
A new hybrid ant colony optimization algorithm for feature selection

Md. Monirul Kabir a, Md. Shahjahan b, Kazuyuki Murase a,c,⇑

aDepartment of System Design Engineering, University of Fukui, Fukui, Japan
bDepartment of Electrical and Electronic Engineering, Khulna University of Engineering and Technology (KUET), Khulna, Bangladesh
cDepartment of Human and Artificial Intelligence Systems and Research and Education Program for Life Science, University of Fukui, Fukui, Japan

a r t i c l e i n f o

Keywords:

Feature selection

Ant colony optimization

Wrapper and filter approaches

Hybrid search

Neural network

Classification accuracy

a b s t r a c t

In this paper, we propose a new hybrid ant colony optimization (ACO) algorithm for feature selection (FS),

called ACOFS, using a neural network. A key aspect of this algorithm is the selection of a subset of salient

features of reduced size. ACOFS uses a hybrid search technique that combines the advantages of wrapper

and filter approaches. In order to facilitate such a hybrid search, we designed new sets of rules for pher-

omone update and heuristic information measurement. On the other hand, the ants are guided in correct

directions while constructing graph (subset) paths using a bounded scheme in each and every step in the

algorithm. The above combinations ultimately not only provide an effective balance between exploration

and exploitation of ants in the search, but also intensify the global search capability of ACO for a high-

quality solution in FS. We evaluate the performance of ACOFS on eight benchmark classification datasets

and one gene expression dataset, which have dimensions varying from 9 to 2000. Extensive experiments

were conducted to ascertain how AOCFS works in FS tasks. We also compared the performance of ACOFS

with the results obtained from seven existing well-known FS algorithms. The comparison details show

that ACOFS has a remarkable ability to generate reduced-size subsets of salient features while yielding

significant classification accuracy.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Feature selection (FS) is generally used in machine learning,

especially when the learning task involves high-dimensional data-

sets. High-dimensional datasets contain very large feature sets,

which not only cause learning to be more difficult, but also degrade

the generalization performance of the learned models. The purpose

of FS is to simplify and enhance the quality of a dataset by selecting

salient features. Ordinarily, FS deletes spurious features from the

original dataset without sacrificing generalization performance.

In real-world problems, FS is essential due to the existence of the

following factors: (a) abundance of noise, (b) spurious information,

and (c) irrelevant and redundant features in the original feature

set. Accordingly, FS has become an area of active research spread-

ing throughout many fields, including pattern recognition, data

mining, image mining, and text categorization (Aghdam, Aghaee,

& Basiri, 2009; Jensen, 2005).

A number of proposed approaches for FS can broadly be catego-

rized into the following three classifications: wrapper, filter, and

hybrid (Liu & Tu, 2004). In the wrapper approach, a predetermined

learning model is assumed, wherein features are selected that jus-

tify the learning performance of the particular learning model (Gu-

yon & Elisseeff, 2003), whereas in the filter approach, statistical

analysis of the feature set is required, without utilizing any learn-

ing model (Dash & Liu, 1997). Schematic diagrams of how the

wrapper and filter approaches find salient features are given in

Fig. 1. The hybrid approach attempts to utilize the complementary

strengths of the wrapper and filter approaches (Huang, Cai, & Xu,

2007).

Subsets can be generated and the search process carried out in a

number of ways. One method, called sequential forward search

(SFS; Guan, Liu, & Qi, 2004; Peng, Long, & Ding, 2003), is to start

the search process with an empty set and successfully add fea-

tures; another option called sequential backward search (SBS; Gas-

ca, Sanchez, & Alonso, 2006; Hsu, Huang, & Schuschel, 2002), is to

start with a full set and successfully remove features. In addition, a

third alternative, called bidirectional selection (Caruana & Freitag,

1994), is to start on both ends and add and remove features simul-

taneously. A fourth approach (Lai, Reinders, & Wessels, 2006;

Straceezzi & Utgoff, 2004), is to have a search process start with

a randomly selected subset using a sequential or bidirectional

strategy. Yet another search strategy, called complete search (Liu

& Tu, 2004), may give a best solution to an FS task due to the thor-

oughness of its search, but is not feasible when dealing with a large

number of features. For example, assuming s to be a subset of

0957-4174/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2011.09.073

⇑ Corresponding author at: Department of Human and Artificial Intelligence

Systems, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan. Tel.: +81 (0) 776

27 8774; fax: +81 (0) 776 27 8420.

E-mail address: murase@synapse.his.u-fukui.ac.jp (K. Murase).

Expert Systems with Applications 39 (2012) 3747–3763

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

 

 

 



selected features, and n to be the number of available features, the

total computational cost of the combination is ncs � n!/

(s! � (n � s)!). The worst case scenario occurs when the values of

n and s become large. Alternatively, the sequential strategy is sim-

ple to implement and fast, but is affected by the nesting effect (Pu-

dil, Novovicova, & Kittler, 1994), wherein once a feature is added

(or, deleted) it cannot be deleted (or, added) later. In order to over-

come such disadvantages of the sequential search strategy, another

search strategy, called the floating search strategy (Pudil et al.,

1994), has been implemented.

Most of the afore-mentioned search strategies, however, at-

tempt to find solutions in FS that range between sub-optimal

and near optimal regions, since they use local search throughout

the entire process, instead of global search. On the other hand,

these search algorithms utilize a partial search over the feature

space, and suffer from computational complexity. Consequently,

near-optimal to optimal solutions are quiet difficult to achieve

using these algorithms. As a result, many research studies now fo-

cus on global search algorithms (or, ‘‘metaheuristics’’) (Ke, Feng, &

Ren, 2008). The significance of global search algorithms is that they

can find a solution in the full search space on the basis of activities

of multi-agent systems that use a global search ability utilizing lo-

cal search appropriately, thus significantly increasing the ability of

finding very high-quality solutions within a reasonable period of

time (Dorigo & Stutzle, 2004). To achieve global search, researchers

have attempted simulated annealing (Filippone, Masulli, & Rovetta,

2006), genetic algorithm (Yang & Honavar, 1998), ant colony opti-

mization (Aghdam et al., 2009; Ani, 2005), and particle swarm

optimization (Wang, Yang, Teng, Xia, & Jensen, 2007) algorithms

in solving FS tasks.

In this paper, we propose a new hybrid ant colony optimization

(ACO)-based FS algorithm (ACOFS) that utilizes a hybrid search

strategy in the feature space. The idea incorporated in this algo-

rithm was originally introduced in our earlier work (Kabir, Shahja-

han, & Murase, 2009). The main focus of this algorithm is to

generate subsets of salient features of reduced size. The proposed

method utilizes a hybrid search technique that combines the wrap-

per and filter approaches. It has often been found that hybrid tech-

niques are capable of finding a good solution, even when a single

technique is often trapped with an incomplete solution. In this re-

gard, ACOFS modifies the standard pheromone update and heuris-

tic information measurement rules based on the above two

approaches. The reason for the novelty and distinctness of the pro-

posed ACOFS versus previous algorithms (Aghdam et al., 2009; Ani,

2005; Kanan, Faez, & Taheri, 2007; Ke et al., 2008; Khushaba,

Alsukker, Ani, & Jumaily, 2008; Robbins, Zhang, & Bertrand, 2008;

Sivagaminathan & Ramakrishnan, 2007) lie in the following two

aspects.

First, ACOFS emphasizes not only the selection of a number of

salient features, but also the attainment of a reduced number of

them. ACOFS selects salient features of a reduced number using a

subset size determination scheme. Such a scheme works upon a

bounded region and provides sizes of constructed subsets that

are smaller in number. Thus, following this scheme, an ant at-

tempts to traverse the node (or, feature) space to construct a path

(or, subset). This approach is quite different from those of the exist-

ing schemes (Aghdam et al., 2009; Kanan et al., 2007; Ke et al.,

2008), where the ants are guided by using the SFS strategy in

selecting features during the feature subset construction (SC).

However, a problem is that, SFS requires an appropriate stopping

criterion to stop the SC. Otherwise, a number of irrelevant features

may be included in the constructed subsets, and the solutions may

not be effective. To solve this problem, some algorithms (Ani, 2005;

Khushaba et al., 2008; Robbins et al., 2008; Sivagaminathan &

Ramakrishnan, 2007) define the size of a constructed subset by a

fixed number for each iteration for all ants, which is incremented

at a fixed rate for following iterations. This technique could be inef-

ficient if the fixed number becomes too large or too small. There-

fore, deciding the subset size within a reduced area may be a

good step for constructing the subset while the ants traverse

through the feature space.

Second, ACOFS utilizes a hybrid search technique for selecting

salient features that combines the advantages of the wrapper and

filter approaches. An alternative name for such a search technique

is ‘‘ACO search’’. This technique is designed with two sets of new

rules for pheromone update and heuristic information measure-

ment. The idea of these rules is based mainly on the random and

probabilistic behaviors of ants while selecting features during SC.

The aim is to provide the correct information to the features and

to maintain an effective balance between exploitation and explora-

tion of ants during SC. Thus, ACOFS achieves a strong search capa-

bility that helps to select a smaller number of the most salient

features among a feature set. In contrast, the existing algorithms

(Aghdam et al., 2009; Ani, 2005; Kanan et al., 2007; Ke et al.,

2008; Khushaba et al., 2008; Robbins et al., 2008; Sivagaminathan

& Ramakrishnan, 2007) try to design rules without distinguishing

between the random and probabilistic behaviors of ants during

the construction of a subset. Consequently, ants may be deprived

of the opportunity of utilizing enough previous experience or

investigating more salient features during SC in their solutions.

The rest of this paper is organized as follows. Section 2 de-

scribes some related works concerning FS. A detailed description

of our proposed ACOFS, including the computational complexity

of different stages, is described in detail in Section 3. Section 4 pre-

sents the results of our experimental studies, including the meth-

odology, results, and a comparison with other existing FS

Fig. 1. Schematic diagrams of (a) wrapper approach and (b) filter approach.

3748 M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763
 

 

 



algorithms. Finally, Section 5 concludes the paper with a brief sum-

mary and a few remarks.

2. Previous work

Search strategy considerations for any FS algorithm are a vital

part in finding salient features of a given dataset (Liu & Tu,

2004). Numerous algorithms have been proposed to address the

problem of searching. Most algorithms use either a sequential

search (for example, Abe, 2005; Gasca et al., 2006; Guan et al.,

2004; Hsu et al., 2002; Setiono & Liu, 1997) or a global search

(e.g., Huang et al., 2007; Ke et al., 2008; Muni, Pal, & Das, 2006;

Oh, Lee, & Moon, 2004; Robbins et al., 2008; Wang et al., 2007;

Yang & Honavar, 1998). On the basis of guiding the search strate-

gies and evaluating the subsets, in contrast, the existing FS algo-

rithms can be grouped into the following three approaches:

wrapper (e.g., Abe, 2005; Gasca et al., 2006; Pal & Chintalapudi,

1997; Rakotomamonjy, 2003; Verikas & Bacauskiene, 2002; Wang,

Zhou, & Chu, 2008), filter (e.g., Chow & Huang, 2005; Hall, 2000;

Sindhwani et al., 2004), and hybrid (e.g., Huang et al., 2007; Siva-

gaminathan & Ramakrishnan, 2007). It is well-known that wrapper

approaches always return features with a higher saliency than fil-

ter approaches, as the former utilize the association of features col-

lectively during the learning process, but are computationally

more expensive (Liu & Tu, 2004). In addition, there are several

works in which sufficient surveys regarding FS are discussed (see

Guyon & Elisseeff, 2003). The following subsections outline the

FS process based on the above search algorithms, in order that

one may visualize the ideas and shortcomings behind different

techniques together with the position of ACOFS among them.

