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Abstract
A control chart for the mean of a process whose quality characteristic follows a
Weibull distribution is evaluated. In this sense, a transformation that follows an
exponential distribution is used involving the parameters of scale and form of a
Weibull distribution. Such a transformation allows to obtain analytically the con-
trol limits to monitor the mean using the Gamma distribution. Compared with
recent results in the literature, lower average run lengths after a change (ARL1)
values are measured without the need to use intensive Monte Carlo simulation
to obtain the control limits as well as to calculate the ARL1 values. A numerical
example is presented in detail to illustrate the efficiency and effectiveness of the
developed control chart.
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1 INTRODUCTION

Themonitoring of stable processes aims to detect possible increases in the process dispersion and/or changes in the mean
with respect to a target value in order to verify the stability of the process. Control charts are recognized as a very useful
tool in processmonitoring. These charts compare sample results with previously calculated threshold called control limits.
Usually, a point outside the control limits indicates an out-of-control state signaling the presence of special causes in the
process. Otherwise, the state under control is assigned to a process exempt from special causes. Parameters such as mean,
variance, nonconforming fraction, among others, can be monitored through control charts.
Although initially control charts were applied to manufacturing processes in engineering, it is currently common to

witness their use in areas such as health care,1,2 health surveillance service,3,4 social network,5,6 financial surveillance,7,8
education organizations,9–11 among others. The theory andmethod of statistical process control focuses on ease of use and
interpretation for end users and the use of control charts helps to understand the behavior of processes or systems over
time. Recently, control charts have been used, for example, for count and growth or exponential decline data for use in a
pandemic. Especially in studies that analyzed data related to COVID-19 cases in certain regions of theworld, control charts
showed cases reported daily. Hybrid control chart methods were developed as presented by Perla et al.12 and Parry et al.13
In Perla et al.,12 for example, control charts were used to visualize times and phases of the pandemic. Other interesting
studies related to the pandemic caused by COVID-19 can be viewed at Inkelas et al.,14 Bergaman et al.,15 and Shah et al.16
Inmost applications, it is usual for the normal distribution to be indicated to describe the behavior of the quality charac-

teristic, which is adequate and facilitates the analysis as in Abbas,17 Abu-Shawiesh et al.,18 Khoo and Ariffin,19 Tailor,20,21
and others. Additionally, in situations where the quality characteristic is not normally distributed, it is common to propose
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an adequate transformation for the data, as in Chou22 and in Fernandes.23 Some cases of interest such as, for example,
survival time, strength, tension, among others, characterize a non-normality in their distribution. However, studies based
on the exact distribution of the characteristic of interest have many advantages. Abernethy24 and Rinne25 described that
the Weibull distribution proves to be quite suitable for these situations because it is more flexible as it can have different
forms. This distribution is then an alternative to the normal distribution for such asymmetric situations.
Some contributions in terms of construction of control charts in processes adjusted by the Weibull distribution are

presented in the literature, for example, in Nelson,26 a chart of the median and amplitude was proposed to monitor the
parameters of a Weibull process. Ramalhoto and Morais27 proposed Shewhart control charts for the scale parameter with
fixed or variable sampling intervals. Pascual28 suggested a control chart for themean employing an exponentiallyweighted
moving average (EWMA) based on the sampling amplitude of the logarithms of the data. Pascual and Zhang29 presented
a control chart to monitor the shape parameter based on the amplitude of random samples from the minimum value
distribution. Chein30 used a Shewhart control scheme based on two control charts to simultaneously monitor the shape
and scale parameters of Weibull data without subgrouping. Already Dickinson31 makes use of a CUSUM plot to monitor
mean lifetime with censored data from a Weibull distribution. Faraz et al.32 proposed Shewhart charts to monitor the
scale and shape parameters after transforming a controlledWeibull distribution into a standard normal distribution using
an error function. More recently, a study focused on monitoring the shape parameter of a Weibull renewal process was
suggested by Zhang et al.33 Based on a new statistic with an approximately normal distribution, this study analyzes the
performance of a new Shewhart-type control chart, called Beta Chart. Arif and Aslam34 presented a control chart for
Weibull using a weightedmoving average statistic that is based on theminimum andmaximum statistic. Aiming to obtain
an improvement in the monitoring of the mean of a process with a random variable following a Weibull distribution, Ho
et al.35 proposed the inclusion of supplementary rules in the traditional Shewhart control chart. Other interesting studies
can be seen in Aslam et al.,36 Gong et al.,37 Khan et al.,38 and Huwang et al.39
Recently, Fernandes et al.23 proposed an �̄� control chart to monitor the mean of a Weibull process, assuming that the

shape parameter does not change. The proposed monitoring was performed without the need for data transformation.
However, the control limits as well as the average run length (ARL) values were obtained using Monte Carlo simula-
tion. In this article, an alternative is proposed to the charts from Fernandes et al.23 to control the quality characteristic 𝑋
with Weibull distribution through the transformed variable 𝑌 = (𝑋

