on examining

the response of Red and near infrared (NIR) part of spectrum and the use of

vegetation indices (such as normalised difference vegetation index [NDVI] and

simple ratio [SR]).

Further, such spectral uncertainties satellite images need to be atmospherically

and geometrically corrected, before being subjected to any post-processing

techniques (Agapiou et al. 2011a, Lillesand et al. 2004). Other corrections that

must be taken into account are, sun elevation, elevation of the area of interest, etc.

(Campbell 2002).

The overall aim of this study is to examine the spectral characteristics of seven

different satellite sensors using field spectroradiometric data (spectral signatures

profiles) derived from different field campaigns over a ‘test field’ simulating an

archaeological environment. This study does not intend to study the calibration

procedures of each sensor itself but to evaluate the sensitivity of these sensors in the

context of crop marks detection. Finally, in this study vegetation indices were used to

illustrate the potential of each sensor for detecting subsurface archaeological

remains.

The direct comparison of reflectance measurements acquired from fine resolution

sensors such as field spectroradiometers with other sensors of very high or high

resolution such as those mentioned in this study, has been discussed by other

researchers (Curran and Williamson 1986, Milton et al. 2009, Wu and Liang Li 2009).

Indeed, different scaling techniques (i.e. transfer of data content from one scale to

another one) have been extensively reported by Malenovský et al. (2007). The bottom�
up approach, up-scales information from smaller to larger observational scales (e.g.

from spectroradiometer to high resolution pixel size). Nevertheless, Jarvis (1995)

mentions that scaling represents a scientific challenge, due to the non-linear nature

between processes and variables, and heterogeneity of characteristics determining the

rates of processes. Nevertheless, many researches apply simple models in order to

evaluate scale differences (Marceau et al. 1994, Tran et al. 2011)

The choice of the resampling algorithm was based on the following considerations.

The goal of the study is not to simulate all conditions involved in data acquisition using

satellite sensors, but to investigate the spectral sensitivity of the sensors. Therefore, a

simple model can be used, taking into consideration the relative response filters of

each sensor. Such approach has also been presented for vegetation studies by

Papadavid et al. (2011) and Agapiou and Hadjimitsis (2011).

2. Sensors overview

2.1. General characteristics

This study included the evaluation of both high and very high resolution multispectral

satellite sensors. Satellite images acquired from these sensors are used for the detection

of archaeological remains using mainly the red and NIR part of spectrum. Table 1

indicates the spectral and spatial characteristics of the satellites sensors used in this

study (ALOS-AVNIR-2, EO-ASTER, IKONOS, Landsat 4 and 5 TM/ 7 ETM� and

SPOT 5 -HRV):
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Figure 1 shows the spectral bandwidth of the sensors, mentioned in this

study, compared to a typical spectral signature of vegetation. It is interesting to

note the bandwidth of the sensors especially for the NIR bands: IKONOS sensor

has a bandwidth of approximately 0.096 mm in contrast to 0.100�0.150 mm of the
other sensors. However, as it is indicated, all sensors have similar but not identical

spectral resolutions (except from the Landsat sensors).

This observation has prompted to investigate, if the capability of the sensor to

‘capture’ information regarding vegetation might affect the interpretation results

regarding crop marks, over archaeological areas using vegetation indices.

Even though spatial resolution has not been examined in this study, it is also a

key parameter for the detection or not of buried archaeological remains due to the

fact that the use of high spatial resolution images, at a resolution close to the actual
spatial pattern of remains, reduces the possibility of the impact of mixed pixels

(Rowlands and Sarris 2007).

2.2. Relative spectral response (RSR) filters

Trishchenko et al. (2002) have mentioned that the total relative uncertainties of

calibration are within 5% for satellite sensors. An essential part of this uncertainty

is related to the effect of RSR filters which describes the relative sensitivity of
sensors to energy of different wavelength. These filters have a value of 0�1 and

have no units since they are relative to the peak response. They describe the

instrument’s relative sensitivity to radiance at various part of the electromagnetic

spectrum (Wu et al. 2010).

Table 1. Satellite characteristics used in this study.