In solutions for FS, filter approaches are faster to implement,

since they estimate the performance of features without any actual

model assumed between outputs and inputs of the data. A feature

can be selected or deleted on the basis of some predefined criteria,

such as, mutual information (Chow & Huang, 2005), principal com-

ponent analysis (Kambhatla & Leen, 1997), independent compo-

nent analysis (Back & Trappenberg, 2001), class separability

measure (Mao, 2002), or variable ranking (Caruana & Sa, 2003). Fil-

ter approaches have the advantage of computational efficiency, but

the saliency of the selected features is insufficient, because they do

not take into account the biases of classification models.

In order to implement the wrapper approaches, a number of

algorithms (Abe, 2005; Gasca et al., 2006; Guan et al., 2004; Hsu

et al., 2002; Kabir, Islam, & Murase, 2008; Kabir, Islam, & Murase,

2010) have been proposed that use sequential search strategies

in finding a subset of salient features. In Guan et al. (2004), features

are added to a neural network (NN) according to SFS during train-

ing. The addition process is terminated when the performance of

the trained classifier is degraded. Recently proposed approaches

(e.g., Kabir et al., 2008; Kabir et al., 2010) have drawn much

attention in SFS-based FSs. In these approaches, correlated (dis-

tinct) features from two groups, namely, similar and dissimilar,

are added to the NN training model sequentially. At the end of

the training process, when the NN classifier has captured all the

necessary information of a given dataset, a subset of salient fea-

tures is generated with reduced redundancy of information. In a

number of other studies (e.g., Abe, 2005; Gasca et al., 2006; Hsu

et al., 2002), SBS is incorporated in FS using a NN where the least

salient features have been deleted in stepwise fashion during train-

ing. In this context, different algorithms employ different heuristic

techniques for measuring saliency of features. In Guan et al. (2004),

saliency of features is measured using a NN training scheme in

which only one feature is used in the input layer at a time. Two dif-

ferent weight analysis-based heuristic techniques are employed in

Gasca et al. (2006) and Hsu et al. (2002) for computing the saliency

of features. Furthermore, in Abe (2005), a full feature set NN train-

ing scheme is used where each feature is temporarily deleted with

a cross-check of NN performance.

The value of a loss function, consisting of cross entropy with a

penalty function, is considered directly for measuring the saliency

of a feature in Setiono and Liu (1997) and Verikas and Bacauskiene

(2002). In Setiono and Liu (1997), the penalty function encourages

small weights to converge to zero, or prevents weights from con-

verging to large values. After the penalty function has finished run-

ning, those features that have smaller weights are sequentially

deleted during training as being irrelevant. On the other hand, in

Verikas and Bacauskiene (2002), the penalty function forces a net-

work to keep the derivatives of the values of its neurons’ transfer

functions low. The aim of such a restriction is to reduce output sen-

sitivity to input changes. In the FS process, feature removal opera-

tions are performed sequentially, especially for those features that

do not degrade accuracy of the NN upon removal. A class-depen-

dent FS algorithm in Wang et al. (2008), selects a desirable feature

subset for each class. It first divides a C class classification problem

into C two-class classification problems. Then, the features are

integrated to train a support vector machine (SVM) using a SFS

strategy in order to find the feature subset of each binary classifi-

cation problem. Pal and Chintalapudi (1997) has proposed a SBS-

based FS technique that multiplies an attenuation function by each

feature before allowing the features to be entered into the NN

training. This FS technique is the root for proposing another FS

algorithm in Chakraborty and Pal (2004). Rakotomamonjy (2003)

has proposed new FS criteria that are derived from SVMs and that

are based on the sensitivity of generalization error bounds with re-

spect to features.

Unlike sequential search-based FS approaches, global search ap-

proaches (or, ‘‘meta-heuristics’’) start a search in a full feature

space instead of a partial feature space in order to find a high-qual-

ity solution. The strategy of these algorithms is based on the mu-

tual cooperation of individual agents. A standard genetic

algorithm (GA) has been used for FS (Yang & Honavar, 1998) where

fixed length strings in a population set represent a feature subset.

The population set evolves over time to converge to an optimal

solution via crossover and mutation operations. A number of other

algorithms exist (Dash & Liu, 1997; Huang et al., 2007) in which

GAs are used for solving FS. A hybrid approach (Huang et al.,

2007) for FS has been proposed that incorporates the filter and

wrapper approaches in a cooperative manner. A filter approach

involving mutual information computation is used here as a local

search to rank features. A wrapper approach involving GAs is used

here as global search to find a subset of salient features from the

ranked features. In Dash and Liu (1997), two basic operations,

namely, deletion and addition are incorporated that seek the least

significant andmost significant features for making a stronger local

search during FS.

ACO is predominantly a useful tool, considered as a modern

algorithm that has been used in several studies (Aghdam et al.,

2009; Ani, 2005; Kanan et al., 2007; Ke et al., 2008; Khushaba

et al., 2008; Robbins et al., 2008; Sivagaminathan & Ramakrishnan,

2007) for selecting salient features. During the operation of this

algorithm, a number of artificial ants traverse the feature space

to construct feature subsets iteratively. During SC, the existing ap-

proaches (Aghdam et al., 2009; Ani, 2005; Kanan et al., 2007;

Khushaba et al., 2008; Robbins et al., 2008; Sivagaminathan &

Ramakrishnan, 2007) define the size of the constructed subsets

by a fixed number for each iteration, whereas the SFS strategy

has been followed in Aghdam et al. (2009), Kanan et al. (2007)

and Ke et al. (2008). In order to measure the heuristic values of fea-

tures during FS, some of the algorithms (Ani, 2005; Ke et al., 2008;

Khushaba et al., 2008; Robbins et al., 2008) use filter tools. Evalu-

ating the constructed subsets is, on the other hand, a vital part in

M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763 3749
 

 

 



the study of ACO-based FS, since most algorithms design the pher-

omone update rules on the basis of outcomes of subset evaluations.

In this regard, a scheme of training classifiers (i.e., wrapper tools)

has been used in almost all of the above ACO-based FS algorithms,

except for the two cases where rough set theory and the latent var-

iable model (i.e., filter tools) are considered, which are in Ke et al.

(2008) and Robbins et al. (2008), respectively.

A recently proposed (Wang et al., 2007) FS approach is based on

rough sets and a particle swarm optimization (PSO) algorithm. A

PSO algorithm is used for finding a subset of salient features over

a large and complex feature space. The main heuristic strategy of

PSO in FS is that particles fly up to a certain velocity through the

feature space. PSO finds an optimal solution through the interac-

tion of individuals in the population. Thus, PSO finds the best solu-

tion in the FS as the particles fly within the subset space. This

approach is more efficient than a GA in the sense that it does not

require crossover and mutation operators; simple mathematical

operators are required only.

Most of the global search approaches discussed above do not

use a bounded scheme to decide the size of the constructed sub-

sets. Accordingly, in these algorithms, the selected subsets might

be larger in size and include a number of least significant features.

Furthermore, most of the ACO-based FS approaches do not con-

sider the random and probabilistic behavior of ants during SCs.

Thus, the solutions found in these approaches might be incomplete

in nature. On the other hand, the above sequential search-based FS

approaches suffer from the nesting effect as they try to find subsets

of salient features using a sequential search strategy. It is said that

such an effect affects the generalization performance of the

learning model (Pudil et al., 1994).

3. The proposed ACOFS

In order to avoid the problem of determining the sizes of the

subsets, ACOFS uses a bounded scheme, that is to say, a subset size

determination scheme. This scheme guides the ants to construct

subsets in a reduced form. The approach used by the ants in con-

structing individual subsets during SC can be seen in Fig. 2. How-

ever, it should be kept in mind that the restriction upon the

subset size determination is not an inherent constraint. Because,

it can be observed that after a certain range, the extended bound-

ary for the bounded scheme results in ineffective solutions for FS.

In order to solve another problem, that is to say, incomplete solu-

tions to ACO-based FS algorithms; our ACOFS incorporates a hybrid

search strategy (i.e., a combination of the wrapper and filter ap-

proaches) by designing different rules to strengthen the global

search ability of the ants. Incorporation of these two approaches

results in an ACOFS that achieves high-quality solutions for FS from

a given dataset.

The steps of ACOFS can be described by the flowchart shown in

Fig. 3, which are described in more details as follows.

Step (1) Let N be a feature set of a given dataset D consisting d

distinct classes, Cc (for c = 1,2, . . .,d). Suppose n is the

total number of features of N. Initialize the pheromone

trails s and the heuristic information g of all n features

by assigning equal values to s and g.
Step (2) Measure the information gain of individual n features

using information gain measurement scheme. In this

work, we use this information gain property of features

as a filter tool in designing rules in order to provide

hybrid search throughout the FS process.

Step (3) Generate a set of artificial k ants equivalent to n, that is,

k = n.

Step (4) Decide the subset size r prior to SC for each of the k ants

according to the subset size determination scheme. After

that, follow the conventional probabilistic transition rule

(Ke et al., 2008) for selecting features with which to con-

struct the subsets as follows:

Pk
i ðtÞ ¼

½siðtÞ�
a ½giðtÞ�

b

P

u2jk
½suðtÞ�

a ½guðtÞ�
b if i 2 j

k

0 otherwise

8

<

:

ð1Þ

Fig. 2. Representation of subset constructions by individual ants in ACO algorithm

for FS. Here, n1,n2, . . .,n5 represent the individual features. As an example, one ant

placed in n1 constructed one subset {n1,n2,n3}. Fig. 3. Flowchart of ACOFS.

3750 M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763
 

 

 



where jk is the set of feasible features that can be added to

the partial solution, si and gi are the pheromone and

heuristic values associated with feature i (i = 1,2, . . .,n),

and a and b are two parameters that determine the rela-

tive importance of the pheromone value and heuristic

information. Note that, since the initial value of s and g
for all individual features are equal, Eq. (1) shows random

behavior in SC initially.

Step (5) Check the progress of the construction to determine

whether it has completed. If the construction of subsets

has been completed by all the ants, then continue; other-

wise, proceed to Step (4).

Step (6) Evaluate the subsets Sk(t) according to the subset evalu-

ation scheme and measure the classification perfor-

mance c(Sk(t)). Here, Sk(t) refers to the subsets

constructed by k ants at iteration t.

Step (7) Select the local best subset, Sl(t) among all Sk(t) and the

global best subset, Sg among all Sl(t) in accordance with

the selection scheme. Here, t = 1,2,3, . . ., I where I is a

number of iterations.

Step (8) Check whether Sl(t) achieves a predefined accuracy, or

the algorithm executes a iteration threshold, Ith, then

terminate the FS process. Precisely, Ith refers to a certain

number of iterations in which the algorithm cannot find

out any more change of Sg. However, if the termination

criterion is satisfied, then Sg is, therefore, retained as a

solution of best subset; otherwise, continue. Store the

performances of all local best subsets, c(Sl(t)) for further
use.

Step (9) Update the values of s and g for all features according to

the rules of pheromone update and heuristic information

measurement, respectively.
Step (10) Generate a new set of artificial k ants and proceed to

through the procedures similarly.