𝛾
)𝛿, in which 𝛾 is the scale parameter and 𝛿, the shape

parameter. As 𝑌 follows an exponential distribution, Exp(1), the sum of 𝑛 independent and identically distributed ran-
dom variables will have a Gamma distribution with parameters 𝑛 and 1, respectively, shape and scale. This fact will allow
one to obtain the exact control limits and also the calculation of the ARL value. Therefore, in relation to the chart from
Fernandes et al.,23 there will be an advantage of not using Monte Carlo simulation, in addition to obtaining lower values
of ARL1 (with ARL0 fixed at 370.4) for most displacements on the mean.
The remaining of this article is organized as follows. TheWeibull distribution is presented in Section 2. Control charts to

monitor �̄� and �̄� observations of the Weibull process are described in Section 3. Comparisons among the �̄� and �̄� control
charts are seen in Section 4. Application to a real data set is presented in Section 5. Final remarks are outlined in Section 6.

2 WEIBULL DISTRIBUTION AND SOME PROPERTIES

Let 𝑋 be a quality characteristic following a Weibull distribution, 𝑋 ∼ Weibull(𝛿, 𝛾), in which 𝛿 > 0 (shape parameter)
and 𝛾 > 0 (scale parameter). The probability density function (PDF) of 𝑋 is given as follows:

𝑓(𝑥|𝛿, 𝛾) = 𝛿
𝛾

(
𝑥

𝛾

)𝛿−1
exp

[
−

(
𝑥

𝛾

)𝛿]
, 𝑥 > 0, (1)

in which the mean and variance are given, respectively, by{
𝔼(𝑋) = 𝜇 = 𝛾Γ(1∕𝛿 + 1) and
𝕍(𝑋) = 𝜎2 = 𝛾2

[
Γ(2∕𝛿 + 1) − Γ2(1∕𝛿 + 1)

]
.

(2)

Note that if the shape parameter 𝛿 does not change, then the control of themean is equivalent to control the scale param-
eter 𝛾. If𝑌 = (𝑋

𝛾
)𝛿, then𝑌 follows the exponential distribution𝑌 ∼ Exp(1), as described in Johnson at al.40 The result can
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4212 VASCONCELOS et al.

be obtained by noting that the cumulative distribution function (CDF) of 𝑌 can be written as 𝑃(𝑌 ≤ 𝑦) = 𝑃(𝑋 ≤ 𝑦1∕𝛿𝛾)

and consequently the PDF of 𝑌 is the derivative of its CDF, which gives 𝑌 ∼ Exp(1). Thus, the Weibull distribution can
be characterized as the distribution of a random variable 𝑋 such that the random variable 𝑌 has an exponential distribu-
tion with a mean equal to 1. Additionally, for a given sample (𝑌1, 𝑌2, … , 𝑌𝑛) of independently and identically distributed
(iid) random variables of 𝑌, then the random variable 𝑍 =

∑𝑛

𝑖=1
𝑌𝑖 has a Gamma distribution with parameters 𝑛 and 1.

Note that no results (not even approximations) have been known about the sums of Weibull random variables as noted
by Nadarajah41 and according to Fernandes et al.23 even the Central Limit Theorem assures that 𝑋 follows asymptotically
a normal distribution, although such a convergence is not reliable as it depends on the sample size and 𝜇. Thus the exact
distribution of �̄�, for 𝑋𝑖 ∼ Weibull(𝛿, 𝛾), is unknown.