Spectral resolution

Satellite sensor Bands Wavelength Spatial resolution

ALOS-AVNIR-2 1 Blue 0.42�0.50 (mm) 10 m

2 Green 0.52�0.60 (mm)

3 Red 0.61�0.69 (mm)

4 NIR 0.76�0.89 (mm)

EO-ASTER 1 Green 0.52�0.60 (mm) 15 m

2 Red 0.63�0.69 (mm)

3 NIR 0.76�0.86 (mm)

IKONOS 1 Blue 0.445�0.516 (mm) 4 m

2 Green 0.506�0.595 (mm)

3 Red 0.632�0.698 (mm)

4 NIR 0.757�0.853 (mm)

Landsat 4 TM 1 Blue 0.45�0.52 (mm) 30 m

Landsat 5 TM 2 Green 0.52�0.60 (mm)

Landsat 7 ETM� 3 Red 0.63�0.69 (mm)

4 NIR 0.75�0.90 (mm)

SPOT 5 -HRV 1 green 0.50�0.59 (mm) 10 m

2 red 0.61�0.68 (mm)

3 NIR 0.78�0.89 (mm)

NIR, near infrared.
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Such kinds of filters are used for any satellite or aerial sensor. For example, in

Landsat 5 TM, each reflective band is sensed by an array of 16 detectors and the signal

from an individual detector is referred to as a channel. Although there are multiple

detectors per band, there is only one filter (Markham and Barker 1985). The use of

such filters is, to produce individual colour, utilising the filters on the sensors, to

subdivide the light received into wavelength intervals (the bands).

Bandpass filters are used in the same way in spectroradiometers in order to

transmit a certain wavelength band and block others. The reflectance from the

spectroradiometer was calculated based on the wavelength of each sensor and the

RSR filter as follows:

Rbandi¼
X
ðRi�RSRiÞ=

X
RSRi (1)

Where: Rbandi�reflectance at a range of wavelength (e.g. Band 1); Ri�reflectance

at a specific wavelength (e.g R 0.450 mm); RSRi�relative response value at the

specific wavelength.

Figure 2 shows the RSR filters diagrams for ALOS-AVNIR-2, EO-ASTER,

IKONOS, Landsat 4 and 5 TM/ 7 ETM� and SPOT 5 -HRV sensors for red and

NIR part of spectrum. These RSR filters cover a spectral range from approximately

0.550 up to 0.950 mm. In the literature, red and NIR bands are described for different

sensors with the same name although there is a difference in the sensitivity of each

band in each sensor as it is clearly shown in Figures 1 and 2.

Figure 1. Red and NIR bandwidths of the different sensors mentioned in this study in

comparison with a typical vegetation spectral profile.
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3. Vegetation indices and SR index

Vegetation indices are mainly derived from reflectance data from the red and NIR

bands. They operate by contrasting intense chlorophyll pigment absorption in the red

against the high reflectance of leaf mesophyll in the NIR (Lasaponara and Masini 2007).

The NDVI is the one of the most widely vegetation indices used for archaeological
purposes. It was first developed by Rouse et al. (1974) and since then it was used on

several applications, including the detection of archaeological remains and the

monitoring of archaeological sites. NDVI algorithm is presented in Equation (2):

NDVI ¼ ðpNIR�predÞ=ðpNIRþpredÞ (2)

Where: pNIR is the reflectance at NIR spectrum; pred is the reflectance at red

spectrum.

The SR index is also considered to be one of the commonly used vegetation

indices (Tucker 1979, Sellers 1985). It provides unique information since it can be

used for discriminating between soil and vegetation, such as, live green plants that

reflect strongly in the NIR while absorbing in the red spectral region. On the other
hand, barren surfaces (rock and soil) and water tend to reflect similarly in the red

and NIR. However, SR does not give proper information when the reflected

wavelengths are being affected due to topography, atmosphere or shadows (Akkartal

et al. 2004). In addition, Chen (1996) demonstrated that the SR vegetation index was

the most correlated with leaf area index. SR is defined via Equation (3).

SR ¼ pred=pNIR (3)

Where: pNIR is the reflectance at NIR spectrum; pred is the reflectance at red

spectrum.