It is now clear that the idea behind ACOFS is straightforward, i.e.,

guiding the ants using a bounded scheme and providing hybrid

technique to the ants’ search. To achieve an effective hybrid search,

an information gain measurement procedure has been integrated

that does not require expensive computation and performed only

once throughout the FS process. For better understanding, details

about each aspect of ACOFS are now given in the following sections.

3.1. Determination of subset size

In an ACO algorithm, the activities of ants have significance for

solving different combinatorial optimization problems. Therefore,

in solving the FS problem, guiding ants in the correct directions

is very advantageous in this sense. In contrast to other existing

ACO-based FS algorithms, our ACOFS uses a straightforward mech-

anism to determine the subset size r. It employs a simpler proba-

bilistic formula with a constraint and a random function. The aim

of using such a probabilistic formula is to provide information to

the random function in such a way that the minimum subset size

has a higher probability of being selected. This is important in the

sense that ACOFS can be guided toward a particular direction by

the choice of which reduced-size subset of salient features is likely

to be generated. The subset size determination scheme used can be

described in two ways as follows.

First, ACOFS uses a probabilistic formula modified from Muni

et al. (2006) to decide the size of a subset r (6n) as follows:

Pr ¼
n� r

Pl
i¼1ðn� iÞ

ð2Þ

Here, Pr is maximized linearly as r is minimized, and the value of r is

restricted by a constraint, namely, 2 6 r 6 d. Therefore, r = 2,3, . . .,d,

where d = l � n and l = n � r. Here, l is a user-specified parameter

that controls d. Its value depends on the n for a given dataset. If d

is closed to n, then the search space of finding the salient features

becomes larger, which certainly causes a high computational cost,

and raises the risk that ineffective feature subsets might be gener-

ated. Since the aim of the proposed ACOFS is to select a subset of

salient features within a smaller range, we prefer the length of

the selected subset to be between 3 and 12 depending on the given

dataset. Thus, l is set as l 2 [0.1,0.6]. We then normalize all the

values of Pr in such a way that the summation of all possible values

of Pr is equal to 1.

Second, ACOFS utilizes all the values of Pr for the random selec-

tion scheme mentioned in Fig. 4 to determine the size of the sub-

set, r eventually. This selection scheme is almost similar to the

classical roulette wheel procedure (Goldberg, 1989).

3.2. Subset evaluation

Subset evaluation has a significant role, along with other basic

operations of ACO for selecting salient features in FS tasks. In com-

mon practices, filter or wrapper approaches are involved for eval-

uation tasks. However, Guyon and Elisseeff (2003) found that the

performance of a wrapper approach is always better than that of

a filter approach. Therefore, in the present study, we are inspired

to evaluate the constructed subsets for each iteration using a

feed-forward NN training scheme. Such a NN classifier is not an

inherent constraint; instead of NN, any other type of classifier, such

as SVM, can be used as well for this evaluation tasks. In this study,

the evaluation of the subset is represented by the percentage value

of NN classification accuracy (CA) for the testing set. A detailed dis-

cussion of the evaluation mechanism integrated into ACOFS as

follows.

First, during training the features of a constructed subset, the

NN is trained partially for sp epochs. Training is performed sequen-

tially using the examples of a training set and a backpropagation

(BP) learning algorithm (Rumelhart & McClelland, 1986). The num-

ber of training epochs, sp, is specified by the user. In partial train-

ing, which was first used in conjunction with an evolutionary

algorithm (Yao & Liu, 1997), the NN is trained for a fixed number

of epochs, regardless of whether the algorithm has converged on

a result.

Second, check the progress of training to determine whether

further training is necessary. If training error is reduced by a prede-

fined amount, e, after the sp training epochs (as mentioned in Eq.

(4)), we assume that the training process has been progressing

well, and that further training is thus necessary, and then proceed

to the first step. Otherwise, we go to the next step for adding a hid-

den neuron. The error, E, is calculated as follows:

Fig. 4. Pseudo-code of the random selection procedure.

M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763 3751
 

 

 



E ¼
1

2

X

P

p¼1

X

C

c¼1

ðocðpÞ � tcðpÞÞ
2 ð3Þ

where oc(p) and tc(p) are the actual and target responses of the c-th

output neuron for the training example p. The symbols P and C rep-

resent the total number of examples and of output neurons in the

training set, respectively. The reduction of training error can be de-

scribed as follows:

EðtÞ � Eðt þ spÞ > e; t ¼ s;2s;3s ð4Þ

On the other hand, in the case of adding the hidden neuron, the

addition operation is guided by computing the contributions of

the current hidden neurons. If the contributions are high, then we

can assume that another one more hidden neuron is required.

Otherwise, freeze the extension of the hidden layer size for further

partial training of the NN. Computation of the contribution of pre-

viously added hidden neurons in the NN is based on the CA of the

validation set. The CA can be calculated as follows:

CA ¼ 100
Pvc
Pv

� �

ð5Þ

where Pvc refers to the number of examples in the validation set

correctly classified by the NN and Pv is the total number of patterns

in the validation set.

At this stage, the ACOFS measures error and CA in the validation

set using Eqs. (3) and (5) after every sp epochs of training. It then

terminates training when either the validation CA decreases or

the validation error increases or both are satisfied for T successive

times, which are measured at the end of each of T successive sp
epochs of training (Prechelt, 1994). Finally, we check the testing

accuracy of the current NN architecture with selected hidden neu-

rons, using the example of the testing set according to Eq. (5).

The idea behind this evaluation process is straightforward: min-

imize the training error, and maximize the validation accuracy. To

achieve these goals, ACOFS uses a constructive approach to deter-

mine NN architectures automatically. Although other approaches,

such as, pruning (Reed, 1993) and regularization (Girosi, Jones, &

Poggio, 1995) could be used in ACOFS, the selection of an initial

NN architecture in these approaches is difficult (Kwok & Yeung,

1997). This selection, however, is simple in the case of a construc-

tive approach. For example, the initial network architecture in a

constructive approach can consist of a hidden layer with one neu-

ron. On the other hand, an input layer is set with r neurons, and an

output layer with c neurons. More precisely, among r and c neu-

rons, one neuron for each feature of the corresponding subset

and one neuron for each class, respectively. If this minimal archi-

tecture cannot solve the given task, hidden neurons can be added

one by one. Due to the simplicity of initialization, the constructive

approach is used widely in multi-objective learning tasks (Lehto-

kangas, 2000).

3.3. Best subset selection

Generally, finding salient subsets with a reduced size is always

preferable due to the low cost in hardware implementation and

less time consumed in operation. Unlike other existing algorithms

(e.g., Aghdam et al., 2009; Ani, 2005), in this study, the best salient

feature subset is recognized eventually as a combination of the lo-

cal best and global best selections as follows:

Local best selection: Determine the local best subset, Sl(t) for a

particular t (t 2 1,2,3, . . .) iteration according to Max(c(Sk(t)))
where Sk(t) is the number of subsets constructed by k ants,

and k = 1,2, . . .,n.

Global best selection: Determine the global best subset (Sg), that

is, the best subset of salient features from the all local best solu-

tions in such a way that Sg is compared with the currently

decided local best subset, Sl(t) at every t iteration by their clas-

sification performances. If Sl(t) is found better, then Sl(t) is

replaced by Sg. One thing is that, during this selection process,

if the performances are found similar at any time, then select

the one among the two, i.e., Sg and Sl(t) as a best subset that

has reduced size. Note that, at the first iteration Sl(t) is consid-

ered as Sg.

3.4. Hybrid search process

The new hybrid search technique, incorporated in ACOFS, con-

sists of wrapper and filter approaches. According to our best knowl-

edge, this technique is the first adoption of the ACO-based FS

approach. A significant advantage of this search technique is that

ants achieve a significant ability of utilizing previous successful

moves and of expressing desirability of moves towards a high-qual-

ity solution in FS. This search process is composed of two sets of

newly designed rules, such as, the pheromone update rule and the

heuristic information rule, which are further described as follows.

3.4.1. Pheromone update rule

Pheromone updating in the ACO algorithm is a vital aspect of FS

tasks. Ants exploit features in SC that have been most suitable in

prior iterations through the pheromone update rule, consisting of

local update and global update. More precisely, global update ap-

plies only to those features that are a part of the best feature subset

in the current iteration. It allows the features to receive a large

amount of pheromone update in equal shares. The aim of global

update is to encourage ants to construct subsets with a significant

CA. In contrast to the global update, local update not only causes

the irrelevant features to be less desirable, but also helps ants to

select those features which have never been explored before. This

update either decreases the strength of the pheromone trail or

maintains the same level, based on whether a particular feature

has been selected.

In ACOFS, a set of new pheromone update rules has been de-

signed on the basis of two basic behaviors (that is to say, random

and probabilistic) of ants during SCs. These rules have been modi-

fied from the standard rule in Aghdam et al. (2009) and Dorigo and

Stutzle (2004), which aims to provide a proper balance between

exploration and exploitation of ants for the next iteration. Explora-

tion is reported to prohibit ants from converging on a common

path. Actual ants also have a similar behavioral characteristic (Dor-

igo, Caro, & Gambardella, 1999), which is an attractive property. If

different paths can be explored by different ants, then there is a

higher probability that one of the ants may find a better solution,

as opposed to all ants converging on the same tour.

Random case: The rule presenting in Eq. (6) is modified only in

the second term, which is divided by mi. Such a modification pro-

vides for sufficient exploration of the ants for the following con-

structions. The reason is that during the random behavior of the

transition rule, the features are being chosen to be selected ran-

domly in practice, instead of according to their experiences. Thus,

to provide an exploration facility for the ants, the modification

has been adopted as follows:

siðt þ 1Þ ¼ ð1� qÞsiðtÞ þ
1

mi

X

n

k¼1

Dski ðtÞ þ eDsgi ðtÞ ð6Þ

Dski ðtÞ ¼
cðSkðtÞÞ if i 2 SkðtÞ

0 otherwise

(

; Dsgi ðtÞ ¼
cðSlðtÞÞ if i 2 SlðtÞ

0 otherwise

(

3752 M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763
 

 

 



Here, i refers to the number of feature (i = 1,2, . . .,n), and mi is the

count for the specific selected feature i in the current iteration.

Dski ðtÞ is the amount of pheromone received by the local update

for feature i which is included in Sk(t) at iteration t. Similarly, the

global update, Dsgi ðtÞ, is the amount of pheromone for feature i that

is included in Sl(t). Finally, q and e refer to the pheromone decay va-

lue, and elitist parameter, respectively.

Probabilistic case: Eq. (7) shows the modified pheromone rule

for the probabilistic case. The rule is similar to the original form,

but actual modification has been made only for the inner portions

of the second and third terms

siðt þ 1Þ ¼ ð1� qÞsiðtÞ þ
X

n

k¼1

Dski ðtÞ þ eDsgi ðtÞ ð7Þ

Dski ðtÞ ¼
cðSkðtÞÞ � ki if i 2 SkðtÞ

0 otherwise

(

;

Dsgi ðtÞ ¼
cðSlðtÞÞ � ki if i 2 SlðtÞ

0 otherwise

(

Here, feature i is rewarded by the global update, and Dsg is in the

third term, where i 2 Sl(t). It is important to emphasize that, i is

maintained strictly here. That is, i at iteration tt is compared with

i at iteration (tt � sp), where tt = t + sp, and sp = 1,2,3, . . . In this re-

gard, if c(Sl(tt)) < max(c(Sl(tt � sp)),e), where e refers to the number

of CAs for those local best subsets that maintain jSl(tt)j = jSl(tt � sp)j,
then a number of features, nc are ignored to get Dsg, since those fea-

tures are available in Sl(tt), which causes to degrade its performance.