3 OBTAINING CONTROL LIMITS FOR �̄� AND �̄� CONTROL CHARTS

Let (𝑋1, 𝑋2, … , 𝑋𝑛) be an iid sample of size 𝑛 from a population 𝑋𝑖 ∼ Weibull(𝛿, 𝛾). When the process is in control, its
mean is denoted by 𝜇0 and, when it is out of control, by 𝜇1 = 𝜇0 × (1 + 𝑑), in which 𝑑 is the shift size, which can be
positive (increase in the mean) or negative (decrease in the mean). It is assumed that the shape parameter 𝛿 does not
change, as considered by Ramalhoto and Morais,27 Pascual and Park,42 Fernandes et al.,23 and Ho et al.43 Pascual and
Park42 observed that there are practical situations when this assumption is valid. The value of 𝛿 may be an inherent
property of the process, that is, it is specified by mechanical and material properties. Additionally, Fernandes et al.23 used
the empirical distribution function of 𝑍0 =

(�̄�|𝜇0)−𝜇0
𝜎0∕

√
𝑛

to build the control charts. Using 20,000 simulated values from a
Weibull distribution with mean 𝜇0 and standard deviation 𝜎0, Fernandes et al.23 calculated the upper and lower control
limits using the (𝛼∕2)th and (1 − 𝛼∕2)th quantiles, respectively, that is, 𝑞𝛼∕2 and 𝑞1−𝛼∕2 of𝑍0. The selection of𝛼 is such that
an ARL0 = 1∕𝛼 = 370.4 is achieved. The control chart performance is expressed in terms of ARL1 =

1

1−𝑃(𝑞𝛼∕2<𝑍1<𝑞1−𝛼∕2)
,

with 𝑍1 =
(�̄�|𝜇1)−𝜇0
𝜎0∕

√
𝑛
, also using 20,000 simulated values of out-of-control �̄�|𝜇1.

In this article, the control of theWeibull population mean will be done by means of the transformed variable 𝑌 = (𝑋
𝛾
)𝛿.

Thus, the goal is to monitor the quantity �̄� since shifts in the shape parameter 𝛿 or in the scale parameter 𝛾 will alter
the distribution of �̄� and changes will be signalized in �̄�. In this sense, let (𝑌1, 𝑌2, … , 𝑌𝑛) be an iid sample from an
exponential distribution with mean 1. The upper control limit (UCL) and the lower control limit (LCL) are obtained such
that the following expressions are satisfied:

𝑃

(
𝑍 =

𝑛∑
𝑖=1

𝑦𝑖 > 𝑛UCL

)
= 𝛼∕2 (3)

and

𝑃

(
𝑍 =

𝑛∑
𝑖=1

𝑦𝑖 < 𝑛LCL

)
= 𝛼∕2. (4)

As noted in Section 2, 𝑍 =
∑𝑛

𝑖=1
𝑦𝑖 has a Gamma distribution with parameters 𝑛 and 1, denoted by Gamma(𝑛, 1), with

CDF 𝐹𝑍(𝑧). Consequently, the UCL and LCL are numerically calculated by the following expressions:

UCL =
𝐹−1𝑍

(
1 −

1

𝛼

)
𝑛

(5)

and

LCL =
𝐹−1𝑍

(
1

𝛼

)
𝑛

. (6)
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VASCONCELOS et al. 4213

For each sample collected in the production process, �̄� is computed and compared with theUCL and LCL. If �̄� > UCL
or �̄� < LCL, the process will be considered out of control and otherwise, under control.
Although the calculation of Equations (5) and (6) are not numerically simple, they can be easily done with the

help of common computational resources. For example, if 𝑛 = 5 and 𝛼 = 0.002699796 (to have an ARL0 ≈ 370.4), then
by using the statistical software R,44 it is found that UCL = qgamma(1−0.0026997962/2,5,1)/5 = 2.878499 and LCL =
qgamma(0.002699796/2,5,1)/5 = 0.158372. Even in spreadsheets, for example, such as Excel, the procedure is simple as
GAMMA.INV(1−0.002699796/2,5,1)/5 = 2.878499, for the UCL, and GAMMA.INV(0.002699796/2,5,1)/5 = 0.158372, for
the LCL.
To compute the ARL1 values, it must be observed that the parameter of shape 𝛿 does not change and considering the

average expressed in Equation (2) and 𝜇1 = 𝜇0 × (1 + 𝑑), it follows that the change in the average is equivalent to changing
the scale parameter under control 𝛾0 to the scale parameter out of control 𝛾1 = 𝛾0 × (1 + 𝑑). The problem in calculating the
ARL1 is that when the process goes out of control, the variable 𝑋 will have parameters of shape 𝛿 and scale 𝛾1. However,
since the transformation 𝑌 = ( 𝑋