Figure 2. RSR for Red and NIR bands of the satellite sensors mentioned in this study.
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4. Overall methodology

4.1. Simulating archaelogical environment

During 2010, a test fieldwas created at Alampravillage located in central Cyprus. The aim

of this test field was to simulate archaeological environment for detecting architectural

remains buried under ground soil. This test fieldwas designed and developed in situ by the

Remote Sensing Laboratory of the Cyprus University of Technology, in order to monitor

spectral signatures of barley crops under different scenarios with archaeological remains.

For the aims of this study a 5 m�5 m square was used to simulate the presence of swallow

depth buried remains. The test site was cultivated with barley crops according to the

traditional methods of the area during 2010�2011. Local stones from the area were

collected and buried approximately 25 cm beneath ground (Agapiou et al. 2011b). Figure 3

shows some photographs taken during the construction of the test field, the cultivation

and the barley crops growing in the region.

4.2. Ground measurements

Eight typical spectral signatures of crops were examined (see Table 2) for the aims of

this study. All these spectral profiles were acquired at different field campaigns at the

test field. The spectral profiles were collected, using the hand-held GER1500

spectroradiometer. This instrument was recently calibrated (2010) along with the

calibration spectralon panel. It has the ability to provide accurate spectral profiles

covering a spectral range from 400 to 1050 nm and includes 512 different channels.

Each channel covers a range of about 1.5 nm.

In detail, five different field spectroradiometric campaigns were carried out

between November of 2010 and March 2011.Ground measurements were carried out

between 10:00 and 14:00 (local time) in order to minimise the impact of illumination

changes on the spectral responses (Milton 1987). All the measurements were taken

from nadir view, from a height of 1.2 m using a 48 FOV lens under clear sky

conditions (non-hazy days).

Figure 3. The test field in Alampra village during its construction, cultivation and barley growth.
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Table 2. Vegetation and Soil Types experiment in this study.

No. Description

Date of field

measurement Photo

1 Dry soil 24 November 2010

2 Wet soil 15 December 2010

3 Barley crops over

non architectural

remains

(5 cm height/70%

green cover)

26 December 2010

4 Barley crops over

architectural

remains

(5 cm height/70%

green cover)

26 December 2010

5 Barley crops over

non architectural

remains

(40 cm height/

100% green cover)

26 January 2011
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The profile of each target (Figure 4) denotes the classic spectral characteristics of

vegetation with a reflectance peak in green, minimal at blue and red part of spectrum

(due to chlorophyll absorption) and high reflectance response in the NIR (due to

internal leaf anatomy and scattering). On the other hand, the spectral signatures of

soil show general similarities with the non-photosynthetic vegetation targets in

visible and NIR parts of the spectrum (Herold et al. 2004).

4.3. The method

The method followed in this study for comparing spectral sensitivity of varying

satellite sensors is shown in Figure 5 and is briefly described as follows:-

� Ground measurements collection;

� Scaling Up based on RSR filters and

� Evaluation of spectral signatures/vegetation indices between the different

sensors.

Table 2 (Continued )

No. Description

Date of field

measurement Photo

6 Barley crops over

architectural

remains

(40 cm height/

100% green cover)

26 January 2011

7 Barley crops over

non architectural

remains

(60 cm height/

100% green cover)

13 March 2011

8 Barley crops over

architectural

remains

(60 cm height/

100% green cover)

13 March 2011
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After the spectral signatures were acquired, red and NIR bands of different sensors

(ALOS-AVNIR-2, EO-ASTER, IKONOS, Landsat 4 and 5 TM/ 7 ETM� and

SPOT 5 -HRV) were calculated using the RSR filters. Therefore, satellite images

could be simulated based on ground spectral profiles. In this way, narrow wavelength

bands were re-calculated in order to simulate satellite imagery bands, often used for

archaeological detection.

Figure 4. Spectral signatures profiles of the vegetation types and soil examined in the study

(see Table 1 for description).

Figure 5. Methodological diagram.
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The red and NIR bands of each sensor were compared in pairs of vegetation

(e.g. healthy vegetation No. 3 and stress vegetation No. 4, Table 2). In this way,

statistical analysis could be performed in order to identify any significant difference

between the sensors. Additionally, vegetation indices (NDVI and SR) were
calculated using the broadband of each sensor. Again the results were compared

in pairs of vegetation.