Here, nc 2 Sl(tt) but nc R S
lb, where Slb provides max (c(Sl(tt � sp)),e),

and jSl(tt)j implies the size of the subset Sl(tt). Note that, the aim

of this restriction is to provide Dsg only to those features that are

actually significant, because, global update has a vital role in select-

ing the salient features in ACOFS. We attempt to distinguish such

salient features and to allow them to receive Dsg by imposing the

above restriction.

3.4.2. Heuristic information measurement

A heuristic value, g, for each feature generally represents the

attractiveness of the features, and depends on the dependency de-

gree. It is therefore necessary to use g; otherwise, the algorithm

may become too greedy, and ultimately a better solution may

not be appeared (Ke et al., 2008). Here, a set of new rules is intro-

duced for measuring heuristic information using the advantages of

wrapper and filter tools. More precisely, the outcome of subset

evaluations using the NN is used here as a wrapper tool, whereas

the value of information gain for each feature is used as a filter tool.

These rules are therefore formulated according to the random and

probabilistic behaviors of the ants, which are described as follows.

Random case: In the initial iteration, while ants are involved in

constructing the feature subsets randomly, the heuristic value of

all features i can be estimated as follows:

gi ¼
1

mi

X

n

k¼1

cðSkðtÞÞ 1þ /e�
jSk ðtÞj

n

� �

if i 2 SkðtÞ ð8Þ

Probabilistic case: In the following iterations, when ants com-

plete the feature SCs on the basis of the probabilistic behavior,

the following formula is used to estimate g for all features i:

gi ¼ miui

X

n

k¼1

cðSkðtÞÞki 1þ /e�
jSk ðtÞj

n

� �

if i 2 SkðtÞ ð9Þ

In these two rules, ui refers to the number of a particular selected

feature i that is a part of the subsets that are constructed within

the currently completed iterations, except for the initial iteration.

The aim of multiplying mi and ui is to provide a proper exploitation

capability for the ants during SCs. ki refers to the information gain

(see the next section) for feature i. The aim of including k is based

on the following two factors: (a) reducing the greediness of some

particular feature i in n during SCs, and (b) increasing the diversity

between the features in n. Thus, different features may get an

opportunity to be selected in the SC for different iterations, thus

definitely enhancing the exploration behavior of ants. Furthermore,

one additional exponential term has been multiplied by these rules

in aiming for a reduced size subset. Here, / is the user specified

parameter that controls the exponential term. A detailed discussion

on measurement of information gain is now given below.

3.4.2.1. Information gain measurement. In order to measure statisti-

cal properties of features for a given dataset, we are interested in

measuring the property of information gain (IG). The aim of this

measurement is to provide a statistical measure of the relevance

of features to the heuristic information g of all individual features.

In this regard, measuring IG is useful in the sense that the rele-

vance of a feature can be determined statistically by the highest

value of IG (Intan & Yuliana, 2009; Mitchell, 1997). A detailed

description of measurement of IG can be found in Mitchell

(1997). The information gain IG(P,Ni) for a feature Ni

(i = 1,2, . . .,n) for a number of examples P of a given dataset can

be defined as follows:

IGðP;NiÞ � EntropyðPÞ �
X

s2valsðNiÞ

Ps

P
EntropyðPsÞ; ð10Þ

EntropyðPÞ ¼
X

c

i¼1

�pilog2pi ð11Þ

where valsðNiÞ is the set of all possible values for the feature Ni, and

Ps is the subset of P for which Ni has value s, that is to say,

Ps = {p 2 PjNi(p) = s}. It should be noted that Ps is the number of

sub-examples for a particular value of s among the total number

of examples P of the given dataset. However, in practice, measuring

Entropy(Ps) for the continuous random values of Ni requires a huge

computational cost, which is impossible to afford in some cases. To

overcome such shortcomings, continuous random variables need to

be partitioned when measuring entropy. There are two main ap-

proaches for this purpose: equal distance partitioning (Battiti,

1994), and equiprobable partitioning (Fraser & Swinney, 1986). In

this study, we use the equiprobable partitioning technique, de-

scribed as follows.

If the distribution of the values in Ni is not known in advance,

compute the mean l and standard deviation r. Then, cut the inter-

val [l � 2r,l + 2r] into q equally spaced segments, where q is the

number of partitions of Ni. The values of Ni falling inside are in-

cluded in the respective segments, whereas those falling outside

are included in the extreme left or right segments. Each segment

corresponds to a discrete value of Ni.

According to our observations, in a classification dataset, some

features are more continuous, while others contain discrete values.

Therefore, in this study, we attempt first to find out the discrete

values for individual Ni, vals(Ni), that is to say, vi. If vi > 2q, then fol-

low the aforementioned partition technique for that particular fea-

ture only, otherwise, avoid the such partitioning process. Repeat

this process for all features. Finally, measure the IG for each feature

using Eqs. (10) and (11).

3.5. Computational complexity

An exact analysis of computational complexity helps in under-

standing the actual computational cost of an algorithm. Given that

big-O notation is a prominent approach in terms of analyzing com-

putational complexity, as shown in Kudo and Sklansky (2000), we

are inspired to compute the computational cost of ACOFS. There

M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763 3753
 

 

 



are seven basic steps in ACOFS, namely, information gain measure-

ment, subset construction, subset evaluation, termination crite-

rion, subset determination, pheromone update, and heuristic

information measurement. The following paragraphs present the

computational complexity of ACOFS in order to show that inclusion

of different techniques does not increase computational complex-

ity in selecting a feature subset.

(i) Information gain measurement: In this step, we measure

information gain (IG) for each feature according to Section

3.4.2.1. If the number of total features for a given dataset

is n, then the cost of measuring IG is O(n � P), where P

denotes the number of examples in the given dataset. It is

further mentioning that this cost is required only once, spe-

cifically, before starting the FS process.

(ii) Subset construction: Subset construction (SC) shows two dif-

ferent types of phenomena according to Eq. (1). For the ran-

dom case, if the total number of features for a given dataset

is n, then the cost of an ant constructing a single subset is

O(r � n). Here, r refers to the size of subsets. Since the total

number of ants is k, the computational cost is O(r � k � n)

operations. However, in practice, r < n; hence, the cost

becomes O(k � n) � O(n2). In terms of the probabilistic case,

ACOFS uses the Eq. (1) for selecting the features in SC which

shows a constant computational cost of O(1) for each ant. If

the number of ants is k, then the computational cost

becomes O(k).

(iii) Subset evaluation: In ACOFS, five types of operations are nec-

essarily required for evaluating a single subset using a con-

structive NN training scheme: (a) partial training, (b)

stopping criterion, (c) further training, (d) contribution com-

putation, and (e) addition of a hidden neuron. The subse-

quent paragraphs describe these types in details.

(a) Partial training: We use standard BP (Rumelhart & McC-

lelland, 1986) for training. During training each epoch BP

takes O(W) operations for one example. Here, W is the

number of weights in the current NN. Thus, training all

examples in the training set for sp epochs requires

O(sp � Pt �W) operations, where Pt denotes the number

of examples in the training set.

(b) Stopping criterion: During training, the stopping criterion

uses either validation accuracy or validation errors for

subset evaluation. Since training error is computed as a

part of the training process, evaluating the termination

criterion takes O(Pv� W) operations, where Pv denotes

the number of examples in the validation set. Since

Pv < Pt, O(Pv �W) < O(sp � Pt �W).

(c) Further training: ACOFS uses Eq. (4) to check whether

further training is necessary. The evaluation of Eq. (4)

takes a constant number of computational operations

O(1), since the error values used in Eq. (3) have already

been evaluated during training.

(d) Contribution computation: ACOFS computes the contribu-

tion of the added hidden neuron using Eq. (5). This com-

putation takes O(Pv) operations, which is less than

O(sp � Pt �W).

(e) Addition of a hidden neuron: The computational cost for

adding a hidden neuron is O(r + c) for initializing the

connection weights, where r is the number of features

in the current subset, and c is the number of neurons in

the output layer. Also note that O(r + c) < O(sp � Pt �W).

The aforementioned computation is done for a partial

training session consisting of sp epochs. In general, ACOFS

requires a number, say M, of such partial training

sessions for evaluating a single subset. Thus, the cost

becomes O(sp �M � Pt �W). Furthermore, by consider-

ing all subsets, the computational cost required is

O(k � sp �M � Pt �W) operations.

(iv) Termination criterion: A termination criterion is employed in

ACOFS for terminating the FS process eventually. Since only

one criterion is required to be executed (i.e., the algorithm

achieves a predefined accuracy, or executes a iteration

threshold, I), the execution of such a criterion requires a con-

stant computational cost of O(1).

(v) Subset determination: ACOFS requires two steps to determine

the best subset, namely, finding the local best subset, and

the global best subset. In order to find the local best subset

in each iteration t, ACOFS requires O(k) operations. The total

computational cost for finding the local best subsets thus

becomes O(k � t). In order to find the global best subset,

ACOFS requires O(1) operations. Thus, the total computa-

tional cost for subset determination becomes O(k � t), which

is less than O(k � sp �M � Pt �W).

(vi) Pheromone update rule: ACOFS executes Eqs. (6) and (7) to

update the pheromone trails for each feature in terms of

the random and probabilistic cases. Since the number of fea-

tures is n for a given learning dataset, the computation takes

O(n) constant operations, which is less than O(k � sp �
M � Pt �W).

(vii) Heuristic information measurement: Similar to the phero-

mone update operation, ACOFS uses Eqs. (8) and (9) to

update the heuristic value of n features. Thereafter, the com-

putational cost becomes O(n). Note that, O(n)� O(k � sp �
M � Pt �W).

In accordance with the above analysis, we can summarize the

different parts of the entire computational cost as O(n � P) +

O(n2) + O(k) + O(k � sp �M � Pt �W). It is important to note here

that the first and second terms, namely, n � P and n2, are the cost

of operations performed only once, and are much less than k � sp �
M � Pt �W. On the other hand, O(k)� O(k � sp �M � Pt �W).

Hence, the total computational cost of ACOFS is O(k � sp �
M � Pt �W). Analyzing this, we can find that O(sp �M � Pt �W)

is similar to the cost of training a fixed network architecture using

BP (Rumelhart & McClelland, 1986), and that the total cost is sim-

ilar to that of other existing ACO-based FS approaches (e.g., Siva-

gaminathan & Ramakrishnan, 2007). Thus, we can say that

incorporation of several techniques in ACOFS does not increase

the computational cost.

4. Experimental studies

The performance of ACOFS has been presented in this context

on eight well-known benchmark classification datasets, including

the breast cancer, glass, vehicle, thyroid, ionosphere, credit card,

sonar, and gene datasets; and one gene expressional classification

dataset, namely, the colon cancer dataset. These datasets have

been the subject of many studies in NNs and machine learning,

covering examples of small, medium, high, and very high-dimen-

sional datasets. The characteristics of these datasets, summarized

in Table 1, show a considerable diversity in the number of features,

classes, and examples. A detailed description of these datasets, ex-

cept for colon cancer, can be obtained from the University of Cali-

fornia Irvine Machine Learning Repository (Newman, Hettich,

Blake, & Merz, 1998; Prechelt, 1994). Alon et al. (1999) describes

detailed information about the colon cancer dataset. Experimental

details, results, roles of subset size determination scheme in FS, the

user specified parameter l in FS, and hybrid search in FS are

3754 M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763
 

 

 



described in this context. Finally, one additional experiment on

ACOFS concerning performance for FS over real-world datasets

mixed with some noisy features, and comparisons of ACOFS with

other existing works, are also discussed in this context.