𝛾0
)𝛿 is maintained, the property of 𝑌 having an exponential distribution with mean equal

to 1 will no longer be valid. Thus, to continue using the properties of the exponential and Gamma distributions, some
algebraic manipulations must be performed in such a way that the ARL1 can be obtained based on 𝑌 = (

𝑋

𝛾1
)𝛿. Therefore,

the expression of ARL1 can be given by

ARL1 =
1

1 − 𝛽
, (7)

in which 𝛽 may be interpreted as the type 2 error in a hypothesis test. Then, 𝛽 is obtained from

𝛽 = 𝑃

[
𝑛LCL ≤

𝑛∑
𝑖=1

(
𝑋𝑖|𝛾1
𝛾0

)𝛿
≤ 𝑛UCL

]
. (8)

An issue with Equation (8) is that the distribution of (𝑋𝑖|𝛾1
𝛾0
)𝛿 is unknown. However, if the terms inside the square

brackets in Equation (8) is multiplied by ( 𝛾0
𝛾1
)𝛿, the following expression is obtained, in which the term (𝑋𝑖|𝛾1

𝛾1
)𝛿 has an

exponential distribution with mean 1 and consequently the sum
∑𝑛

𝑖=1
(
𝑋𝑖|𝛾1
𝛾1
)𝛿 will have a Gamma distribution making it

possible to calculate the ARL1:

𝛽 = 𝑃

[
𝑛LCL

(
𝛾0
𝛾1

)𝛿
≤

𝑛∑
𝑖=1

(
𝑋𝑖|𝛾1
𝛾1

)𝛿
≤ 𝑛UCL

(
𝛾0
𝛾1

)𝛿]
. (9)

Note that the calculation of 𝛽 depends on the ratio 𝛾0
𝛾1
= (1 + 𝑑)

−1, meaning that different values of 𝑑 result in different
values of 𝛽.
As in the calculation of the control limits described earlier, the value of ARL1 can also be calculated

using simple computational resources. For example, if 𝑛 = 5, 𝛿 = 3, 𝑑 = 0.2, and 𝜇0 = 3.572, then
𝛾0 = 4.00 and 𝛾1 = 𝛾0 + 𝛾0 × 𝑑 = 4.80. Thus, using R, 𝛽 = pgamma(5*2.878499*(4.00/4.80)ˆ3,5,1)−pgamma
(5*0.158372*(4.00/4.80)ˆ3,5,1) = 0.9176019, resulting in an ARL1 =

1

1−𝛽
≅ 12.1362. In Excel, 𝛽 is computed as

gamma.dist(5*2.878499*(4/4.8)ˆ3,5,1,1)−gamma.dist(5*0.158372*(4/4.8)ˆ3,5,1,) = 0.9176019, which results in an equivalent
ARL1.

4 NUMERICAL RESULTS

This section consists of three subsections. In Section 4.1, a comparison is made between the ARL1 of the �̄� control chart
from Fernandes et al.23 and the proposed �̄� chart. In Section 4.2, it is suggested to use the control chart �̄� when shifts
occur in both parameters (shape and scale). Finally, in Section 4.3, the impact onARL0 when both parameters (shape and
scale) are unknown is discussed. By a simulation study, it was determined that𝑚 = 300 random samples of size 𝑛 = 5 are
necessary to minimize such impact.
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4214 VASCONCELOS et al.

4.1 Comparing the 𝐀𝐑𝐋𝟏 values of the �̄� versus �̄� control charts

In this subsection, a comparison is performed between the �̄� control chart proposed by Fernandes et al.,23 in which the
control limits and ARL1 were obtained by Monte Carlo simulations, with those obtained by the �̄� control chart here
proposed, in which the control limits and ARL1 are obtained exactly using the Gamma distribution.
Table 1 presents the values of ARL obtained from the study considering shifts in two directions, 𝑑 ∈