5. Results

The comparison of the bandwidth signatures for all sensors, mentioned in this study,

is presented in the first part of this chapter. The second part is focused on the

evaluation of the sensors regarding vegetation indices (NDVI, SR).

5.1. Bandwidth signatures

Using RSR filters for the red and NIR bands, the reflectance response of each different

type of vegetation and soil for the seven different satellite sensors (ALOS-AVNIR-2,

EO-ASTER, IKONOS, Landsat 4 and 5 TM/ 7 ETM� and SPOT 5 -HRV). Figures 6

and 7 shows the absolute reflectance for each one of the targets. Minor differences were

observed between the various sensors. Substantial differences were recorded for

IKONOS reflectance.

Specifically, for soil targets (both dry and wet), the reflectance response is
approximately the same for all sensors and the relative difference is calculated to be

between 0.8% and 1.3%. It is interesting to note that, wet soil reflectance deviation is

smaller than that of the dry soil. In addition, when barley starts to grow (targets 3 and 4)

Figure 6. Red band reflectance for all sensors and spectral signatures (X-axis, see Table 2)

mentioned in this study.
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the reflectance values remain the same for all sensors except of a small difference

occurred in the case of IKONOS sensor. This difference tends to get greater as barley

grows further (targets 5�6) and is maximised when the barley crops approach the 60

cm height (targets 7�8). However, in all different cases of vegetation cover, IKONOS

sensor tends to record lower reflectance values for the NIR band (1�8%) and higher

reflectance values for the red band (0.5�3%), compared to Landsat ETM� and

other sensors.

Red reflectance (Figure 6) and NIR reflectance (Figure 7) for barley crops, over

non buried architectural remains, (targets 3; 5 and 7) tend to get lower when barley

starts to grow. Similarly, this is also observed for crops over the architectural remains

(targets 4; 6 and 8).

Figures 8 and 9 indicate the relative difference of these reflectance values

compared to those of Landsat ETM� sensor. The Landsat ETM� sensor was

chosen to be as the reference sensor. IKONOS sensor tends to give higher reflectance

values (up to 3%) for barley crops (targets 3�8) in the red spectrum and lower

reflectance values (up to 8%) in the NIR spectrum. All other sensors tend to give

similar results, which were calculated B1% for both red and NIR bands. The

significant difference of sensitivity which is recorded for IKONOS compared to the

other sensors is related with the spectral resolution of the sensor. It is obvious

therefore, that small differences in the spectral resolution of the sensor (as shown in

Table 1 and Figure 1), can produce a noteworthy change to the recorded reflectance

of the sensor. Based on these remarks, it is also significant to estimate the spectral

sensitivity and the spectral differences of all sensors mentioned in the study regarding

vegetation indices.

Figure 7. NIR band reflectance for all sensors and spectral signatures (X-axis, see Table 2)

mentioned in this study.
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5.2. Vegetation indices profiles

Figures 10 and 11 show the NDVI and SR values for all the sensors and all the targets,

respectively. NDVI and SR are expected to be higher for healthy vegetation, since

plants absorb solar radiation in the photosynthetically active spectral region, which

plants use as a source of energy in the process of photosynthesis. Table 3 gives the

Figure 8. Relative comparison of Red band reflectance.

Figure 9. Relative comparison of NIR band reflectance.
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absolute value of the NDVI, while Table 4 gives the absolute values of the SR index.

Concerning these statistics, targets 1�4 do not show any significant difference between

the sensors. In contrast, IKONOS values seem to give steady lower response. However,

for the more vegetated targets 5�8, IKONOS sensor continues to give smaller NDVI

Figure 10. NDVI as calculated for the satellite sensors for all spectral signatures.

Figure 11. SR as calculated for the satellite sensors for all spectral signatures.
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and SR values compared to the other satellites. Quantitatively, the difference of NDVI

values for IKONOS is approximately 0.06�0.07 (6�7%) less than other sensors.