4.1. Experimental methodology

Extensive experiments have been carried out on ACOFS in order

to ascertain the effectiveness of ACOFS for FS. Basically, we con-

ducted two sets of experiments to investigate the essence of FS.

In one set, we used ACOFS that selects salient feature subset during

FS process. We call this set of experiment as ‘‘Average result with

selected features’’. In the other set, FS was not performed, rather

a constructive feed-forward NN training scheme was used to mea-

sure the testing CA using all features of a given dataset. We call this

set of experiment as ‘‘Average result with all features’’. However, to

accomplish the FS task suitably, three steps need to be considered,

namely, dataset partitioning, reducing dimensionality of datasets,

and assigning values for user-specified parameters. Regarding

these issues, a detailed discussion is given in the following

subsections.

4.1.1. Dataset partitioning

In this work, examples are given of nine datasets, each of which

was partitioned into three subsets: a training set, a validation set,

and a testing set. Distribution of the number of examples and char-

acteristics of these datasets are reported in Table 1. Specifically, the

training set was used to train and modify NN architectures; the

validation set was used for terminating the training process of

NNs; and the testing set was used for measuring the generalization

ability of the NNs. In all datasets, the first Pt examples were used

for the training set, the following Pv examples for the validation

set, and the final Ps examples for the testing set. These partitions

were used in accordance with benchmarking methodologies (Pre-

chelt, 1995, 1996).

4.1.2. Dimensionality reduction of dataset

In contrast to other datasets used in this study, colon cancer is a

very high-dimensional dataset containing a very large number of

genes (features). Specifically, this dataset contains gene expres-

sions of 40 tumor and 22 normal colon tissue samples, which were

collected from 2000 genes out of 6500 with an affymetrix oligonu-

cleotide array. The number of genes of colon cancer is too high to

manipulate in the learning classifier, and not all genes are useful

for classification (Kim & Cho, 2004). To remove such difficulties,

we first reduced the dimension of the colon cancer dataset to

within 100 features, using an IG measurement technique (Intan

& Yuliana, 2009; Mitchell, 1997). Ordinarily, IG measurement

determines statistically those features that are informative for

classifying a target. On the basis of such a concept, we have used

such a technique for reducing the dimension of the colon cancer

dataset. Details about information gain measurement can be found

in Section 3.4.2.1.

4.1.3. User-specified parameters

There are a number of user specified parameters, the values of

which need to be determined for ACOFS to function suitably for

the FS task. Table 2 shows parameters that are common to all data-

sets. Note that, these parameters are not specific to our algorithm,

but are required for any ACO-based FS algorithm using a NN clas-

sifier. The parameters were chosen after a number of preliminary

runs, and were not meant to be optimal. It is worth mentioning

that among the parameters mentioned in Table 2, proper selection

of the values of parameters a and b is helpful for achieving an

effective balance between exploitation and exploration of ants in

selecting salient features. For example, if a = 0, then no pheromone

information is used, that is to say, previous search experience is ne-

glected. The search then changes to a greedy search. If b = 0, then

attractiveness, the potential benefit of moves, is neglected. In this

work, the values of a and b were chosen according to the sugges-

tion of Dorigo and Stutzle (2004).

4.2. Experimental results

Table 3 shows the results of ACOFS over 20 independent runs on

nine real-world benchmark classification datasets. The CA in Table

3 refers to the percentage of exact classifications produced by

trained NNs on the testing set of a classification dataset. In addi-

tion, the weights of features for the above nine datasets over 20

independent runs are exhibited in Tables 4–11. On the other hand,

Fig. 5 shows how the best solution was selected in ACOFS for the

glass dataset. In order to observe whether the internal process of

FS in ACOFS is appropriately being performed, Figs. 6–9 have been

considered. Now, the following observations can be made from Ta-

bles 3–11 and Figs. 5–9.

(i) As can be seen from Table 3, ACOFS was able to select a

smaller number of features for solving different datasets.

For example, ACOFS selected, on average, 3.00 features from

a set of 21 features in solving the thyroid dataset. It also

selected, on average, 7.25 genes (features) from a set of

120 genes in solving the gene dataset. On the other hand, a

very large-dimensional dataset, that of colon cancer, was

preprocessed from the original one to be utilized in ACOFS.

In this manner, the original 2000 features of colon cancer

were reduced to within 100 features. ACOFS then obtained

a small number of salient genes, 5.25 on average, from the

set of 100 genes for solving the colon cancer dataset. In fact,

Table 1

Characteristics and partitions of different classification datasets.

Dataset Feature Class Example Partition set

Training Validation Testing

Cancer 9 2 699 349 175 175

Glass 9 6 214 108 53 53

Vehicle 18 4 846 424 211 211

Thyroid 21 3 7200 3600 1800 1800

Ionosphere 34 2 351 175 88 88

Credit card 51 2 690 346 172 172

Sonar 60 2 208 104 52 52

Gene 120 3 3175 1587 794 794

Colon cancer 2000 2 62 30 16 16

Table 2

Common parameters for all datasets.

Parameter Value

Initial pheromone level for all features, s 0.5

Initial heuristic value for all features, g 0.1

l, used in subset size determination 0.08–0.6

Strength of pheromone level, a 1

Strength of heuristic value, b 3

Pheromone decay parameter, q 0.4

Exponential term control parameter, / 0.1

Iteration threshold, 10–18

Accuracy threshold Depends on dataset

Learning rate for BP algorithm 0.1–0.2

Momentum term for BP algorithm 0.5–0.9

Initial weights of NNs �1.0 to 1.0

The number of epochs for partial training, s 20–40

Training error threshold, k Depends on dataset

Training threshold for terminating NN training, T 3

M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763 3755
 

 

 



ACOFS selected a small number of features for all other data-

sets having more features. Feature reduction in such data-

sets was several orders of magnitude (see Table 3).

(ii) The positive effect of a small number of selected features (ns)

is clearly visible when we observe the CA. For example, for

the vehicle dataset, the average CA of all features was

60.71%, whereas it had been 75.90% with 2.90 features. Sim-

ilarly, ACOFS produced an average CA of 86.05% with the

average number of features of 6.25 substantially reduced

for the sonar dataset, while the average CA had been

76.82% with all 60 features. Other similar types of scenarios

can also be seen for all remaining datasets in ACOFS. Thus, it

can be said that ACOFS has a powerful searching capability

for providing high-quality solutions. CA improvement for

such datasets was several orders of magnitude (see Table

3). Furthermore, the use of ns caused a relatively small stan-

dard deviation (SD), as presented in Table 3 for each entry.

The low SDs imply robustness of ACOFS. Robustness is rep-

resented by consistency of an algorithm under different ini-

tial conditions.

(iii) Themethod of determination for the final solution of a subset

in ACOFS can be seen in Fig. 5. We can observe that for the

performances of the local best subsets, the CAs varied

Table 3

Performance of ACOFS for different classification datasets. Results were averaged over 20 independent runs. Here, n and ns refer to the total number of original features and

selected features, respectively. On the other hand, CA and SD signify the classification accuracy and standard deviation, respectively.

Dataset Avg. result with all features Avg. result with selected features

n SD CA (%) SD ns SD CA (%) SD

Cancer 9.00 0.00 97.97 0.42 3.50 1.36 98.91 0.40

Glass 9.00 0.00 76.60 2.55 3.30 1.14 82.54 1.44

Vehicle 18.00 0.00 60.71 11.76 2.90 1.37 75.90 0.64

Thyroid 21.0 0.00 98.04 0.58 3.00 1.34 99.08 0.11

Ionosphere 34.0 0.00 97.67 1.04 4.15 2.53 99.88 0.34

Credit card 51.0 0.00 85.23 0.67 5.85 1.76 87.99 0.38

Sonar 60.0 0.00 76.82 6.97 6.25 3.03 86.05 2.26

Gene 120.0 0.00 78.97 5.51 7.25 2.53 89.20 2.46

Colon cancer 100.0 0.00 59.06 5.75 5.25 2.48 84.06 3.68

Table 4

Weights of the features selected by ACOFS for the cancer and glass datasets.

Dataset Feature

1 2 3 4 5 6 7 8 9

Cancer 0.186 0.042 0.129 0.142 0.129 0.2 0.115 0.042 0.015

Glass 0.258 0.045 0.258 0.107 0.06 0.015 0.182 0.06 0.015

Table 5

Weights of the features selected by ACOFS for the vehicle dataset.

Feature 1 2 4 7 9 10 11 12

Weight 0.189 0.103 0.069 0.051 0.086 0.086 0.103 0.086

Table 6

Weights of the features selected by ACOFS for the thyroid dataset.

Feature 1 7 17 19 20 21

Weight 0.052 0.052 0.332 0.1 0.069 0.15

Table 7

Weights of the features selected by ACOFS for the ionosphere dataset.

Feature 1 3 4 5 7 8 12 27 29

Weight 0.108 0.036 0.036 0.036 0.06 0.12 0.06 0.12 0.036

Table 8

Weights of the features selected by ACOFS for the credit card dataset.

Feature 5 8 29 41 42 43 44 49 51

Weight 0.042 0.06 0.034 0.051 0.17 0.111 0.128 0.034 0.12

Table 9

Weights of the features selected by ACOFS for the sonar dataset.

Feature 2 9 10 11 12 15 17 18 44

Weight 0.037 0.046 0.056 0.084 0.112 0.037 0.037 0.037 0.06

Table 10

Weights of the features selected by ACOFS for the gene dataset.

Feature 22 59 60 61 62 63 64 69 70 119

Weight 0.027 0.064 0.045 0.1 0.073 0.073 0.119 0.110 0.128 0.036

Table 11

Weights of the features selected by ACOFS for the colon cancer dataset.

Feature 47 72 249 267 493 765 1247 1325 1380 1843

Weight 0.051 0.038 0.051 0.038 0.051 0.038 0.038 0.038 0.051 0.051

3756 M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763
 

 

 



together with the size of those subsets. There were also sev-

eral points where the CAsweremaximized, but the best solu-

tion was selected (indicated by circle) by considering the

reduced size subset. It can also be seen in Fig. 5 that CAs var-

ied due to size variations of local best subsets in different

iterations. Furthermore, different features that were included

in different local best subsets caused variations in CAs.

(iv) In order to observe the manner in which how the selection of

salient features in different iterations progresses in ACOFS,

Fig. 6 shows the scenario of such information for the glass

dataset for a single run. We can see that features 1, 7, 8, 6,

and 2 received most of the selections by ants during SCs

compared to the other features. The selection of features

was basically performed based on the values of pheromone

update (s) and heuristic information (g) for individual fea-

tures. Accordingly, those features that had higher values of

s and g ordinarily obtained a higher priority of selection,

as could be seen in Figs. 7 and 8. For clarity, these figures

represented five features, of which four (features 1, 7, 8, 6)

had a higher rate of selection by ants during SCs and one

(feature 2) had a lower rate.

(v) Upon completion of the entire FS process, the features that

were most salient could be identified by means of weight

computation for individual features. That is to say, features

having higher weight values were more significant. On the

other hand, for a particular feature to have a maximum

weight value implied that the feature had the maximum

number of selections by ants in any algorithm for most of

the runs. Here, the weight of individual features (wi) can

be defined as follows:

wi ¼
S

R
ð12Þ

where i = 1,2, . . .,n, S is the number of times a particular fea-

ture is selected in all runs, and R is the total number of sim-

ulation runs. In calculating weight values, after obtaining all

Fig. 5. Finding best subset of the glass dataset for a single run. Here, the classification accuracy is the accuracy of the local best subset.