{−0.4; −0.3; −0.2; −0.1; −0.05; −0, 01; 0; 0.01; 0.05; 0.1; 0.2; 0.3; 0.4}, sample size 𝑛 ∈ {3, 5, 10, 30, 100}, and shape parame-
ter 𝛿 ∈ {0.5, 3, 5, 10, 15, 20}. The choices of values for 𝑑, 𝑛, and 𝛿 were made in such a way that several practical situations
were taken into account. The sample sizes 𝑛 include typical values used in the statistical process control as observed
in Montgomery.45 The choices for the shape parameter (𝛿) are those described in many practical cases as in Jiang and
Murthy,46 Rinne,25 and Abernethy.24 The selection of 𝑑 in the range [−0.4, 0.4] has the aim to verify the effective differ-
ences between the current proposal and the one presented by Fernandes et al.23 Shifts in the mean larger than 40% make
the two proposals similar in terms of ARL1. As the shape parameter 𝛿 is considered fixed, then the parameter (1 + 𝑑) can
be interpreted as the change in mean when the process goes out of control, that is, 𝜇1 = 𝜇0 × (1 + 𝑑) or, equivalently, by
changing the scale parameter, that is, 𝛾1 = 𝛾0 × (1 + 𝑑).
Looking at Table 1, it is possible to verify some results. First, it is noteworthy that, in Fernandes et al.’s23 proposal,

it is not easy to calibrate the ARL0 value to 370.4 since the control limits are obtained by Monte Carlo simulation. In
general terms, considering only the cases where 𝑑 ≠ 0 (for 𝑑 = 0, the values should be equal to 1, if an ARL0 ≈ 370.4
was adopted), the proposed �̄� control chart yields smaller ARL1 values in approximately 70% of the cases evaluated. In
Figure 1, it is observed that the proposed �̄� chart presented an average percentage of cases with lower ARL1 higher than
the �̄� chart. It is noteworthy that for high values of |𝑑|, the percentage of ties grows since the two proposals are easily able
to detect the change in the average. In Figure 2, the average percent change of the ARL1 of the �̄� and �̄� control charts is
observed, defined as Δ%ARL =

𝐴𝑅𝐿1�̄�−𝐴𝑅𝐿1�̄�

𝐴𝑅𝐿1�̄�
× 100%.

Since the average performance of the proposed �̄� control chart was better than the �̄� chart and the values of the control
limits, as well as the computation related to theARL1 values, were calculated analytically, that is, without the use ofMonte
Carlo simulation (unlike in the �̄� chart), the proposed �̄� chart may be considered competitive. In fact, the proposed �̄�
control chart can be useful for application in real cases in a simple way, and can even be implemented using common
spreadsheets such as Excel that are generally widely available in the business environment.

4.2 The use of �̄� chart when shifts occur on the scale and shape parameters

In the previous sections, it was considered that the shape parameter (𝛿) was kept constant as stated in Ramalhoto and
Morais,27 Pascual and Park,42 Fernandes et al.,23 and Ho et al.,43 which allowed up a direct comparison of the current
results with those obtained in Fernandes et al.23 In this section, it will be shown that the control limits expressed in
Equations (5) and (6) can also be employed when shifts are observed in both shape and scale parameters (𝛿 and 𝛾). Note
that the values ofARL1 cannot be directly calculated by the expressions (7) and (8) as the shape parameter 𝛿may change.
Due to the complexity to get the distribution of �̄� when the process is out of control (when the shape parameter 𝛿 shifts),
an option was to apply a Monte Carlos simulation procedure (with 50,000 runs) to get the ARL1 values. To illustrate, let
be the in-control parameters as (𝛿0 = 5; 𝛾0 = 3), which shifts for 𝛿1 ∈ {4; 4.5; 5; 5.5; 6} and 𝛾1 ∈ {2; 2.5; 3.5; 4}, as shown in
Table 2. The values of (𝛿1, 𝛾1) were chosen in order to contemplate different situations that could be observed in practice
(increase and decrease of the parameters under control). Table 2 shows that the control limits here proposed are able to
generate effective signaling of shifts at the mean process when changes on scale (𝛾) and form (𝛿) parameters occur since
ARL1 < ARL0, with ARL0 = 370.4. The percentage 100 × 𝑑% of the shift in the mean expressed by 𝑑, being obtained by
𝜇1

𝜇0
− 1 with 𝜇 = 𝛾Γ(1∕𝛿 + 1).

4.3 Effect on 𝐀𝐑𝐋when parameters need to be estimated

Inmany practical situations, past experiences resulting from several samples from the process allow to consider the param-
eters of scale and formknown in the situation under control and the developments described earlier can be used.However,
when the scale and shape parameters cannot be considered known, it is necessary to perform the estimation of these
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F IGURE 1 Comparisons between the ARL1 of the �̄� and �̄� control charts