Moreover, Landsat sensors (TM/ETM�) seem to give very similar results with a

small variation (9 0.01 NDVI or 1% difference) and therefore one can argue that if

pre-processing steps are performed for archive and new overpass satellite Landsat

images then these images can be used as a standard for direct comparison of vegetation

using the NDVI algorithm. However, for SR index the relative values between different

sensors can be very high since SR index is not normalised as NDVI. Moreover,

considering SR index, it is important to mention the substantial difference that is

recorded between the healthy and stress measurements of barley crops during spring
period. This interval in the values highlights the potential of the specific index in

archaeological prospection studies, in the case of buried remains, under barley crops,

because of the corresponding contrast in the values between the area of archaeological

context and the surroundings. This can also be stated for NDVI, but in a much smaller

grade concerning barley crops of 40 cm height (period of January).

Percentage difference between NDVI values for targets 3�4; 5�6 and 7�8 was also

examined. Larger variation between archaeological and in non archaeological areas

can result in better interpretations of images for the detection and identification of

crops marks. As it was found, IKONOS shows the highest difference of the NDVI
value for all pair of crops. This difference tends to get smaller while the crop is

growing. However, for crops not taller than 40 cm, the NDVI difference can be

reached up to 8% (ALOS-AVNIR-2).Similarly, a significant difference is recorded for

the SR index (15% higher difference for targets 7�8) as well.

Table 3. NDVI values as calculated for all sensors and spectral signatures.

NDVI values for all vegetation and soil types

Sensor 1 2 3 4 5 6 7 8

ALOS-AVNIR-2 0.08 0.07 0.16 0.22 0.64 0.82 0.94 0.86

EO-ASTER 0.08 0.07 0.14 0.22 0.65 0.82 0.94 0.87

IKONOS 0.06 0.06 0.13 0.20 0.59 0.76 0.88 0.81

Landsat 7 ETM� 0.08 0.07 0.15 0.22 0.67 0.83 0.95 0.88

Landsat 4 TM 0.08 0.07 0.15 0.22 0.66 0.82 0.94 0.87

Landsat 5 TM 0.08 0.07 0.15 0.22 0.66 0.82 0.94 0.87

SPOT 5-HRV 0.09 0.07 0.16 0.22 0.65 0.82 0.94 0.87

Table 4. SR values as calculated for all sensors and spectral signatures.

SR values for all vegetation and soil types

Sensor 1 2 3 4 5 6 7 8

ALOS-AVNIR-2 1.18 1.16 1.37 1.57 4.62 9.82 31.52 13.75

EO-ASTER 1.16 1.14 1.34 1.56 4.69 9.90 31.61 13.92

IKONOS 1.14 1.12 1.29 1.49 3.91 7.27 16.24 9.39

Landsat 7 ETM� 1.17 1.15 1.36 1.58 5.01 11.03 37.04 15.82

Landsat 4 TM 1.17 1.15 1.36 1.57 4.80 10.42 33.70 14.71

Landsat 5 TM 1.17 1.15 1.36 1.57 4.80 10.43 33.67 14.72

SPOT 5-HRV 1.19 1.16 1.38 1.57 4.69 10.13 32.72 14.25
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Figure 12 and Table 5 present the relative NDVI values for the satellite sensors

compared to the NDVI values of Landsat ETM�. Near to zero relative values of

NDVI are expected if the sensitivity of each sensor is similar to the sensitivity of

Landsat for NDVI. As it is shown in Figure 12, a range of relative difference from

�0.05 to 0.08 is recorded for ALOS-AVNIR-2, EO-ASTER, Landsat Landsat 4 and

5 TM and SPOT 5 �HRV. The relative difference of IKONOS is greater and ranges

from �0.05 to �0.15 for vegetation targets and �0.15 to �0.25 for soil targets.

Furthermore, a second polynomial best fit curve was used for correlation between

these values. From the results, a strong correlation is suggested for all sensors compared

to Landsat ETM� (over 78%) except that of EO-ASTER images (50%). In addition,

relative NDVI values of IKONOS sensor compared to the Landsat 7 are high as 25% for

non-fully vegetated targets (1�4) and approximately 10% for the vegetated targets (5�8).

Figure 13 and Table 6 provide the relative SR values for the satellite sensors

compared to those of Landsat ETM�. As shown in Figure 13, a small relative

difference is recorded for the majority of the targets and the sensors. However,

concerning IKONOS, a substantial relative difference that ranges from 20% to 70% is

Figure 12. Relative NDVI values of all sensors relative to Landsat ETM�.

Table 5. Second order polynomial best fit curve to relative NDVI difference.