Fig. 6. Number of selections of each feature by different ants for different iterations

in the glass dataset for a single run.

Fig. 7. Distribution of pheromone level of some selected features of the glass

dataset in different iterations for a single run.

Fig. 8. Distribution of heuristic level of some selected features of the glass dataset

in different iterations for a single run.

M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763 3757
 

 

 



possible values of wi, we normalize those values such that

summation of all wi is equal to 1. Tables 4–11 show the

weight of features for the cancer, glass, vehicle, thyroid, ion-

osphere, credit card, sonar, gene, and colon cancer datasets,

respectively, over 20 independent runs. We can see in Table

4 that ACOFS selected features 6, 1, 4, 3, 5, and 7 from the

cancer dataset very frequently, that these features had rela-

tively higher weight values, and preformed well as discrimi-

nators. Similarly, our ACOFS selected features 42, 44, 51, 43,

8, and 5 as most important from the credit card dataset (Ta-

ble 8), as well as features 70, 64, 69, 61, 63, 59, and 60 from

the gene dataset (Table 10). Note that, weights for certain

features are reported in Tables 5–11, whereas weights that

were of negligible value for the rest of each dataset are not

included.

(vi) Finally, we wish to note that a successful evaluation function

leads to finding high-quality solutions for ACOFS in FS. Our

ACOFS uses a constructive NN model that evaluates the sub-

sets constructed by ants in each and every step during train-

ing. As training process progresses, the training error for the

training set converges to a certain limit (Fig. 9(a)). However,

there is an instance in which the training error increases.

This is due to the addition of one unnecessary hidden neu-

ron. Such an addition also hampers the training error on

the validation set (Fig. 9(b)). Therefore, ACOFS deletes such

an unnecessary hidden neuron (Fig. 9(d)) from the NN archi-

tecture, since it cannot improve the classification accuracy

on the validation set (Fig. 9(c)).

4.3. Effects of subset size determination

The results presented in Table 3 show the ability of ACOFS in

selecting salient features. However, the effects resulting from

determining the subset size to control ants in such a manner as

to construct the subset in a reduced boundary were not clear. To

observe such effects, we carried out a new set of experiments.

The setups of these experiments were almost exactly the same as

those described before. The only difference was that ACOFS had

not determined the subset size earlier using a bounded scheme; in-

stead the size of the subset for each ant had been decided

randomly.

Table 12 shows the average results of the new experiments for

vehicle and credit card datasets over only 20 independent runs.

The positive effects of determining the subset size during the FS

process are clearly visible. For example, for the credit card dataset,

the average values of ns of ACOFS without and with subset size

determination were 15.30 and 5.85, respectively. A similar sce-

nario can also be seen for the other dataset. In terms of CAs, the

average CAs for ACOFS with subset size determination were either

better than or comparable to ACOFS without subset size determi-

nation for these two datasets.

4.4. Effect of l

The essence of the proposed techniques in ACOFS can be seen in

Table 3 for recognizing the subsets of salient features from the gi-

ven datasets; however, the effects of the inner component l of sub-

set size determination (see Section 3.1) on the overall results were

not clear. The reason is that the size of the subsets constructed by

the ants depended roughly on the value of l. To observe such ef-

fects, we conducted a new set of experiments. The setups of these

experiments were almost exactly the same as those described be-

fore. The only difference was that the value of l varied within a

range of 0.2 to 0.94 by a small threshold value over 20 individual

runs.

Tables 13 and 14 show the average results of our new experi-

ments over 20 independent runs. The significance of the effect of

varying l can be seen from these results. For example, for the glass

dataset (Table 13), the average percentage of the CA improved as

Fig. 9. Training process for evaluating the subsets constructed by ants in the

ionosphere dataset: (a) training error on training set, (b) training error on validation

set, (c) classification accuracy on validation set, and (d) the hidden neuron addition

process.

3758 M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763
 

 

 



the value of l increased up to a certain point. Afterwards, the CA

degraded as the value of l increased. Thus, a subset of features

was selected with a large size. A similar scenario can also be seen

for the ionosphere dataset (Table 14). It is clear here that the signif-

icance of the result of FS in ACOFS depends on the value of l. Fur-
thermore, the determination of subset size in ACOFS is an

important aspect for suitable FS.

4.5. Effect of hybrid search

The capability of ACOFS for FS can be seen in Table 3, but the ef-

fect of using hybrid search in ACOFS for FS is not clear. Therefore, a

new set of experiments was carried out to observe such effects. The

setups of these experiments were almost exactly as same as those

described before. The only difference was that ACOFS did not use

the modified rules of pheromone update and heuristic value for

each feature; instead, standard rules were constructed. In such

considerations, we avoided not only the incorporation of the infor-

mation gain term, but also the concept of random and probabilistic

behaviors, during SC for both specific rules. Furthermore, we ig-

nored the exponential term in the heuristic measurement rule.

Table 15 shows the average results of our new experiments for

the glass, credit card, sonar, and colon cancer datasets over 20

independent runs. The positive effects of using a hybrid search in

ACOFS are clearly visible. For example, for the credit card dataset,

the average CAs of ACOFS with and without hybrid search were

87.99% and 87.26%, respectively. A similar classification improve-

ment for ACOFS with hybrid search was also observed for the other

datasets. On the other hand, in terms of ns, for the glass dataset, the

average values of ns of ACOFS and ACOFS without hybrid search

were 3.30 and 4.05, respectively. For the other datasets it was also

found that ACOFS selected a smaller number of salient features. We

used t-test here to determine whether the difference of classifica-

tion performances between ACOFS and ACOFS without hybrid

search was statistically significant. We found that ACOFS per-

formed significantly better than ACOFS without local search oper-

ation at a 95% confidence level for all the datasets except for the

colon cancer dataset. On the other hand, the t-test was also used

here to determine whether the difference in performances be-

tween the above two approaches with regard to selecting a re-

duced number of salient features was statistically significant. We

found that ACOFS was significantly better than ACOFS without hy-

brid search at a 95% confidence level for all four datasets.

In order to understand precisely how hybrid search plays an

important role in ACOFS for FS tasks, a set of experiments was

additionally conducted. The setups of these experiments were sim-

ilar to those described before, and different initial conditions were

maintained constant between these two experiments. Figs. 10 and

11 show the CAs of ACOFS without and with hybrid search, respec-

tively. These CAs were produced by local best subsets in different

iterations of a single run. The positive role of using hybrid local

search in ACOFS can clearly be seen in these figures. In Fig. 10,

we can see that a better CA was found only in the initial iteration

because of the rigorous survey by the ants in finding salient fea-

tures. For the next iterations, the CAs fluctuated up to a higher iter-

ation, 19, but were not able to reach a best state. This occurred due

to the absence of hybrid search, which resulted in a weak search in

ACOFS. The opposite scenario can be seen in Fig. 11, where the

search was sufficiently powerful that by a very low number of iter-

ations, 5, ACOFS was able to achieve the best accuracy (99.42%) of

the salient feature subset. Thereafter, ACOFS terminated the

searching of salient features. The reason for such a high perfor-

mance of FS was just the incorporation of the hybrid search.

4.6. Performance on noisy features

The results presented in Table 3 exhibit the ability of ACOFS to

select salient features from real-valued datasets. In this study, we

examine the sensitivity of ACOFS to noisy features that have been

synthetically inserted into a number of real-valued datasets. In or-

der to generate these noisy features, we followed the process dis-

Table 12

Effect of determining subset size on the average performances of ACOFS.

Dataset ACOFS without bounded scheme ACOFS

ns SD CA (%) SD ns SD CA (%) SD

Vehicle 6.05 4.76 75.73 0.48 2.90 1.37 75.90 0.64

Credit card 15.30 8.25 88.34 0.22 5.85 1.76 87.99 0.38

Table 13

Effect of varying the value of l on the average performances of ACOFS for the glass

dataset. The value is incremented by a threshold value of 0.01 over 20 individual runs.

Values of l Average performance

Initial Final ns SD CA (%) SD

0.40 0.64 2.60 0.91 80.09 2.69

0.50 0.74 3.05 1.16 82.16 1.51

0.60 0.84 3.30 1.14 82.54 1.44

0.70 0.94 3.45 1.39 81.98 1.39

Table 14

Effect of varying the value of l on the average performances of ACOFS for the

ionosphere dataset. The value is incremented by a threshold value of 0.005 over 20

individual runs.

Values of l Average performance

Initial Final ns SD CA (%) SD

0.20 0.30 4.70 2.59 99.54 0.83

0.23 0.33 3.65 2.32 99.65 0.63

0.26 0.36 4.15 2.53 99.88 0.34

0.29 0.39 6.00 3.78 99.48 0.76

Table 15

Effect of considering hybrid search on average performances of ACOFS. Results were averaged over 20 independent runs.

Dataset ACOFS without hybrid search ACOFS

ns SD CA (%) SD ns SD CA (%) SD

Glass 4.05 1.35 81.22 1.39 3.30 1.14 82.54 1.44

Credit card 6.15 2.21 87.26 0.66 5.85 1.76 87.99 0.38

Sonar 6.50 2.80 84.42 3.03 6.25 3.03 86.05 2.26

Colon cancer 6.35 4.05 82.18 4.08 5.25 2.48 84.06 3.68

M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763 3759
 

 

 



cussed in Muni et al. (2006). Briefly, at first, we considered four fea-

tures, namely, fn1, fn2, fn3, fn4 and the values of these respective fea-

tures were generated randomly. Specifically, the values of fn1 and

fn2 were bound up to [0,1] and [�1,+1], respectively. For the do-

mains of fn3 and fn4, we first randomly selected two different fea-

tures from the datasets. Subsequently, the data points of these

two selected features were taken as a random basis for use in

the domains of fn3and fn4.

Table 16 shows the average performances of ACOFS on the real-

valued datasets of cancer and glass mixed with noisy features over

20 independent runs. The ability of ACOFS for FS over real-valued

datasets can also be found in Table 3. In comparing Tables 3 and

16, the following observations can be made. For the glass dataset,

the average CAs with and without noisy features were 81.69%

and 82.54%, respectively. On the other hand, in terms of ns, the

average values were 4.45 and 3.30, respectively. A similar scenario

can also be found for the cancer dataset. Thus, it is clear that ACOFS

has a strong ability to select the salient features from real-valued

datasets even with a mixture of noisy features. We can observe

that ACOFS selected a slightly higher average number of salient

features from the glass dataset with noisy features. The reason is

that, adding the noisy features created confusion in the feature

space. This may assist our ACOFS in selecting a greater number

of noiseless features to resolve the confusion in the feature space

caused by the noisy features.

4.7. Comparisons

The results of ACOFS obtained on nine real-world benchmark

classification datasets are compared here with the results of vari-

ous existing FS algorithms (i.e., ACO-based and non ACO-based)

as well as with a normal ACO-based FS algorithm, as reported in

Tables 17–19. The various FS algorithms are as follows: ACO-based

hybrid FS (ACOFSS; Sivagaminathan & Ramakrishnan, 2007), ACO-

based attribute reduction (ACOAR; Ke et al., 2008), genetic pro-

gramming for FS (GPFS; Muni et al., 2006), hybrid genetic algo-

rithm for FS (HGAFS; Huang et al., 2007), MLP-based FS method

(MLPFS; Gasca et al., 2006), constructive approach for feature

selection (CAFS; Kabir et al., 2010), and artificial neural net input

gain measurement approximation (ANNIGMA; Hsu et al., 2002).