F IGURE 2 Average percent change of the ARL1 of the �̄� and �̄� control charts, Δ%ARL

parameters, a step known as Phase I in quality control. In general, 𝑚 random samples of size 𝑛 are obtained (assuming
the process is in control) and then the scale and shape parameters are estimated. In this article, the estimation will be
performed based on the sample size 𝑛 × 𝑚 using maximum likelihood estimators (�̂�; �̂�). Once the estimates of the scale
and shape parameters are defined, then the control limits are calculated for later use with data from the process in the
step called Phase II. Note that even when the shape parameter does not change, it may be unknown.
The problem is that if 𝑛 × 𝑚 is not large enough, then the estimates of the scale and shape parameters can present a

large error and consequently the planned ARL0 can be very different from the desired value (say, around 370.4, for an
𝛼 = 0.002699796), implying in mistaken evaluations of possible values ofARL1. Essentially, when the parameters of scale
𝛾 and shape 𝛿 are unknown, they need to be estimated from an initial data set (typically from 𝑚 subgroups each of size
𝑛) and the resulting estimates are used in the control limits. The effects of estimating the limits of the control charts are
important on their properties. Most importantly, the run-length distribution is no longer geometric, since the signaling
events are no longer independent. Thus, it is no longer true that the ARL0 of the chart with estimated control limits is
equal to 1

𝛼
. This has important implications, since as noted earlier, practitioners sometimes wish to use the results in the
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TABLE 2 ARL1 values for 𝛿1 and 𝛾1
𝐒𝐚𝐦𝐩𝐥𝐞 𝐬𝐢𝐳𝐞 𝒏

⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞

𝜹𝟏 𝜸𝟏 𝒅 5 10 15 20 50
5 3 0 370.40 370.40 370.40 370.40 370.40
6 4 0.35 1.33 1.03 1.00 1.00 1.00

3.5 0.18 7.40 2.94 1.83 1.40 1.01
2.5 −0.16 31.43 3.90 1.61 1.15 1.00
2 −0.33 1.27 1.00 1.00 1.00 1.00

5.5 4 0.34 1.34 1.04 1.00 1.00 1.00
3.5 0.17 5.99 2.63 1.73 1.36 1.01
2.5 −0.16 24.84 3.97 1.74 1.22 1.00
2 0.33 1.32 1.00 1.00 1.00 1.00

5 4 0.33 1.35 1.04 1.01 1.00 1.00
3.5 0.17 4.84 2.35 1.62 1.32 1.01
2.5 −0.17 19.96 4.10 1.92 1.33 1.00
2 −0.33 1.40 1.00 1.00 1.00 1.00

4.5 4 0.33 1.35 1.05 1.01 1.00 1.00
3.5 0.16 3.94 2.09 1.51 1.26 1.01
2.5 −0.17 16.37 4.31 2.18 1.50 1.00
2 −0.34 1.49 1.00 1.00 1.00 1.00

4 4 0.32 1.35 1.06 1.01 1.00 1.00
3.5 0.15 3.24 1.85 1.41 1.21 1.00
2.5 −0.18 13.69 4.65 2.58 1.80 1.03
2 −0.34 1.61 1.02 1.00 1.00 1.00

standard known case (at least as an approximation) to design control charts evenwhen some of the underlying parameters
are unknown.
The exact calculation of the ARL0 when using estimates (�̂�; �̂�) is not simple since the joint distribution for (�̂�; �̂�) is

unknown. The use of a multivariate normal approximation was not satisfactory (results not shown). Thus, Monte Carlo
simulations will be used by generating 𝑗, (𝑗 = 10, 000) iidWeibull(𝛾; 𝛿) samples of size 𝑛 × 𝑚 and, for each one, the scale 𝛾
and shape 𝛿 parameters are estimated by the maximum likelihood method, composing the estimates (�̂�𝑗; �̂�𝑗). For each set
of estimated parameters, 𝑘 (𝑘 = 100, 000) iidWeibull(�̂�𝑗; �̂�𝑗) samples are generated. Thus, for the 𝑗th simulation with 𝑘
samples of size 𝑛, the parameter �̂�𝑗 of a geometric distribution is estimated, in which �̂�𝑗 is given by the percentage of times
that �̄�𝑘 is greater than the UCL or lower than the LCL (obtained from (5) and (6), Section 3). Then, for each �̂�𝑗 , 𝑧 (𝑧 =
10, 000) iid samples froma geometric distributionGeom(�̂�𝑗) are generated. Finally, all generated values from the geometric
distribution are merged into a single vector of size 𝑗 × 𝑧 whose average will be an approximation of the real ARL0, when
the parameters (𝛾; 𝛿) needed to be estimated. The standard deviation of the run length (SDRL0) is calculated as the average
of standard deviations obtained for each of 𝑧 (𝑧 = 10, 000) iid samples from a geometric distribution Geom(�̂�𝑗). Tables 3
and 4 presentARL0 and SDRL0 results for 𝑛 ∈ {5; 10},𝑚 ∈ {25; 50; 75; 100; 300}, and scale and shape parameters such that
averages equal to 3 or 5 are implied. It is observed that, for small values of𝑚, theARL0 and SDRL0 can be underestimated
or overestimated. However, a value of𝑚 around 300 can satisfactorily minimize the problem once the values ofARL0 and
SDRL0 are closer to 370.4. Note that we are evaluating the impact in 𝐴𝑅𝐿0 when estimated are used for 𝛿 and 𝛾 so the
value of 𝑑 is equal to zero in all cases shown in Tables 3 and 4.