Sensor Equation (2nd polynomial order best fit) R2

ALOS-AVNIR-2 y�39.49x2�46.97x�8.908 0.926

EO-ASTER y�7.997x2�6.117x�2.449 0.499

IKONOS y��11.41x2�26.44x�23.37 0.909

Landsat 4 TM y�14.55x2�16.65x�2.449 0.884

Landsat 5 TM y�7.934x2�9.347x�1.202 0.787

SPOT 5-HRV y�39.79x2�48.40x�10.40 0.911
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mainly recorded for vegetated areas. Similar to NDVI case, a second polynomial best

fit curve was used in order to correlate these values. The results indicated a strong

correlation between all the sensors compared to Landsat ETM� (over 90%) for the

SR index.

6. Conclusions

In this study the sensitivity of seven common satellite sensors, used for archaeological

prospection studies, was tested and validated. The measurements were acquired over a

test field which was specially constructed to simulate an archaeological environment.

Moreover, the measurements were acquired in different periods of barleys crop’s

phenological cycle. All the measurements were re-calculated to broadband satellite

sensors measurements using RSR filters. The results denoted that the vast majority of

the sensors compared with each other seem to have approximately the same accuracy

and sensitivity. However, in certain cases of barley crops, a substantial difference

Figure 13. Relative SR values of all sensors relative to Landsat ETM�.

Table 6. Second order polynomial best fit curve to relative SR difference.

Sensor Equation (2nd polynomial order best fit) R2

ALOS-AVNIR-2 y�0.029x2�1.632x�2.071 0.968

EO-ASTER y�0.022x2�1.303x�0.587 0.988

IKONOS y�0.051x2�5.393x�2.024 0.998

Landsat 4 TM y�0.012x2�0.75x�0.689 0.967

Landsat 5 TM y�0.011x2�0.724x�0.584 0.971

SPOT 5-HRV y�0.022x2�1.245x�1.942 0.950
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between archaeological area and non archaeological area values in red and NIR band

of spectrum is recorded, which facilitates the detection of shallow sub-surface remains.

Further, the IKONOS sensor seems to be more sensitive to vegetation (comparing

stress and non stress vegetation), in a range of approximately 1�8% compared to the

other sensors. The difference exceeds the relative uncertainties of calibration that

ranges within 5% for satellite sensors according to relevant literature. Additionally, in

this study vegetation indices such as SR and NDVI were used to illustrate the potential

of each sensor for detecting sub-surface archaeological remains. Although the SR index

is considered to be a simple and quite common applied vegetation index, the results

demonstrated the utilisation of SR index as an auxiliary methodology to main

archaeological research for detecting buried remains. The substantial difference

between the SR values of the stress and non stress pixels highlights the potential of

the specific index to contribute to the delineation of shallow sub-surface remains and

produce a well defined contrast signal to the surroundings patterns. Additionally, an

intrinsic difference in the percentage of sensitivity of NDVI and SR values of IKONOS

sensor was observed compared to the other sensors. This fact suggests that further

investigation of the potential of these indices, extracted from satellites with similar

characteristics as IKONOS, an essential task for archaeological research. This

difference of IKONOS might be a result of the spectral resolution of the sensor which

is quite different from all the other sensors compared in this study. These small

differences in the spectral resolution of the sensor can provide results with a

noteworthy change to the recorded reflectance of the sensor.

Moreover, the study revealed the great utility of hand held spectroradiometer to

archaeological prospection in a two fold way. Firstly, the ground measurements can be

easily compared using RSR filters with any kind of satellite measurements, in order to

validate their results and constitute an integrated remote sensing approach in

archaeological research. Secondly, the great range of spectroradiometric data offers

always the chance to detect avegetation anomaly related to bury archaeological remains.

Finally, the whole methodology can be used as a road map for any potential users of

different satellite imagery for archaeological purposes. Specifically, the researchers may

have the ability to evaluate the satellites spectral sensitivity before proceeding to the

acquisition of image either in known archaeological fields or even in simulated test fields

(as shown in this study) based on ground spectroradiometric campaigns. The authors

will continue to carry out further field measurements over other crop types in order to

evaluate the overall sensitivity of multispectral/hyperspectral sensors.
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