The results reported in these tables are over 20 independent runs.

In comparing these algorithms, we have mainly used two parame-

ters: classification accuracy (CA) and the number of selected fea-

tures (ns).

4.7.1. Comparison with other works

The comparisons between eight FS algorithms represent a wide

range of FS techniques. Five of the FS techniques, namely, ACOFS,

ACOFSS, ACOAR, GPFS, and HGAFS, use global search strategies

for FS. Among them, ACOFS, ACOFSS, and ACOAR use the ant colony

optimization algorithm. HGAFS uses a GA in finding salient fea-

tures, and GPFS uses genetic programming, a variant of GA. For

the remaining three FS techniques, namely, MLPFS, ANNIGMA

and CAFS; MLPFS and ANNIGMA use backward selection strategy

for finding salient features, while CAFS uses forward selection

strategy. For evaluating the feature subset, ACOFS, ACOFSS, MLPFS,

CAFS, and ANNIGMA use a NN for classifiers, while GPFS and

HGAFS use a decision tree and support vector machine, respec-

tively, for classifiers, and ACOAR uses rough set theory by calculat-

ing a dependency degree. ACOFS, and CAFS uses a training set,

validation set and testing set, while ACOFSS and ANNIGMA use

only a training set and testing set. MLPFS and GPFS use 10-fold

cross-validation. A similar method, that is, k-fold cross-validation,

is used in HGAFS, where k refers to a value ranging from 2 to 10,

depending on the given dataset scale. The aforementioned algo-

rithms not only use different data partitions, but also employ a dif-

ferent number of independent runs in measuring average

performances. For example, ANNIGMA and CAFS use 30 runs,

ACOFS uses 20 runs, and MLPFS and GPFS use 10 runs. It is impor-

tant to note that no further information regarding the number of

runs has been mentioned in the literature for ACOFSS and HGAFS.

Fig. 10. Classification accuracies (CAs) of the cancer dataset without considering

hybrid search for a single run. Here, a CA is the accuracy of a local best subset.

Fig. 11. Classification accuracies (CAs) of the cancer dataset in ACOFS for a single

run. Here a CA is the accuracy of a local best subset.

Table 16

Performances of ACOFS for noisy datasets. Results were averaged over 20 indepen-

dent runs.

Dataset With all features With selected features

ns SD CA (%) SD ns SD CA (%) SD

Cancer 13.00 0.00 97.80 0.89 3.80 1.80 98.74 0.46

Glass 13.00 0.00 73.86 2.81 4.45 1.71 81.69 2.31

Table 17

Comparisons between ACOFS, ACOFSS (Sivagaminathan & Ramakrishnan, 2007),

ACOAR (Ke et al., 2008). Here, ‘‘–’’ means not available.

Dataset Comparison

ACOFS ACOFSS ACOAR

Cancer ns 3.50 12.00

CA (%) 98.91 95.57

Thyroid ns 3.00 14.00 –

CA (%) 99.08 94.50 –

Credit card ns 5.85 – 8.00

CA (%) 87.99 – –

Colon cancer ns 5.25 – 8.00

CA (%) 84.06 – 59.5

3760 M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763
 

 

 



We can see in Table 17 that ACOFS produced the best solutions

in terms of a reduced number of selected features, and the best CA

in comparison with the two ACO-based FS algorithms, namely,

ACOFSS and ACOAR, for all four datasets. Furthermore, the results

produced by ACOFS shown in Table 18 represented the best CA

among the other algorithms for all four datasets. For the remaining

three datasets, while HGAFS achieved the best CA for two datasets,

GPFS achieved the best CA for one dataset. Note that, ACOFS and

ANNIGMA jointly achieved the best CA for the credit card dataset.

In terms of ns, ACOFS selected the smallest number of features for

four out of seven datasets, and the second smallest for two dataset;

that is to say, CAFS and HGAFS. In a close observation, ACOFS

achieved the smallest ns, which resulted in the best CAs for the

glass and ionosphere datasets in comparison with the other five

algorithms (see Table 18).

Significantly, it can be said that FS improves the performance of

classifiers by ignoring irrelevant features in the original feature set.

An important task in such a process is to capture necessary infor-

mation in selecting salient features; otherwise, the performance

of classifiers might be degraded. For example, for the cancer data-

set, GPFS selected the smallest feature subset consisting of 2.23

features, but achieved a lower CA. On the other hand, ACOFS se-

lected a slightly larger feature subset that provided a better CA

compared to others for the cancer dataset. In fact, the results pre-

sented for other algorithms in Table 18 indicate that having the

smallest or largest feature subset did not guarantee performing

with the best or worst CA.

4.7.2. Comparison with normal ACO based FS algorithm

In this context, we use a normal ACO algorithm for solving FS,

considering similar steps as incorporated in ACOFS, except for a

number of differences. We call this algorithm ‘‘NACOFS’’. In NA-

COFS, issues of guiding the ants and forcing the ants during SC

were not considered. Instead, the ants followed a process for SC

where the size of subsets was fixed for each iteration and increased

at a fixed rate for following iterations. On the other hand, hybrid

search was not used here; that is to say, the concept of random

and probabilistic behavior was not considered, including the incor-

poration of information gain in designing the pheromone update

rule and heuristic information measurement rule.

We can see in Table 19 that the results produced by ACOFS

achieved the best CA compared to NACOFS for three out of four

datasets. For the remaining dataset, NACOFS achieved the best re-

sult. In terms of ns, ACOFS selected the smallest number of features

for the all four datasets, while NACOFS selected subsets of bulky

size. Between these two algorithms, the performances of the CAs

seemed to be similar, but the results of the numbers of selected

features were very different. The performance of ACOFS was also

found to be very consistent, exhibiting a low standard deviation

(SD) under different experimental setups.

4.8. Discussion

This section briefly explains the reason that the performance of

ACOFS was better than those of the other ACO-based FS algorithms

compared in Table 17. There are three major differences that might

contribute to the better performance of ACOFS compared to the

other algorithms.

The first reason is that ACOFS uses a bounded scheme to deter-

mine the subset size, while ACOFSS, ACOAR, and other ACO-based

FS algorithms (e.g., Aghdam et al., 2009; Ani, 2005; Kanan et al.,

2007; Khushaba et al., 2008; Robbins et al., 2008) do not use such

a scheme. It is now clear that without a bounded scheme, ants are

free to construct subsets of bulky size. Accordingly, there is a high

possibility of including a number of irrelevant features in the con-

structed subsets. Using the bounded scheme with assistance from

other techniques, ACOFS includes the most highly salient features

in a reduced number, although it functioned upon a wide range

of feature spaces. As shown in Table 17, ACOFS selected, on aver-

age, 3.00 salient features, while ACOFSSselected 14.00 features,

on average, from the thyroid dataset. For the remaining other three

datasets, ACOFS also selected a very small number of salient fea-

tures. The benefit of using the bounded scheme can also be seen

from the results of the selected subsets in ACOFS.

The second reason is the new hybrid search technique inte-

grated in ACOFS. The algorithms ACOFSS, ACOAR and others do

Table 18

Comparisons between ACOFS, GPFS (Muni et al., 2006), HGAFS (Huang et al., 2007), MLPFS (Gasca et al., 2006), CAFS (Kabir et al., 2010), and ANNIGMA (Hsu et al., 2002). Here,

‘‘–’’ means not available.

Dataset Comparison

ACOFS GPFS HGAFS MLPFS CAFS ANNIGMA

Cancer ns 3.50 2.23 3.00 8.00 6.33 5.80

CA (%) 98.91 96.84 94.24 89.40 98.76 96.50

Glass ns 3.30 – 5.00 8.00 4.73 –

CA (%) 82.54 – 65.51 44.10 76.91 –

Vehicle ns 2.90 5.37 11.00 13.00 2.70 –

CA (%) 75.90 78.45 76.36 74.60 74.56 –

Ionosphere ns 4.15 – 6.00 32 6.73 9.00

CA (%) 99.88 – 92.76 90.60 96.55 90.20

Credit card ns 5.85 – 1.00 – – 6.70

CA (%) 87.99 – 86.43 – – 88.00

Sonar ns 6.25 9.45 15.00 29.00 – –

CA (%) 86.05 86.26 87.02 59.10 – –

Colon cancer ns 5.25 – 6.00 – – –

CA (%) 84.06 – 86.77 – – –

Table 19

Comparisons between ACOFS and NACOFS. Here, NACOFS refers to the normal ACO-

based FS algorithm.

Dataset Comparison

ACOFS NACOFS

ns SD CA SD ns SD CA SD

Cancer 3.50 1.36 98.91 0.40 4.50 0.97 98.77 0.37

Glass 3.30 1.14 82.54 1.44 4.60 1.01 80.66 1.44

Ionosphere 4.15 2.53 99.88 0.34 11.45 6.17 99.88 0.34

Credit card 5.85 1.76 87.99 0.38 22.85 6.01 88.19 0.45

M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763 3761
 

 

 



not use such a hybrid search technique in performing pheromone

update and heuristic information measurement. The benefit of

adopting the hybrid search in ACOFS can clearly be seen in Figs.

10 and 11. These figures show that ACOFS achieved a powerful

and faster searching capability in finding salient features in the fea-

ture space. The above advantage can also be seen in Tables 17 and

18. We found that ACOFS had a remarkable capability to produce

significant classification performances from different datasets

using a reduced number of salient features.

The third reason is that ACOFS used a constructive approach for

determining appropriate architectures, that is to say, an appropri-

ate size of the hidden layer for the NN classifiers. The NN then eval-

uated the subsets constructed by the ants in each iteration during

training. The existing ACO-based FS approaches (for example, Siva-

gaminathan & Ramakrishnan, 2007) often ignored the above issue

of the NN classifiers. Furthermore, a number of other approaches

(for example, Aghdam et al., 2009; Ani, 2005) often ignored the

classifier portions to consider any heuristic methodology by which

the activity of the classifiers could be improved for evaluating the

subsets effectively. Furthermore, most ACO-based FS approaches

performed the pheromone update rule based on classifier perfor-

mances in evaluating the subsets. In this sense, the evaluation

function was one of the most crucial portions in these approaches

for FS. However, the most common practice was to choose the

number of hidden neurons in the NN randomly. Thus, the random

selection of hidden neurons affected the generalization perfor-

mances of the NNs. Furthermore, the entire FS process was eventu-

ally affected, resulting in ineffective solutions in FS. It is also

important to say that the performance of any NN was greatly

dependent on the architecture (Reed, 1993; Yao & Liu, 1997). Thus,

automatic determination of the number of hidden neurons’ lead to

providing a better solution for FS in ACOFS.

5. Conclusions

In this paper, an efficient hybrid ACO-based FS algorithm has

been presented. Since ants are the foremost strength of an ACO

algorithm, guiding the ants in the correct directions is a critical

requirement for high-quality solutions. Accordingly, ACOFS guides

ants during SC by determining the subset size. Furthermore, new

sets of pheromone update and heuristic information measurement

rules for individual features bring out the potential of the global

search capability of ACOFS.