5 NUMERICAL EXAMPLE

In this section, the numerical example used in previous studies (see Nelson,26 Ramalhoto and Morais,27 Pascual and
Zhang,29 and Faraz et al.32) is reanalyzed considering that it is wanted to verify whether or not the mean has changed. It
is a data set related to the breaking strengths (in gigapascals) of carbon fibers used in manufacturing fibrous composite

 10991638, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3200 by U

niversity O
f T

oronto L
ibraries, W

iley O
nline L

ibrary on [15/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4218 VASCONCELOS et al.

TABLE 3 ARL0 values for estimated parameters

𝒎 → 25 50 75 100 300
𝒏 → 5 10 5 10 5 10 5 10 5 10
𝝁𝟎 𝜹 𝜸 𝐀𝐑𝐋𝟎

3 0.5 1.500 392.97 348.68 386.40 356.25 379.80 362.03 379.84 368.04 372.20 371.27
3 3.360 394.18 354.89 381.49 356.76 380.43 359.64 379.49 367.69 371.09 370.33
5 3.267 395.61 352.00 383.19 362.15 377.70 365.70 374.24 368.79 369.92 370.77
10 3.153 394.23 353.94 380.95 364.32 378.55 365.53 373.01 367.65 372.13 371.09
15 3.107 383.30 355.93 383.00 361.52 380.31 363.04 375.48 366.81 373.59 369.88
20 3.082 394.62 350.65 388.22 357.45 381.26 362.20 380.33 362.76 374.77 370.28

5 0.5 2.500 393.84 351.75 386.07 359.14 382.91 359.35 375.87 366.22 372.88 370.09
3 5.599 400.04 345.97 381.77 348.72 381.12 364.59 376.75 367.87 372.97 371.18
5 5.446 397.67 348.89 386.10 354.65 379.14 361.55 374.87 363.52 371.62 369.19
10 5.256 389.82 347.27 379.96 364.12 375.23 366.58 375.36 367.83 369.89 369.37
15 5.178 395.05 342.88 386.08 352.87 376.64 364.29 374.70 366.55 374.67 369.97
20 5.136 396.53 349.41 390.37 362.61 375.47 364.20 373.02 366.56 371.12 370.15

TABLE 4 SDRL0 values for estimated parameters

𝒎 → 25 50 75 100 300
𝒏 → 5 10 5 10 5 10 5 10 5 10
𝝁𝟎 𝜹 𝜸 𝐀𝐑𝐋𝟎

3 0.5 1.500 388.66 344.62 382.16 352.53 376.76 358.42 377.42 365.58 371.92 370.93
3 3.360 389.74 350.56 376.80 352.93 377.16 356.33 376.74 365.46 370.80 370.01
5 3.267 391.38 348.47 379.11 357.75 374.63 362.47 371.47 366.43 369.72 370.40
10 3.153 388.93 349.25 376.68 360.35 375.47 362.04 370.78 365.32 371.82 370.78
15 3.107 378.34 351.23 378.93 357.52 376.95 360.19 373.13 364.21 373.27 369.58
20 3.082 389.48 345.92 383.62 353.13 377.95 359.06 378.08 360.26 374.40 369.93