Extensive experiments have been carried out in this paper to

evaluate how well ACOFS has performed in finding salient features

on different datasets (see Table 3). It is observed that a set of high-

quality solutions for FS was found from small, medium, large, and

very large dimensional datasets. The results of the low standard

deviations of the average classification accuracies, as well as the

average number of selected features, showed the robustness of this

algorithm. On the other hand, in comparison with seven prominent

FS algorithms (see Tables 17 and 18), with only a few exceptions,

ACOFS outperformed the others in terms of a reduced number of

selected features and best classification performances. Further-

more, the estimated computational complexity of this algorithm

reflected that incorporation of several techniques did not increase

the computational cost during FS in comparison with other ACO-

based FS algorithms (see Section 3.5).

We can see that there are a number of areas where ACOFS failed

to improve performances in terms of number of selected features

and classification accuracies. Accordingly, more suitable heuristic

schemes are necessary in order to guide the ants appropriately.

In the current implementation, ACOFS has a number of some

user-specified parameters, given in Table 2, which are common

in the field of ACO algorithm using NNs for FS. Further tuning of

the user-specified parameters related to ACO provides some scope

for further investigations in the future. On the other hand, among

these parameters, l, used in determining the subset size, was sen-

sitive to moderate change, according to our observations. One of

the future improvements to ACOFS could be to reduce the number

of parameters, or render them adaptive.

Acknowledgements

This research project was supported by grants to K.M. from the

Japanese Society for Promotion of Sciences, and the University of

Fukui.

References

Abe, S. (2005). Modified backward feature selection by cross validation. In
Proceedings of the European symposium on artificial neural networks (pp. 163–
168).

Aghdam, M. H., Aghaee, N. G., & Basiri, M. E. (2009). Text feature selection using ant
colony optimization. Expert Systems with Applications, 36, 6843–6853.

Alon, U., Barkai, N., Notterman, D. A, Gish, K., Ybarra, S., Mack, D., et al. (1999). Broad
patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. In Proceedings of the

national academy of sciences, USA (Vol. 96, pp. 6745–6750).
Ani, A. (2005). Feature subset selection using ant colony optimization. International

Journal of Computational Intelligence, 2, 53–58.
Back, A. D., & Trappenberg, T. P. (2001). Selecting inputs for modeling using

normalized higher order statistics and independent component analysis. IEEE
Transactions on Neural Network, 12(3), 612–617.

Battiti, R. (1994). Using mutual information for selecting features in supervised
neural net learning. IEEE Transactions on Neural Networks, 5(4), 537–550.

Caruana, R., & Freitag, D. (1994). Greedy attribute selection. In Proceedings of the
11th international conference of machine learning. USA: Morgan Kaufman.

Caruana, R., & Sa, V. D. (2003). Benefitting from the variables that variable selection
discards. Journal of Machine Learning Research, 3, 1245–1264.

Chakraborty, D., & Pal, N. R. (2004). A neuro-fuzzy scheme for simultaneous feature
selection and fuzzy rule-based classification. IEEE Transactions on Neural
Networks, 15(1), 110–123.

Chow, T. W. S., & Huang, D. (2005). Estimating optimal feature subsets using
efficient estimation of high-dimensional mutual information. IEEE Transactions

on Neural Network, 16(1), 213–224.
Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data

Analysis (1), 131–156.
Dorigo, M., Caro, G. D., & Gambardella, L. M. (1999). Ant algorithm for discrete

optimization. Artificial life, 5(2), 137–172.
Dorigo, M., & Stutzle, T. (2004). Ant colony optimization. Cambridge, MA: MIT Press.
Filippone, M., Masulli, F., & Rovetta, S. (2006). Supervised classification and gene

selection using simulated annealing. International Joint Conference on Neural

Networks, 3566–3571.
Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange

attractors from mutual information. Physical Review A, 33(2), 1134–1140.
Gasca, E., Sanchez, J. S., & Alonso, R. (2006). Eliminating redundancy and irrelevance

using a new MLP-based feature selection method. Pattern Recognition, 39,
313–315.

Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks
architectures. Neural Computation, 7(2), 219–269.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine

learning. Addison-Wesley Press.
Guan, S., Liu, J., & Qi, Y. (2004). An incremental approach to contribution-based

feature selection. Journal of Intelligence Systems, 13(1).
Guyon, I., & Elisseeff, A. (2003). An Introduction to variable and feature selection.

Journal of Machine Learning Research, 3, 1157–1182.
Hall, M. A. (2000). Correlation-based feature selection for discrete and numeric class

machine learning. In Seventeenth international conference on machine learning.
Hsu, C., Huang, H., & Schuschel, D. (2002). The ANNIGMA-wrapper approach to fast

feature selection for neural nets. IEEE Transactions on Systems, Man, and

Cybernetics – Part B: Cybernetics, 32(2), 207–212.
Huang, J., Cai, Y., & Xu, X. (2007). A hybrid genetic algorithm for feature selection

wrapper based on mutual information. Pattern Recognition Letters, 28,
1825–1844.

Intan, R., & Yuliana, O. Y. (2009). Fuzzy decision tree induction approach for mining
fuzzy association rules. In Sixteenth international conference on neural

information processing (pp. 720–728).
Jensen, R. (2005). Combining rough and fuzzy sets for feature selection. Ph.D.

dissertation, School of Information, Edinburgh University.
Kabir, M. M, Islam, M. M., & Murase, K. (2008). A new wrapper feature selection

approach using neural network. In Proceedings of joint 4th international

conference on soft computing and intelligent systems and 9th international
symposium on advanced intelligent systems, Japan (pp. 1953–1958).

Kabir, M. M., Islam, M. M., & Murase, K. (2010). A new wrapper feature selection
approach using neural network. Neurocomputing, 73, 3273–3283.

3762 M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763
 

 

 



Kabir, M. M, Shahjahan, M., & Murase, K. (2009). An efficient feature selection using
ant colony optimization algorithm. In Sixteenth international conference on
neural information processing (pp. 242–252).

Kambhatla, N., & Leen, T. K. (1997). Dimension reduction by local principal
component analysis. Neural Computation, 9(7), 1493–1516.

Kanan, H. R., Faez, K., & Taheri, S. M. (2007). Feature selection using ant colony
optimization (ACO): A new method and comparative study in the application of
face recognition system. In International conference on data mining

(pp. 63–76).
Ke, L., Feng, Z., & Ren, Z. (2008). An efficient ant colony optimization approach to

attribute reduction in rough set theory. Pattern Recognition Letters, 29,
1351–1357.

Khushaba, R. N., Alsukker, A., Ani, A. A., & Jumaily, A. A. (2008). Enhanced feature
selection algorithm using ant colony optimization and fuzzy memberships. In
Proceedings of the sixth IASTED international conference on biomedical engineering

(pp. 34–39).
Kim, K., & Cho, S. (2004). Prediction of colon cancer using an evolutionary neural

network. Neurocomputing, 61, 361–379.
Kudo, M., & Sklansky, J. (2000). Comparison of algorithms that select features for

pattern classifiers. Pattern Recognition, 33, 25–41.
Kwok, T. Y., & Yeung, D. Y. (1997). Constructive algorithms for structure learning in

feed-forward neural networks for regression problems. IEEE Transactions on

Neural Networks, 8, 630–645.
Lai, C., Reinders, M. J. T., & Wessels, L. (2006). Random subspace method

for multivariate feature selection. Pattern Recognition Letters, 27,
1067–1076.

Lehtokangas, M. (2000). Modified cascade-correlation learning for classification.
IEEE Transactions on Neural Networks, 11, 795–798.

Liu, H., & Tu, L. (2004). Toward integrating feature selection algorithms for
classification and clustering. IEEE Transactions on Knowledge and Data

Engineering, 17(4), 491–502.
Mao, K. Z. (2002). Fast orthogonal forward selection algorithm for feature subset

selection. IEEE Transactions on Neural Network, 13(5), 1218–1224.
Mitchell, T. M. (1997). Machine learning. McGraw-Hill.
Muni, D. P., Pal, N. R., & Das, J. (2006). Genetic programming for simultaneous

feature selection and classifier design. IEEE Transactions on Systems, Man, and
Cybernetics – Part B: Cybernetics, 36(1), 106–117.

Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine
learning databases. Dept. of Information and Computer Sciences, University of
California, Irvine. <http://www.ics.uci.edu/	mlearn/MLRepository.html>.

Oh, I., Lee, J., & Moon, B. (2004). Hybrid genetic algorithms for feature selection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11),
1424–1437.

Pal, N. R., & Chintalapudi, K. (1997). A connectionist system for feature selection.
International Journal of Neural, Parallel and Scientific Computation, 5, 359–381.

Peng, H., Long, F., & Ding, C. (2003). Overfitting in making comparisons between
variable selection methods. Journal of Machine Learning Research, 3, 1371–1382.

Prechelt, L. (1994). PROBEN1 – A set of neural network benchmark problems and

benchmarking rules. Technical report 21/94, Faculty of Informatics, University of
Karlsruhe.

Prechelt, L. (1995). Some notes on neural learning algorithm benchmarking.
Neurocomputing, 9(3), 343–347.

Prechelt, L. (1996). A quantitative study of experimental evaluations of neural
network learning algorithms. Neural Network, 9(3), 457–462.

Pudil, P., Novovicova, J., & Kittler, J. (1994). Floating search methods in feature
selection. Pattern Recognition Letters, 15(11), 1119–1125.

Rakotomamonjy, A. (2003). Variable selection using SVM-based criteria. Journal of
Machine Learning Research, 3, 1357–1370.

Reed, R. (1993). Pruning algorithms — A survey. IEEE Transactions on Neural
Networks, 4(5), 740–747.

Robbins, K. R., Zhang, W., & Bertrand, J. K. (2008). The ant colony algorithm for
feature selection in high-dimension gene expression data for disease
classification. Journal of Mathematical Medicine and Biology, 1–14.

Rumelhart, D. E., & McClelland, J. (1986). Parallel distributed processing. MIT Press.
Setiono, R., & Liu, H. (1997). Neural network feature selector. IEEE Transactions on

Neural Networks, 8, 654–662.
Sindhwani, V., Rakshit, S., Deodhare, D., Erdogmus, D., Principe, J., & Niyogi, P.

(2004). Feature selection in MLPS and SVMs based on maximum output
information. IEEE Transactions on Neural Network, 15(4), 937–948.

Sivagaminathan, R. K., & Ramakrishnan, S. (2007). A hybrid approach for feature
subset selection using neural networks and ant colony optimization. Expert
Systems with Applications, 33, 49–60.

Straceezzi, D. J., & Utgoff, P. E. (2004). Randomized variable elimination. Journal of
Machine Learning Research, 5, 1331–1362.

Verikas, A., & Bacauskiene, M. (2002). Feature selection with neural networks.
Pattern Recognition Letters, 23, 1323–1335.

Wang, X., Yang, J., Teng, X., Xia, W., & Jensen, R. (2007). Feature selection based on
rough sets and particle swarm optimization. Pattern Recognition Letters, 28,
459–471.

Wang, L., Zhou, N., & Chu, F. (2008). A general wrapper approach to selection of
class-dependent features. IEEE Transactions on Neural Networks, 19(7),
1267–1278.

Yang, J. H., & Honavar, V. (1998). Feature subset selection using a genetic algorithm.
IEEE Intelligent Systems, 13(2), 44–49.

Yao, X., & Liu, Y. (1997). A new evolutionary system for evolving artificial neural
networks. IEEE Transactions on Neural Networks, 8(3), 694–713.

M.M. Kabir et al. / Expert Systems with Applications 39 (2012) 3747–3763 3763
 

 

 

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