5 0.5 2.500 388.41 347.19 381.76 355.10 379.42 356.48 373.14 363.67 372.61 369.86
3 5.599 395.37 340.89 377.09 344.89 377.71 360.99 374.05 365.46 372.69 370.88
5 5.446 392.51 344.63 381.36 350.70 375.88 358.66 372.80 361.33 371.40 369.00
10 5.256 385.16 342.33 375.85 359.71 371.85 363.38 372.63 365.27 369.55 369.10
15 5.178 389.72 339.31 381.27 349.26 372.98 360.90 372.74 364.00 374.30 369.61
20 5.136 391.54 345.76 386.32 358.61 372.02 361.43 371.10 363.98 370.92 369.92

materials. They are derived from a study done by the U.S. Army Materials Technology Laboratory in Watertown, MA. All
these articles reported that the parameters 𝛿 and 𝛾 were assumed to be both known and equal, respectively, to 4.8 and 3.2
resulting in a mean 𝜇0 = 2.9312.
Table 5 reproduces the data set. Here, it is assumed that there is an interest to verify if the process mean is changing.

Using Equations (5) and (6), it is easy to computeUCL = 2.88 and LCL = 0.16 and to compare them with the values of �̄�,
calculated for each sample. The samples #13, #14, and #19 are out of control. The graphical representation is similar to the
usual �̄� control chart based on the normal distribution and can be seen in Figure 3 in which samples #13, #14, and #19
are out of control.

6 FINAL REMARKS

In this article, a new approach to controlling the process mean of an Weibull distribution is presented. It is an analytical
alternative to the method proposed by Fernandes et al.,23 in which intensive Monte Carlo simulations are required at all
stages. Based on several situations presented in Table 1, it is concluded that the approach proposed here is competitive

 10991638, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3200 by U

niversity O
f T

oronto L
ibraries, W

iley O
nline L

ibrary on [15/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



VASCONCELOS et al. 4219

TABLE 5 Data set for the numerical example and decision

𝒏 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 �̄� =
∑𝒏

𝒊=𝟏

(
𝒙𝒊

𝜸
)𝜹

𝒏
Decision

1 3.7 2.74 2.73 2.5 3.6 1.002918607 In control
2 3.11 3.27 2.87 1.47 3.11 0.69409768 In control
3 4.42 2.41 3.19 3.22 1.69 1.40633147 In control
4 3.28 3.09 1.87 3.15 4.9 2.141017515 In control
5 3.75 2.43 2.95 2.97 3.39 1.020530276 In control
6 2.96 2.53 2.67 2.93 3.22 0.62325751 In control
7 3.39 2.81 4.2 3.33 2.55 1.418096902 In control
8 3.31 3.31 2.85 2.56 3.56 0.987312477 In control
9 3.15 2.35 2.55 2.59 2.38 0.418891185 In control
10 2.81 2.77 2.17 2.83 1.92 0.36633555 In control
11 1.41 3.68 2.97 1.36 0.98 0.538880478 In control
12 2.76 4.91 3.68 1.84 1.59 2.071872213 In control
13 3.19 1.57 0.81 5.56 1.73 3.05005027 Out of control
14 1.59 2 1.22 1.12 1.71 0.041047879 Out of control
15 2.17 1.17 5.08 2.48 1.18 1.931567704 In control
16 3.51 2.17 1.69 1.25 4.38 1.256634652 In control
17 1.84 0.39 3.68 2.48 0.85 0.464418608 In control
18 1.61 2.79 4.7 2.03 1.8 1.411946462 In control
19 1.57 1.08 2.03 1.61 2.12 0.065262542 Out of control
20 1.89 2.88 2.82 2.05 3.65 0.645304568 In control

F IGURE 3 �̄� control chart for the numerical example

with the approach by Fernandes et al.23 but has the advantage of being analytical and easily implemented even in spread-
sheets, not requiring the use ofMonte Carlo simulations. Unlike Fernandes et al.,23 who considered only shifts in the scale
parameter, in this paper, we also consider situations in which shifts occur on scale and shape parameters.
As a suggestion for future work, the expansion of the approach discussed in this article is suggested for dealing with

cases in which the shape and scale parameters can change simultaneously. In this case, the control limits will remain
the same as those presented here, although the analytical calculation of the ARL1 will be challenging, since it seems
quite complicated to obtain probabilities associated with the distribution of �̄� when the process is out of control, due to
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4220 VASCONCELOS et al.

simultaneous changes in the parameters of scale and shape. ARL1 calculations for situations with simultaneous changes
in the parameters of scale and shape were discussed in this paper using a Monte Carlo simulation approach instead of an
analytical approach. Another research possibility would be to include a supplementary run rule in order to improve the
performance of the �̄� chart, similarly to what was developed in Ho et al.43 and Khoo and Ariffin.19
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